code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class A ( a ): def __lt__( self , snake_case_ ) -> Optional[int]: return self[-1] < other[-1] def __eq__( self , snake_case_ ) -> Optional[Any]: return self[-1] == other[-1] def _lowercase ( lowerCamelCase__ : list ): _a = [] # sort into stacks for element in collection: _a = Stack([element] ) _a = bisect_left(lowerCamelCase__, lowerCamelCase__ ) if i != len(lowerCamelCase__ ): stacks[i].append(lowerCamelCase__ ) else: stacks.append(lowerCamelCase__ ) # use a heap-based merge to merge stack efficiently _a = merge(*(reversed(lowerCamelCase__ ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case : Any = input("Enter numbers separated by a comma:\n").strip() __snake_case : int = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def _lowercase ( ): _a = Github(os.environ["GITHUB_TOKEN"] ) _a = g.get_repo("huggingface/transformers" ) _a = repo.get_issues(state="open" ) for issue in open_issues: _a = sorted([comment for comment in issue.get_comments()], key=lambda lowerCamelCase__ : i.created_at, reverse=lowerCamelCase__ ) _a = comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str ): _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = 0 for i in range(len(lowerCamelCase__ ) ): if lista[i] != lista[i]: count += 1 _a = "_" if count > 1: return False else: return "".join(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list[str] ): _a = [] while True: _a = ["$"] * len(lowerCamelCase__ ) _a = [] for i in range(len(lowerCamelCase__ ) ): for j in range(i + 1, len(lowerCamelCase__ ) ): _a = compare_string(binary[i], binary[j] ) if k is False: _a = "*" _a = "*" temp.append("X" ) for i in range(len(lowerCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCamelCase__ ) == 0: return pi _a = list(set(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Sequence[float] ): _a = [] for minterm in minterms: _a = "" for _ in range(lowerCamelCase__ ): _a = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCamelCase__ ) return temp def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str, lowerCamelCase__ : int ): _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = 0 for i in range(len(lowerCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : list[str] ): _a = [] _a = [0] * len(lowerCamelCase__ ) for i in range(len(chart[0] ) ): _a = 0 _a = -1 for j in range(len(lowerCamelCase__ ) ): if chart[j][i] == 1: count += 1 _a = j if count == 1: _a = 1 for i in range(len(lowerCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCamelCase__ ) ): _a = 0 temp.append(prime_implicants[i] ) while True: _a = 0 _a = -1 _a = 0 for i in range(len(lowerCamelCase__ ) ): _a = chart[i].count(1 ) if count_n > max_n: _a = count_n _a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCamelCase__ ) ): _a = 0 def _lowercase ( lowerCamelCase__ : list[str], lowerCamelCase__ : list[str] ): _a = [[0 for x in range(len(lowerCamelCase__ ) )] for x in range(len(lowerCamelCase__ ) )] for i in range(len(lowerCamelCase__ ) ): _a = prime_implicants[i].count("_" ) for j in range(len(lowerCamelCase__ ) ): if is_for_table(prime_implicants[i], binary[j], lowerCamelCase__ ): _a = 1 return chart def _lowercase ( ): _a = int(input("Enter the no. of variables\n" ) ) _a = [ float(lowerCamelCase__ ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _a = decimal_to_binary(lowerCamelCase__, lowerCamelCase__ ) _a = check(lowerCamelCase__ ) print("Prime Implicants are:" ) print(lowerCamelCase__ ) _a = prime_implicant_chart(lowerCamelCase__, lowerCamelCase__ ) _a = selection(lowerCamelCase__, lowerCamelCase__ ) print("Essential Prime Implicants are:" ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case : Optional[int] = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __snake_case : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A ( a ): __UpperCAmelCase : str = ["""vqvae"""] def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ , mel=snake_case_ , vqvae=snake_case_ ) def __lowerCAmelCase ( self ) -> int: return 5_0 if isinstance(self.scheduler , snake_case_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _a = steps or self.get_default_steps() self.scheduler.set_timesteps(snake_case_ ) _a = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _a = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _a = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=snake_case_ , device=self.device , ) _a = noise _a = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(snake_case_ , snake_case_ ) _a = self.mel.audio_slice_to_image(snake_case_ ) _a = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _a = (input_image / 2_5_5) * 2 - 1 _a = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _a = self.vqvae.encode(torch.unsqueeze(snake_case_ , 0 ) ).latent_dist.sample( generator=snake_case_ )[0] _a = self.vqvae.config.scaling_factor * input_images if start_step > 0: _a = self.scheduler.add_noise(snake_case_ , snake_case_ , self.scheduler.timesteps[start_step - 1] ) _a = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _a = int(mask_start_secs * pixels_per_second ) _a = int(mask_end_secs * pixels_per_second ) _a = self.scheduler.add_noise(snake_case_ , snake_case_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , snake_case_ ): _a = self.unet(snake_case_ , snake_case_ , snake_case_ )["sample"] else: _a = self.unet(snake_case_ , snake_case_ )["sample"] if isinstance(self.scheduler , snake_case_ ): _a = self.scheduler.step( model_output=snake_case_ , timestep=snake_case_ , sample=snake_case_ , eta=snake_case_ , generator=snake_case_ , )["prev_sample"] else: _a = self.scheduler.step( model_output=snake_case_ , timestep=snake_case_ , sample=snake_case_ , generator=snake_case_ , )["prev_sample"] if mask is not None: if mask_start > 0: _a = mask[:, step, :, :mask_start] if mask_end > 0: _a = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _a = 1 / self.vqvae.config.scaling_factor * images _a = self.vqvae.decode(snake_case_ )["sample"] _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _a = (images * 2_5_5).round().astype("uint8" ) _a = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(snake_case_ , mode="RGB" ).convert("L" ) for _ in images) ) _a = [self.mel.image_to_audio(snake_case_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(snake_case_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(snake_case_ ) ) @torch.no_grad() def __lowerCAmelCase ( self , snake_case_ , snake_case_ = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , snake_case_ ) self.scheduler.set_timesteps(snake_case_ ) _a = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _a = (sample / 2_5_5) * 2 - 1 _a = torch.Tensor(snake_case_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _a = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _a = self.scheduler.alphas_cumprod[t] _a = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _a = 1 - alpha_prod_t _a = self.unet(snake_case_ , snake_case_ )["sample"] _a = (1 - alpha_prod_t_prev) ** 0.5 * model_output _a = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _a = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ , snake_case_ ) -> torch.Tensor: _a = acos(torch.dot(torch.flatten(snake_case_ ) , torch.flatten(snake_case_ ) ) / torch.norm(snake_case_ ) / torch.norm(snake_case_ ) ) return sin((1 - alpha) * theta ) * xa / sin(snake_case_ ) + sin(alpha * theta ) * xa / sin(snake_case_ )
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : str="attention" ): _a = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] _a = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] _a = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] _a = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple=False ): if split_mlp_wi: _a = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] _a = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] _a = (wi_a, wi_a) else: _a = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] _a = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def _lowercase ( lowerCamelCase__ : dict, *, lowerCamelCase__ : int, lowerCamelCase__ : bool ): _a = traverse_util.flatten_dict(variables["target"] ) _a = {"/".join(lowerCamelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:", lowerCamelCase__ ) _a = collections.OrderedDict() # Shared embeddings. _a = old["token_embedder/embedding"] # Encoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). _a = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, "encoder", "pre_attention_layer_norm" ) _a , _a , _a , _a = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, "encoder", "attention" ) _a = layer_norm _a = k.T _a = o.T _a = q.T _a = v.T # Block i, layer 1 (MLP). _a = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, "encoder", "pre_mlp_layer_norm" ) _a , _a = tax_mlp_lookup(lowerCamelCase__, lowerCamelCase__, "encoder", lowerCamelCase__ ) _a = layer_norm if split_mlp_wi: _a = wi[0].T _a = wi[1].T else: _a = wi.T _a = wo.T _a = old[ "encoder/relpos_bias/rel_embedding" ].T _a = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). _a = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", "pre_self_attention_layer_norm" ) _a , _a , _a , _a = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", "self_attention" ) _a = layer_norm _a = k.T _a = o.T _a = q.T _a = v.T # Block i, layer 1 (Cross Attention). _a = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", "pre_cross_attention_layer_norm" ) _a , _a , _a , _a = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", "encoder_decoder_attention" ) _a = layer_norm _a = k.T _a = o.T _a = q.T _a = v.T # Block i, layer 2 (MLP). _a = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", "pre_mlp_layer_norm" ) _a , _a = tax_mlp_lookup(lowerCamelCase__, lowerCamelCase__, "decoder", lowerCamelCase__ ) _a = layer_norm if split_mlp_wi: _a = wi[0].T _a = wi[1].T else: _a = wi.T _a = wo.T _a = old["decoder/decoder_norm/scale"] _a = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a = old["decoder/logits_dense/kernel"].T return new def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : bool ): _a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _a = state_dict["shared.weight"] return state_dict def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple ): _a = checkpoints.load_tax_checkpoint(lowerCamelCase__ ) _a = convert_tax_to_pytorch(lowerCamelCase__, num_layers=config.num_layers, is_encoder_only=lowerCamelCase__ ) _a = make_state_dict(lowerCamelCase__, lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__, strict=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : bool = False ): _a = TaConfig.from_json_file(lowerCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a = TaEncoderModel(lowerCamelCase__ ) else: _a = TaForConditionalGeneration(lowerCamelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase__ ) print("Done" ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) __snake_case : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return base * power(lowerCamelCase__, (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") __snake_case : List[Any] = int(input("Enter the base: ").strip()) __snake_case : int = int(input("Enter the exponent: ").strip()) __snake_case : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __snake_case : Optional[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = AltDiffusionPipeline __UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : int = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) _a = CLIPTextModel(snake_case_ ) _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 7_7 _a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Dict: if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self ) -> str: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self ) -> Tuple: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder _a = RobertaSeriesModelWithTransformation(snake_case_ ) _a = text_encoder _a = AltDiffusionPipeline(**snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs(snake_case_ ) _a = "A photo of an astronaut" _a = alt_pipe(**snake_case_ ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _a = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[str]: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder _a = RobertaSeriesModelWithTransformation(snake_case_ ) _a = text_encoder _a = AltDiffusionPipeline(**snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs(snake_case_ ) _a = alt_pipe(**snake_case_ ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _a = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Tuple: # make sure here that pndm scheduler skips prk _a = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="np" ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _a = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Optional[int]: _a = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) _a = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case_ , safety_checker=snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="numpy" ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _a = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' import math def _lowercase ( lowerCamelCase__ : int ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): _a = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase__ ) if number < 1: _a = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: _a = int(math.log(number // 3, 2 ) ) + 2 _a = [3, 5] _a = 2 _a = 3 for block in range(1, lowerCamelCase__ ): for _ in range(lowerCamelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __snake_case : List[Any] = 0 try: __snake_case : List[str] = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from __future__ import annotations __snake_case : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __snake_case : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowercase ( lowerCamelCase__ : list[float] ): _a = [] _a = len(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): _a = -1 for j in range(i + 1, lowerCamelCase__ ): if arr[i] < arr[j]: _a = arr[j] break result.append(lowerCamelCase__ ) return result def _lowercase ( lowerCamelCase__ : list[float] ): _a = [] for i, outer in enumerate(lowerCamelCase__ ): _a = -1 for inner in arr[i + 1 :]: if outer < inner: _a = inner break result.append(lowerCamelCase__ ) return result def _lowercase ( lowerCamelCase__ : list[float] ): _a = len(lowerCamelCase__ ) _a = [] _a = [-1] * arr_size for index in reversed(range(lowerCamelCase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __snake_case : Optional[int] = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __snake_case : Tuple = logging.getLogger(__name__) class A ( a ): def __init__( self , snake_case_=-1 ) -> Union[str, Any]: # in NER datasets, the last column is usually reserved for NER label _a = label_idx def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(snake_case_ , snake_case_ ): _a = mode.value _a = os.path.join(snake_case_ , F'''{mode}.txt''' ) _a = 1 _a = [] with open(snake_case_ , encoding="utf-8" ) as f: _a = [] _a = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) guid_index += 1 _a = [] _a = [] else: _a = line.split(" " ) words.append(splits[0] ) if len(snake_case_ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) return examples def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(snake_case_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(snake_case_ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: if path: with open(snake_case_ , "r" ) as f: _a = f.read().splitlines() if "O" not in labels: _a = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class A ( a ): def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: if path: with open(snake_case_ , "r" ) as f: _a = f.read().splitlines() if "O" not in labels: _a = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class A ( a ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[InputExample]: if isinstance(snake_case_ , snake_case_ ): _a = mode.value _a = os.path.join(snake_case_ , F'''{mode}.txt''' ) _a = 1 _a = [] with open(snake_case_ , encoding="utf-8" ) as f: for sentence in parse_incr(snake_case_ ): _a = [] _a = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(snake_case_ ) == len(snake_case_ ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) guid_index += 1 return examples def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: _a = 0 for sentence in parse_incr(snake_case_ ): _a = preds_list[example_id] _a = "" for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(snake_case_ ) example_id += 1 def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: if path: with open(snake_case_ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case : Dict = logging.getLogger(__name__) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): return (preds == labels).mean() @dataclass class A : __UpperCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class A : __UpperCAmelCase : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __UpperCAmelCase : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __UpperCAmelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) try: _a = processors[data_args.task_name]() _a = processor.get_labels() _a = len(lowerCamelCase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowerCamelCase__, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase__, cache_dir=model_args.cache_dir, ) # Get datasets _a = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowerCamelCase__, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) _a = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=lowerCamelCase__, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase__ : EvalPrediction ) -> Dict: _a = np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(lowerCamelCase__, p.label_ids )} # Data collator _a = DataCollatorWithPadding(lowerCamelCase__, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=lowerCamelCase__, eval_dataset=lowerCamelCase__, compute_metrics=lowerCamelCase__, data_collator=lowerCamelCase__, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _a = trainer.evaluate() _a = os.path.join(training_args.output_dir, "eval_results.txt" ) if trainer.is_world_master(): with open(lowerCamelCase__, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s", lowerCamelCase__, lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCamelCase__ ) return results def _lowercase ( lowerCamelCase__ : List[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: _a = inspect.getfile(accelerate.test_utils ) _a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Union[str, Any]: print(F'''Found {torch.cuda.device_count()} devices.''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> str: print(F'''Found {torch.cuda.device_count()} devices.''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> str: _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case : Union[str, Any] = Accelerator() __snake_case : str = (accelerator.state.process_index + 2, 10) __snake_case : str = torch.randint(0, 10, shape).to(accelerator.device) __snake_case : int = "" __snake_case : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __snake_case : List[str] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __snake_case : Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : def __init__( self , snake_case_ , snake_case_=3 , snake_case_=3_2 , snake_case_=3 , snake_case_=1_0 , snake_case_=[8, 1_6, 3_2, 6_4] , snake_case_=[1, 1, 2, 1] , snake_case_=True , snake_case_=True , snake_case_="relu" , snake_case_=3 , snake_case_=None , snake_case_=["stage2", "stage3", "stage4"] , snake_case_=[2, 3, 4] , snake_case_=1 , ) -> Any: _a = parent _a = batch_size _a = image_size _a = num_channels _a = embeddings_size _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = hidden_act _a = num_labels _a = scope _a = len(snake_case_ ) _a = out_features _a = out_indices _a = num_groups def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> str: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = BitModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: _a = self.num_labels _a = BitForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: _a = BitBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a = None _a = BitBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowerCAmelCase ( self ) -> int: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = False def __lowerCAmelCase ( self ) -> Dict: _a = BitModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) -> Optional[int]: return @unittest.skip(reason="Bit does not output attentions" ) def __lowerCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: pass def __lowerCAmelCase ( self ) -> Any: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(config=snake_case_ ) for name, module in model.named_modules(): if isinstance(snake_case_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __lowerCAmelCase ( self ) -> List[Any]: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _a = layer_type _a = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __lowerCAmelCase ( self ) -> List[str]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = BitModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _lowercase ( ): _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Any: _a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case_ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _a = model(**snake_case_ ) # verify the logits _a = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _a = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) ) @require_torch class A ( a , unittest.TestCase ): __UpperCAmelCase : List[str] = (BitBackbone,) if is_torch_available() else () __UpperCAmelCase : int = BitConfig __UpperCAmelCase : int = False def __lowerCAmelCase ( self ) -> List[str]: _a = BitModelTester(self )
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' from __future__ import annotations __snake_case : List[str] = list[list[int]] # assigning initial values to the grid __snake_case : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _lowercase ( lowerCamelCase__ : Matrix, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _lowercase ( lowerCamelCase__ : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _lowercase ( lowerCamelCase__ : Matrix ): if location := find_empty_location(lowerCamelCase__ ): _a , _a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): _a = digit if sudoku(lowerCamelCase__ ) is not None: return grid _a = 0 return None def _lowercase ( lowerCamelCase__ : Matrix ): for row in grid: for cell in row: print(lowerCamelCase__, end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __snake_case : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __snake_case : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Tuple ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.feature_extractor _a = hf_model.adapter for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple ): _a = full_name.split("adaptor." )[-1] _a = name.split("." ) if items[1].isdigit(): _a = int(items[1] ) else: _a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _a = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Any ): _a , _a = emb.weight.shape _a = nn.Linear(lowerCamelCase__, lowerCamelCase__, bias=lowerCamelCase__ ) _a = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : int, lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[Any], ): _a = WavaVecaConfig.from_pretrained( lowerCamelCase__, add_adapter=lowerCamelCase__, adapter_stride=lowerCamelCase__, adapter_kernel_size=lowerCamelCase__, use_auth_token=lowerCamelCase__, output_hidden_size=lowerCamelCase__, ) _a = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, }, ) _a = model[0].eval() # load feature extractor _a = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__, use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder _a = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder, lowerCamelCase__ ) # load decoder weights _a = MBartForCausalLM(lowerCamelCase__ ) _a , _a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=lowerCamelCase__ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _a = SpeechEncoderDecoderModel(encoder=lowerCamelCase__, decoder=lowerCamelCase__ ) _a = False _a = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) _a = hf_wavavec.config.to_dict() _a = tokenizer.pad_token_id _a = tokenizer.bos_token_id _a = tokenizer.eos_token_id _a = "mbart50" _a = "wav2vec2" _a = tokenizer.eos_token_id _a = 250_004 _a = tokenizer.eos_token_id _a = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config") __snake_case : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule __snake_case : Union[str, Any] = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' from scipy.stats import pearsonr import datasets __snake_case : Union[str, Any] = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" __snake_case : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" __snake_case : Tuple = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=False ) -> List[Any]: if return_pvalue: _a = pearsonr(snake_case_ , snake_case_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case_ , snake_case_ )[0] )}
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : List[str] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class A ( a ): __UpperCAmelCase : Union[str, Any] = """mgp-str""" def __init__( self , snake_case_=[3_2, 1_2_8] , snake_case_=4 , snake_case_=3 , snake_case_=2_7 , snake_case_=3_8 , snake_case_=5_0_2_5_7 , snake_case_=3_0_5_2_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=4.0 , snake_case_=True , snake_case_=False , snake_case_=1E-5 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=False , snake_case_=0.02 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) _a = image_size _a = patch_size _a = num_channels _a = max_token_length _a = num_character_labels _a = num_bpe_labels _a = num_wordpiece_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = mlp_ratio _a = distilled _a = layer_norm_eps _a = drop_rate _a = qkv_bias _a = attn_drop_rate _a = drop_path_rate _a = output_aa_attentions _a = initializer_range
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' import os from math import logaa def _lowercase ( lowerCamelCase__ : str = "base_exp.txt" ): _a = 0 _a = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ), lowerCamelCase__ ) ) ): _a , _a = list(map(lowerCamelCase__, line.split("," ) ) ) if x * logaa(lowerCamelCase__ ) > largest: _a = x * logaa(lowerCamelCase__ ) _a = i + 1 return result if __name__ == "__main__": print(solution())
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int ): _a = 0 _a = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _a = i + 1 else: _a = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( a ): __UpperCAmelCase : List[str] = """naver-clova-ix/donut-base-finetuned-docvqa""" __UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __UpperCAmelCase : Optional[Any] = """document_qa""" __UpperCAmelCase : str = AutoProcessor __UpperCAmelCase : Any = VisionEncoderDecoderModel __UpperCAmelCase : List[str] = ["""image""", """text"""] __UpperCAmelCase : Optional[int] = ["""text"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _a = task_prompt.replace("{user_input}" , snake_case_ ) _a = self.pre_processor.tokenizer( snake_case_ , add_special_tokens=snake_case_ , return_tensors="pt" ).input_ids _a = self.pre_processor(snake_case_ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , snake_case_ ) -> Dict: return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case_ , ).sequences def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: _a = self.pre_processor.batch_decode(snake_case_ )[0] _a = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) _a = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) _a = re.sub(R"<.*?>" , "" , snake_case_ , count=1 ).strip() # remove first task start token _a = self.pre_processor.tokenajson(snake_case_ ) return sequence["answer"]
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list ): if len(lowerCamelCase__ ) < 2: return collection def circle_sort_util(lowerCamelCase__ : list, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> bool: _a = False if low == high: return swapped _a = low _a = high while left < right: if collection[left] > collection[right]: _a , _a = ( collection[right], collection[left], ) _a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _a , _a = ( collection[right + 1], collection[left], ) _a = True _a = low + int((high - low) / 2 ) _a = circle_sort_util(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _a = circle_sort_util(lowerCamelCase__, mid + 1, lowerCamelCase__ ) return swapped or left_swap or right_swap _a = True while is_not_sorted is True: _a = circle_sort_util(lowerCamelCase__, 0, len(lowerCamelCase__ ) - 1 ) return collection if __name__ == "__main__": __snake_case : List[Any] = input("Enter numbers separated by a comma:\n").strip() __snake_case : List[Any] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[int]=False ): _a = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _a = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : int=False ): for i in range(config.num_hidden_layers ): if base_model: _a = "" else: _a = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _a = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[ : config.hidden_size, : ] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def _lowercase ( lowerCamelCase__ : Dict ): _a = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any] ): _a = dct.pop(lowerCamelCase__ ) _a = val def _lowercase ( ): _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[Any]=False ): _a = BitConfig( global_padding="same", layer_type="bottleneck", depths=(3, 4, 9), out_features=["stage3"], embedding_dynamic_padding=lowerCamelCase__, ) _a = ViTHybridConfig(backbone_config=lowerCamelCase__, image_size=384, num_labels=1_000 ) _a = False # load original model from timm _a = timm.create_model(lowerCamelCase__, pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a = timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase__ ) _a = create_rename_keys(lowerCamelCase__, lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _a = "huggingface/label-files" _a = "imagenet-1k-id2label.json" _a = json.load(open(hf_hub_download(lowerCamelCase__, lowerCamelCase__, repo_type="dataset" ), "r" ) ) _a = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _a = ViTHybridModel(lowerCamelCase__ ).eval() else: _a = ViTHybridForImageClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # create image processor _a = create_transform(**resolve_data_config({}, model=lowerCamelCase__ ) ) _a = transform.transforms _a = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _a = ViTHybridImageProcessor( do_resize=lowerCamelCase__, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=lowerCamelCase__, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=lowerCamelCase__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) _a = prepare_img() _a = transform(lowerCamelCase__ ).unsqueeze(0 ) _a = processor(lowerCamelCase__, return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__, lowerCamelCase__ ) # verify logits with torch.no_grad(): _a = model(lowerCamelCase__ ) _a = outputs.logits print("Predicted class:", logits.argmax(-1 ).item() ) if base_model: _a = timm_model.forward_features(lowerCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase__, outputs.pooler_output, atol=1e-3 ) else: _a = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__, outputs.logits, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __snake_case : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( a , unittest.TestCase ): __UpperCAmelCase : int = KandinskyImgaImgPipeline __UpperCAmelCase : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] __UpperCAmelCase : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] __UpperCAmelCase : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __UpperCAmelCase : Optional[int] = False @property def __lowerCAmelCase ( self ) -> Dict: return 3_2 @property def __lowerCAmelCase ( self ) -> int: return 3_2 @property def __lowerCAmelCase ( self ) -> Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) -> Optional[int]: return 1_0_0 @property def __lowerCAmelCase ( self ) -> Tuple: _a = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _a = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a = MultilingualCLIP(snake_case_ ) _a = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) _a = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _a = UNetaDConditionModel(**snake_case_ ) return model @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) -> Tuple: _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_unet _a = self.dummy_movq _a = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _a = DDIMScheduler(**snake_case_ ) _a = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Tuple: _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ ) # create init_image _a = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __lowerCAmelCase ( self ) -> Optional[int]: _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**snake_case_ ) _a = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = pipe(**self.get_dummy_inputs(snake_case_ ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _a = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _a = "A red cartoon frog, 4k" _a = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) _a = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _a = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a , _a = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _a = pipeline( snake_case_ , image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) _a = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __snake_case : Optional[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __snake_case : Tuple = logging.getLogger(__name__) __snake_case : List[str] = {"facebook/bart-base": BartForConditionalGeneration} __snake_case : List[Any] = {"facebook/bart-base": BartTokenizer} def _lowercase ( ): _a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file", type=lowerCamelCase__, default=lowerCamelCase__, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length", type=lowerCamelCase__, default=5, help="The maximum total input sequence length after tokenization.", ) parser.add_argument( "--num_beams", type=lowerCamelCase__, default=lowerCamelCase__, help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--model_name_or_path", type=lowerCamelCase__, help="Path to pretrained model or model identifier from huggingface.co/models.", required=lowerCamelCase__, ) parser.add_argument( "--config_name", type=lowerCamelCase__, default=lowerCamelCase__, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--device", type=lowerCamelCase__, default="cpu", help="Device where the model will be run", ) parser.add_argument("--output_file_path", type=lowerCamelCase__, default=lowerCamelCase__, help="Where to store the final ONNX file." ) _a = parser.parse_args() return args def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[Any]="cpu" ): _a = model_dict[model_name].from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) _a = tokenizer_dict[model_name].from_pretrained(lowerCamelCase__ ) if model_name in ["facebook/bart-base"]: _a = 0 _a = None _a = 0 return huggingface_model, tokenizer def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any] ): model.eval() _a = None _a = torch.jit.script(BARTBeamSearchGenerator(lowerCamelCase__ ) ) with torch.no_grad(): _a = "My friends are cool but they eat too many carbs." _a = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1_024, return_tensors="pt" ).to(model.device ) _a = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], num_beams=lowerCamelCase__, max_length=lowerCamelCase__, early_stopping=lowerCamelCase__, decoder_start_token_id=model.config.decoder_start_token_id, ) torch.onnx.export( lowerCamelCase__, ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ), lowerCamelCase__, opset_version=14, input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"], output_names=["output_ids"], dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, }, example_outputs=lowerCamelCase__, ) logger.info("Model exported to {}".format(lowerCamelCase__ ) ) _a = remove_dup_initializers(os.path.abspath(lowerCamelCase__ ) ) logger.info("Deduplicated and optimized model written to {}".format(lowerCamelCase__ ) ) _a = onnxruntime.InferenceSession(lowerCamelCase__ ) _a = ort_sess.run( lowerCamelCase__, { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(lowerCamelCase__ ), "max_length": np.array(lowerCamelCase__ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), }, ) np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _lowercase ( ): _a = parse_args() _a = 5 _a = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _a = torch.device(args.device ) _a , _a = load_model_tokenizer(args.model_name_or_path, lowerCamelCase__ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(lowerCamelCase__ ) if args.max_length: _a = args.max_length if args.num_beams: _a = args.num_beams if args.output_file_path: _a = args.output_file_path else: _a = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) if __name__ == "__main__": main()
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( a ): __UpperCAmelCase : bool = field(default=a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) __UpperCAmelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): _a = v.to_dict() return d
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' import math class A : def __init__( self , snake_case_=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 _a = n _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # adjacency matrix for weight _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: _a = w def __lowerCAmelCase ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: return self.dp[u][v] if __name__ == "__main__": __snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowercase ( lowerCamelCase__ : int ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): _a = "mock-s3-bucket" _a = F'''s3://{mock_bucket}''' _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path.startswith("s3://" ) is False _a = "./local/path" _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path == new_dataset_path def _lowercase ( lowerCamelCase__ : List[Any] ): _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is True _a = fsspec.filesystem("file" ) _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[int] ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} _a = input_paths[compression_fs_class.protocol] if input_path is None: _a = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase__ ) _a = fsspec.filesystem(compression_fs_class.protocol, fo=lowerCamelCase__ ) assert isinstance(lowerCamelCase__, lowerCamelCase__ ) _a = os.path.basename(lowerCamelCase__ ) _a = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowerCamelCase__, "r", encoding="utf-8" ) as f, open(lowerCamelCase__, encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : str ): _a = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} _a = compressed_file_paths[protocol] _a = "dataset.jsonl" _a = F'''{protocol}://{member_file_path}::{compressed_file_path}''' _a , *_a = fsspec.get_fs_token_paths(lowerCamelCase__ ) assert fs.isfile(lowerCamelCase__ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[Any] ): _a = hf_api.dataset_info(lowerCamelCase__, token=lowerCamelCase__ ) _a = HfFileSystem(repo_info=lowerCamelCase__, token=lowerCamelCase__ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowerCamelCase__ ) as f: assert hffs.open("data/text_data.txt", "r" ).read() == f.read() def _lowercase ( ): _a = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase__, lowerCamelCase__, clobber=lowerCamelCase__ ) with pytest.warns(lowerCamelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int = 3, lowerCamelCase__ : int = 7, lowerCamelCase__ : int = 1_000_000 ): _a = 0 _a = 1 for current_denominator in range(1, limit + 1 ): _a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _a = current_numerator _a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=3 , snake_case_=None , snake_case_=2 , ) -> List[str]: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope _a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _a = (image_size // patch_size) ** 2 _a = num_patches + 2 def __lowerCAmelCase ( self ) -> List[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Tuple: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = TFDeiTModel(config=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: _a = TFDeiTForMaskedImageModeling(config=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = TFDeiTForMaskedImageModeling(snake_case_ ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(snake_case_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = self.type_sequence_label_size _a = TFDeiTForImageClassification(snake_case_ ) _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = TFDeiTForImageClassification(snake_case_ ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( a , a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __UpperCAmelCase : Dict = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False def __lowerCAmelCase ( self ) -> Optional[Any]: _a = TFDeiTModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __lowerCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass def __lowerCAmelCase ( self ) -> Dict: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> Dict: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=False ) -> Optional[int]: _a = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> Tuple: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFDeiTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _lowercase ( ): _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Any: return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=snake_case_ , return_tensors="tf" ) # forward pass _a = model(**snake_case_ ) # verify the logits _a = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _a = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A ( a ): __UpperCAmelCase : int = """Wav2Vec2FeatureExtractor""" __UpperCAmelCase : str = """AutoTokenizer""" def __init__( self , snake_case_ , snake_case_ ) -> Union[str, Any]: super().__init__(snake_case_ , snake_case_ ) _a = self.feature_extractor _a = False @classmethod def __lowerCAmelCase ( cls , snake_case_ , **snake_case_ ) -> List[str]: try: return super().from_pretrained(snake_case_ , **snake_case_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case_ , ) _a = WavaVecaFeatureExtractor.from_pretrained(snake_case_ , **snake_case_ ) _a = WavaVecaCTCTokenizer.from_pretrained(snake_case_ , **snake_case_ ) return cls(feature_extractor=snake_case_ , tokenizer=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _a = kwargs.pop("raw_speech" ) else: _a = kwargs.pop("audio" , snake_case_ ) _a = kwargs.pop("sampling_rate" , snake_case_ ) _a = kwargs.pop("text" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _a = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: _a = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings["input_ids"] return inputs def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*snake_case_ , **snake_case_ ) _a = kwargs.pop("input_features" , snake_case_ ) _a = kwargs.pop("labels" , snake_case_ ) if len(snake_case_ ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(snake_case_ , *snake_case_ , **snake_case_ ) if labels is not None: _a = self.tokenizer.pad(snake_case_ , **snake_case_ ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels["input_ids"] return input_features def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> str: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def __lowerCAmelCase ( self ) -> Dict: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' __snake_case : Dict = range(2, 20 + 1) __snake_case : Any = [10**k for k in range(ks[-1] + 1)] __snake_case : dict[int, dict[int, list[list[int]]]] = {} def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): _a = sum(a_i[j] for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ) ) _a = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase__ ), lowerCamelCase__ ) ) ) _a , _a = 0, 0 _a = n - i _a = memo.get(lowerCamelCase__ ) if sub_memo is not None: _a = sub_memo.get(lowerCamelCase__ ) if jumps is not None and len(lowerCamelCase__ ) > 0: # find and make the largest jump without going over _a = -1 for _k in range(len(lowerCamelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a = _k break if max_jump >= 0: _a , _a , _a = jumps[max_jump] # since the difference between jumps is cached, add c _a = diff + c for j in range(min(lowerCamelCase__, len(lowerCamelCase__ ) ) ): _a , _a = divmod(lowerCamelCase__, 10 ) if new_c > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) else: _a = [] else: _a = {c: []} _a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a = next_term(lowerCamelCase__, k - 1, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a = compute(lowerCamelCase__, lowerCamelCase__, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped _a = sub_memo[c] # keep jumps sorted by # of terms skipped _a = 0 while j < len(lowerCamelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase__, (diff, dn, k) ) return (diff, dn) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): if i >= n: return 0, i if k > len(lowerCamelCase__ ): a_i.extend([0 for _ in range(k - len(lowerCamelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a = i _a , _a , _a = 0, 0, 0 for j in range(len(lowerCamelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a = ds_c + ds_b diff += addend _a = 0 for j in range(lowerCamelCase__ ): _a = a_i[j] + addend _a , _a = divmod(lowerCamelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return diff, i - start_i def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str] ): for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ): _a = digits[j] + addend if s >= 10: _a , _a = divmod(lowerCamelCase__, 10 ) _a = addend // 10 + quotient else: _a = s _a = addend // 10 if addend == 0: break while addend > 0: _a , _a = divmod(lowerCamelCase__, 10 ) digits.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : int = 10**15 ): _a = [1] _a = 1 _a = 0 while True: _a , _a = next_term(lowerCamelCase__, 20, i + dn, lowerCamelCase__ ) dn += terms_jumped if dn == n - i: break _a = 0 for j in range(len(lowerCamelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A ( a ): def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaises(snake_case_ ): _a = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __lowerCAmelCase ( self ) -> List[Any]: with self.assertRaises(snake_case_ ): _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> List[str]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __lowerCAmelCase ( self ) -> List[Any]: _a = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __lowerCAmelCase ( self ) -> Union[str, Any]: import PIL.Image _a = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=snake_case_ ) as mock_cast_to_python_objects: _a = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) _a , _a = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , snake_case_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : int ): _a = pa.BufferReader(lowerCamelCase__ ) if isinstance(lowerCamelCase__, pa.Buffer ) else pa.memory_map(lowerCamelCase__ ) _a = pa.ipc.open_stream(lowerCamelCase__ ) _a = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Dict ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ): _a = pa.BufferOutputStream() _a = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=lowerCamelCase__, features=lowerCamelCase__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _a = pa.BufferReader(output.getvalue() ) _a = pa.ipc.open_stream(lowerCamelCase__ ) _a = f.read_all() _a = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase__ ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: with pytest.raises(lowerCamelCase__ ): writer.write({"col_1": "foo", "col_2": 1}, key=[1, 2] ) _a , _a = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10] ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: with pytest.raises(lowerCamelCase__ ): writer.write({"col_1": "foo", "col_2": 1}, key=10 ) writer.write({"col_1": "bar", "col_2": 2}, key=10 ) _a , _a = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10] ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: writer.write({"col_1": "foo", "col_2": 1}, key=1 ) writer.write({"col_1": "bar", "col_2": 2}, key=2 ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Any ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ): with tempfile.TemporaryDirectory() as tmp_dir: _a = {"col_1": pa.string(), "col_2": pa.intaa()} _a = os.path.join(lowerCamelCase__, "test.arrow" ) with ArrowWriter(path=lowerCamelCase__, schema=pa.schema(lowerCamelCase__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(lowerCamelCase__, 1 ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): if pa.types.is_list(lowerCamelCase__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): if isinstance(lst[0], lowerCamelCase__ ): change_first_primitive_element_in_list(lst[0], lowerCamelCase__ ) else: _a = value @pytest.mark.parametrize("optimized_int_type, expected_dtype", [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict ): _a = pa.array(TypedSequence(lowerCamelCase__, optimized_int_type=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype", [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ], ) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple ): # in range _a = pa.array(OptimizedTypedSequence(lowerCamelCase__, col=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _a = copy.deepcopy(lowerCamelCase__ ) _a = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase__, lowerCamelCase__ ) _a = pa.array(OptimizedTypedSequence(lowerCamelCase__, col=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception", [False, True] ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Any ): _a = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=lowerCamelCase__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowercase ( lowerCamelCase__ : Tuple ): _a = "mock://dataset-train.arrow" with ArrowWriter(path=lowerCamelCase__, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCamelCase__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase__ ) def _lowercase ( ): _a = pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(lowerCamelCase__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files", [False, True] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any ): import PIL.Image _a = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCamelCase__, format="png" ) _a = pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase__, features=Features({"image": Image()} ), embed_local_files=lowerCamelCase__ ) as writer: writer.write({"image": image_path} ) writer.finalize() _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(lowerCamelCase__ ) _a = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"], lowerCamelCase__ ) with open(lowerCamelCase__, "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowercase ( ): _a = pa.schema([pa.field("col_1", pa.string(), nullable=lowerCamelCase__ )] ) _a = pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase__ ) as writer: writer._build_writer(inferred_schema=lowerCamelCase__ ) assert writer._schema == pa.schema([pa.field("col_1", pa.string() )] )
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : Optional[int] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Any ): _a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any] ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _a = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _a = in_proj_weight[ : encoder_config.hidden_size, : ] _a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): _a = dct.pop(lowerCamelCase__ ) _a = val def _lowercase ( lowerCamelCase__ : List[Any] ): if "handwritten" in checkpoint_url: _a = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _a = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) return im @torch.no_grad() def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict ): _a = ViTConfig(image_size=384, qkv_bias=lowerCamelCase__ ) _a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _a = 768 elif "large" in checkpoint_url: # use ViT-large encoder _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _a = False _a = "relu" _a = 1_024 _a = True _a = False _a = False # load HuggingFace model _a = ViTModel(lowerCamelCase__, add_pooling_layer=lowerCamelCase__ ) _a = TrOCRForCausalLM(lowerCamelCase__ ) _a = VisionEncoderDecoderModel(encoder=lowerCamelCase__, decoder=lowerCamelCase__ ) model.eval() # load state_dict of original model, rename some keys _a = torch.hub.load_state_dict_from_url(lowerCamelCase__, map_location="cpu", check_hash=lowerCamelCase__ )["model"] _a = create_rename_keys(lowerCamelCase__, lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__, lowerCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _a = state_dict.pop(lowerCamelCase__ ) if key.startswith("decoder" ) and "output_projection" not in key: _a = val else: _a = val # load state dict model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image _a = ViTImageProcessor(size=encoder_config.image_size ) _a = RobertaTokenizer.from_pretrained("roberta-large" ) _a = TrOCRProcessor(lowerCamelCase__, lowerCamelCase__ ) _a = processor(images=prepare_img(lowerCamelCase__ ), return_tensors="pt" ).pixel_values # verify logits _a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _a = model(pixel_values=lowerCamelCase__, decoder_input_ids=lowerCamelCase__ ) _a = outputs.logits _a = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: _a = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: _a = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: _a = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: _a = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], lowerCamelCase__, atol=1e-3 ), "First elements of logits not as expected" Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __snake_case : str = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((input_a, input_a).count(0 ) == 0 ) def _lowercase ( ): assert and_gate(0, 0 ) == 0 assert and_gate(0, 1 ) == 0 assert and_gate(1, 0 ) == 0 assert and_gate(1, 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __snake_case : Any = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __snake_case : Dict = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __snake_case : Any = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __snake_case : Optional[Any] = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __snake_case : Any = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str] ): for tf_name, hf_name in patterns: _a = k.replace(lowerCamelCase__, lowerCamelCase__ ) return k def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : dict ): _a = BigBirdPegasusConfig(**lowerCamelCase__ ) _a = BigBirdPegasusForConditionalGeneration(lowerCamelCase__ ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): _a = [k.endswith(lowerCamelCase__ ) for ending in KEYS_TO_IGNORE] if any(lowerCamelCase__ ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowerCamelCase__, lowerCamelCase__ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowerCamelCase__ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): _a = [k.endswith(lowerCamelCase__ ) for ending in KEYS_TO_IGNORE] if any(lowerCamelCase__ ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowerCamelCase__, lowerCamelCase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowerCamelCase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowerCamelCase__, strict=lowerCamelCase__ ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( lowerCamelCase__ : Any ): _a = tf.train.list_variables(lowerCamelCase__ ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowerCamelCase__, desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowerCamelCase__, lowerCamelCase__ ) _a = array return tf_weights def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str, lowerCamelCase__ : dict ): _a = get_tf_weights_as_numpy(lowerCamelCase__ ) _a = convert_bigbird_pegasus(lowerCamelCase__, lowerCamelCase__ ) torch_model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __snake_case : Tuple = parser.parse_args() __snake_case : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self , snake_case_ ) -> List[str]: super().__init__() _a = model _a = 2 _a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __lowerCAmelCase ( self ) -> int: pass def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str, lowerCamelCase__ : str ): # load longformer model from model identifier _a = LongformerModel.from_pretrained(lowerCamelCase__ ) _a = LightningModel(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _a = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __snake_case : Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , a , ) class A ( a ): __UpperCAmelCase : Tuple = RobertaConfig __UpperCAmelCase : Any = """roberta""" def __init__( self , snake_case_ ) -> str: super().__init__(snake_case_ ) _a = RobertaEmbeddings(snake_case_ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , a , ) class A ( a ): __UpperCAmelCase : Any = RobertaConfig __UpperCAmelCase : int = """roberta""" def __init__( self , snake_case_ ) -> Tuple: super().__init__(snake_case_ ) _a = config.num_labels _a = config.num_hidden_layers _a = DeeRobertaModel(snake_case_ ) _a = nn.Dropout(config.hidden_dropout_prob ) _a = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(snake_case_ ) def __lowerCAmelCase ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=-1 , snake_case_=False , ) -> Dict: _a = self.num_layers try: _a = self.roberta( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , position_ids=snake_case_ , head_mask=snake_case_ , inputs_embeds=snake_case_ , ) _a = outputs[1] _a = self.dropout(snake_case_ ) _a = self.classifier(snake_case_ ) _a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _a = e.message _a = e.exit_layer _a = outputs[0] if not self.training: _a = entropy(snake_case_ ) _a = [] _a = [] if labels is not None: if self.num_labels == 1: # We are doing regression _a = MSELoss() _a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _a = CrossEntropyLoss() _a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _a = [] for highway_exit in outputs[-1]: _a = highway_exit[0] if not self.training: highway_logits_all.append(snake_case_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _a = MSELoss() _a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _a = CrossEntropyLoss() _a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case_ ) if train_highway: _a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _a = (loss,) + outputs if not self.training: _a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , ) -> Optional[int]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self ) -> Tuple: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __lowerCAmelCase ( self ) -> Dict: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Tuple = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self ) -> Dict: _a = FlaxRobertaModelTester(self ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained("roberta-base" , from_pt=snake_case_ ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __snake_case : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __snake_case : List[Any] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) __snake_case : Dict = BeautifulSoup(res.text, "html.parser") __snake_case : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
import re import string import numpy as np import datasets __snake_case : Tuple = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" __snake_case : Tuple = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" __snake_case : Optional[int] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=False , ) -> Optional[Any]: if regexes_to_ignore is not None: for s in regexes_to_ignore: _a = np.array([re.sub(A__ , "" , A__ ) for x in predictions] ) _a = np.array([re.sub(A__ , "" , A__ ) for x in references] ) else: _a = np.asarray(A__ ) _a = np.asarray(A__ ) if ignore_case: _a = np.char.lower(A__ ) _a = np.char.lower(A__ ) if ignore_punctuation: _a = string.punctuation.maketrans("" , "" , string.punctuation ) _a = np.char.translate(A__ , table=A__ ) _a = np.char.translate(A__ , table=A__ ) if ignore_numbers: _a = string.digits.maketrans("" , "" , string.digits ) _a = np.char.translate(A__ , table=A__ ) _a = np.char.translate(A__ , table=A__ ) _a = predictions == references return {"exact_match": np.mean(A__ ) * 1_0_0}
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __snake_case : Any = logging.get_logger(__name__) __snake_case : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __snake_case : Tuple = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __snake_case : Any = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __snake_case : List[str] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A ( _snake_case ): __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): _a = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**lowerCAmelCase__ ) _a = do_lower_case def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> List[Any]: _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[str] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class A ( snake_case__ ): __UpperCAmelCase : Dict = """ctrl""" __UpperCAmelCase : Optional[Any] = ["""past_key_values"""] __UpperCAmelCase : Optional[Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case_=2_4_6_5_3_4 , snake_case_=2_5_6 , snake_case_=1_2_8_0 , snake_case_=8_1_9_2 , snake_case_=4_8 , snake_case_=1_6 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=0.02 , snake_case_=True , **snake_case_ , ) -> Dict: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = dff _a = resid_pdrop _a = embd_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache super().__init__(**UpperCAmelCase_ )
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __snake_case : Any = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowercase ( lowerCamelCase__ : Dict = "dhaka", lowerCamelCase__ : Any = 5 ): _a = min(lowerCamelCase__, 50 ) # Prevent abuse! _a = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } _a = requests.get("https://www.google.com/search", params=lowerCamelCase__, headers=lowerCamelCase__ ) _a = BeautifulSoup(html.text, "html.parser" ) _a = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);", str(soup.select("script" ) ) ) ) _a = json.dumps(lowerCamelCase__ ) _a = json.loads(lowerCamelCase__ ) _a = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",", lowerCamelCase__, ) if not matched_google_image_data: return 0 _a = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]", "", str(lowerCamelCase__ ), ) _a = re.findall( R"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]", lowerCamelCase__, ) for index, fixed_full_res_image in enumerate(lowerCamelCase__ ): if index >= max_images: return index _a = bytes(lowerCamelCase__, "ascii" ).decode( "unicode-escape" ) _a = bytes(lowerCamelCase__, "ascii" ).decode( "unicode-escape" ) _a = urllib.request.build_opener() _a = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(lowerCamelCase__ ) _a = F'''query_{query.replace(' ', '_' )}''' if not os.path.exists(lowerCamelCase__ ): os.makedirs(lowerCamelCase__ ) urllib.request.urlretrieve( # noqa: S310 lowerCamelCase__, F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: __snake_case : str = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _a = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _a = 4 _a = 48 _a = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _a = [6, 6, 6, 6] _a = 60 _a = [6, 6, 6, 6] _a = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _a = 4 _a = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _a = 1 _a = 1 _a = 126 _a = 7 _a = 255.0 _a = '' return config def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Any ): if "patch_embed.proj" in name and "layers" not in name: _a = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _a = name.replace("patch_embed.norm", "embeddings.patch_embeddings.layernorm" ) if "layers" in name: _a = name.replace("layers", "encoder.stages" ) if "residual_group.blocks" in name: _a = name.replace("residual_group.blocks", "layers" ) if "attn.proj" in name: _a = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: _a = name.replace("attn", "attention.self" ) if "norm1" in name: _a = name.replace("norm1", "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2", "output.dense" ) if "q_bias" in name: _a = name.replace("q_bias", "query.bias" ) if "k_bias" in name: _a = name.replace("k_bias", "key.bias" ) if "v_bias" in name: _a = name.replace("v_bias", "value.bias" ) if "cpb_mlp" in name: _a = name.replace("cpb_mlp", "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj", "patch_embed.projection" ) if name == "norm.weight": _a = 'layernorm.weight' if name == "norm.bias": _a = 'layernorm.bias' if "conv_first" in name: _a = name.replace("conv_first", "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _a = name.replace("conv_last", "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _a = name.replace("conv_before_upsample.0", "conv_before_upsample" ) if "upsample.0" in name: _a = name.replace("upsample.0", "upsample.convolution_0" ) if "upsample.2" in name: _a = name.replace("upsample.2", "upsample.convolution_1" ) _a = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _a = name.replace("upsample.0.weight", "upsample.conv.weight" ) _a = name.replace("upsample.0.bias", "upsample.conv.bias" ) else: pass else: _a = 'swin2sr.' + name return name def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Union[str, Any] ): for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(_lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[1] ) _a = int(key_split[4] ) _a = config.embed_dim if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] pass else: _a = val return orig_state_dict def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any] ): _a = get_config(_lowercase ) _a = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _a = torch.hub.load_state_dict_from_url(_lowercase, map_location="cpu" ) _a = convert_state_dict(_lowercase, _lowercase ) _a = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError("Missing keys when converting: {}".format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values _a = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _a = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert("RGB" ) _a = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _a = 126 if 'Jpeg' in checkpoint_url else 256 _a = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _a = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _a = pixel_values[:, 0, :, :].unsqueeze(1 ) _a = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _a = torch.Size([1, 3, 512, 512] ) _a = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _a = torch.Size([1, 3, 1_024, 1_024] ) _a = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _a = torch.Size([1, 3, 1_024, 1_024] ) _a = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _a = torch.Size([1, 3, 512, 512] ) _a = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _a = torch.Size([1, 3, 1_024, 1_024] ) _a = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1e-3 ) print("Looks ok!" ) _a = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _a = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") __snake_case : int = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : int, lowerCamelCase__ : Optional[int]=None ): assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' _a = nn.Parameter(_A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' _a = nn.Parameter(_A ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str ): _a = np.asarray(weights[0] ) _a = np.asarray(weights[1] ) _a = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(_A ).transpose(1, 2 ).contiguous().view(-1, _A ), ) set_param( torch_layer.self_attention.value, torch.tensor(_A ).transpose(1, 2 ).contiguous().view(-1, _A ), ) set_param( torch_layer.output.dense, torch.tensor(_A ).view(-1, _A ).contiguous().transpose(0, 1 ), ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[int] ): _a = np.asarray(weights[0] ) _a = np.asarray(weights[1] ) _a = np.asarray(weights[2] ) _a = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(_A ).transpose(1, 2 ).contiguous().view(-1, _A ), ) set_param( torch_layer.self_attention.key, torch.tensor(_A ).transpose(1, 2 ).contiguous().view(-1, _A ), ) set_param( torch_layer.self_attention.value, torch.tensor(_A ).transpose(1, 2 ).contiguous().view(-1, _A ), ) set_param( torch_layer.output.dense, torch.tensor(_A ).view(-1, _A ).contiguous().transpose(0, 1 ), ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : str, lowerCamelCase__ : Dict ): _a = weights[0][0][0] _a = np.asarray(layer_norm_a[0] ) _a = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(_A ), torch.tensor(_A ), ) # lsh weights + output _a = weights[0][1] if len(_A ) < 4: set_layer_weights_in_torch_lsh(_A, torch_block.attention, _A ) else: set_layer_weights_in_torch_local(_A, torch_block.attention, _A ) # intermediate weighs _a = weights[2][0][1][2] # Chunked Feed Forward if len(_A ) == 4: _a = intermediate_weights[2] # layernorm 2 _a = np.asarray(intermediate_weights[0][0] ) _a = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(_A ), torch.tensor(_A ), ) # intermediate dense _a = np.asarray(intermediate_weights[1][0] ) _a = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(_A ).transpose(0, 1 ).contiguous(), torch.tensor(_A ), ) # intermediate out _a = np.asarray(intermediate_weights[4][0] ) _a = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(_A ).transpose(0, 1 ).contiguous(), torch.tensor(_A ), ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = torch_model.reformer # word embeds _a = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(_A ), ) if isinstance(weights[3], _A ): _a = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' _a = nn.Parameter(torch.tensor(_A ) ) _a = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_A, _A, _A ) # output layer norm _a = np.asarray(weights[7][0] ) _a = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(_A ), torch.tensor(_A ), ) # output embeddings _a = np.asarray(weights[9][0] ) _a = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(_A ).transpose(0, 1 ).contiguous(), torch.tensor(_A ), ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int] ): _a = ReformerConfig.from_json_file(_A ) print(F'''Building PyTorch model from configuration: {config}''' ) _a = ReformerModelWithLMHead(_A ) with open(_A, "rb" ) as f: _a = pickle.load(_A )["weights"] set_model_weights_in_torch(_A, _A, config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __snake_case : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __snake_case : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) __snake_case : List[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: __snake_case : str = pickle.load(fp) logger.info("Counting occurrences for MLM.") __snake_case : Tuple = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case : Tuple = [0] * args.vocab_size for k, v in counter.items(): __snake_case : Optional[int] = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _lowercase ( lowerCamelCase__ : float ): if num <= 0: raise ValueError("math domain error" ) return quad(lowerCamelCase__, 0, lowerCamelCase__, args=(lowerCamelCase__) )[0] def _lowercase ( lowerCamelCase__ : float, lowerCamelCase__ : float ): return math.pow(lowerCamelCase__, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
def _lowercase ( lowerCamelCase__ : float ): return 10 - x * x def _lowercase ( lowerCamelCase__ : float, lowerCamelCase__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(__lowerCAmelCase ) * equation(__lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _a = a while (b - a) >= 0.01: # Find middle point _a = (a + b) / 2 # Check if middle point is root if equation(__lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCAmelCase ) * equation(__lowerCAmelCase ) < 0: _a = c else: _a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
709
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : Union[str, Any] ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): _a = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase__ ) if number < 1: _a = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase__ ) _a = 1 for i in range(1, lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __snake_case : Union[str, Any] = logging.get_logger(__name__) class A ( a ): def __init__( self , *snake_case_ , **snake_case_ ) -> int: warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
'''simple docstring''' import os __snake_case : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = 0 _a = 0 while index < len(__lowerCAmelCase ) - 1: _a = SYMBOLS[numerals[index]] _a = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = """""" _a = num // 1_000 numerals += m_count * "M" num %= 1_000 _a = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _a = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowercase ( lowerCamelCase__ : int = "/p089_roman.txt" ): _a = 0 with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea: _a = filea.readlines() for line in lines: _a = line.strip() _a = parse_roman_numerals(__lowerCAmelCase ) _a = generate_roman_numerals(__lowerCAmelCase ) savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int] ): if nth_term == "": return [""] _a = int(__UpperCAmelCase ) _a = int(__UpperCAmelCase ) _a = [] for temp in range(int(__UpperCAmelCase ) ): series.append(F'''1 / {pow(temp + 1, int(__UpperCAmelCase ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Optional[Any] = int(input("Enter the last number (nth term) of the P-Series")) __snake_case : List[str] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
713
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
0
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _lowercase ( ): _a = 9 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = kruskal(lowerCAmelCase__, lowerCAmelCase__ ) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ )
714
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): __UpperCAmelCase : List[Any] = ViTImageProcessor if is_vision_available() else None @property def __lowerCAmelCase ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> List[Any]: _a = (3, 3_2, 1_2_8) _a = tempfile.mkdtemp() # fmt: off _a = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _a = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + "\n" ) _a = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 3_2, """width""": 1_2_8}, } _a = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __lowerCAmelCase ( self , **snake_case_ ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __lowerCAmelCase ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Any: _a = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) _a = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) return image_input def __lowerCAmelCase ( self ) -> str: _a = self.get_tokenizer() _a = self.get_image_processor() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _a = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = self.get_image_processor() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _a = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 ) _a = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = self.prepare_image_inputs() _a = image_processor(_UpperCamelCase , return_tensors="np" ) _a = processor(images=_UpperCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = """test""" _a = processor(text=_UpperCamelCase ) _a = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = """test""" _a = self.prepare_image_inputs() _a = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _a = processor.char_decode(_UpperCamelCase ) _a = tokenizer.batch_decode(_UpperCamelCase ) _a = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = None _a = self.prepare_image_inputs() _a = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _a = torch.randn(1 , 2_7 , 3_8 ) _a = torch.randn(1 , 2_7 , 5_0_2_5_7 ) _a = torch.randn(1 , 2_7 , 3_0_5_2_2 ) _a = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case : List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( a__ ): __UpperCAmelCase : Any = field(default=a__ , metadata={"""help""": """Whether to use SortishSampler or not."""} ) __UpperCAmelCase : str = field( default=a__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __UpperCAmelCase : int = field( default=a__ , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) __UpperCAmelCase : str = field( default=a__ , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) __UpperCAmelCase : Tuple = field( default=a__ , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __lowerCAmelCase ( self ) -> List[str]: _a = super().to_dict() for k, v in d.items(): if isinstance(_A , _A ): _a = v.to_dict() return d
716
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_A ) class A ( _A ): __UpperCAmelCase : Optional[int] = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCAmelCase : Union[str, Any] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) __UpperCAmelCase : List[str] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) __UpperCAmelCase : Dict = """question""" __UpperCAmelCase : str = """context""" __UpperCAmelCase : Dict = """answers""" @property def __lowerCAmelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
717
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
0
'''simple docstring''' import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( _UpperCAmelCase ): __UpperCAmelCase : Any = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) __UpperCAmelCase : Optional[Any] = """CIDAS/clipseg-rd64-refined""" __UpperCAmelCase : Dict = """image_segmenter""" __UpperCAmelCase : List[Any] = CLIPSegForImageSegmentation __UpperCAmelCase : List[str] = ["""image""", """text"""] __UpperCAmelCase : str = ["""image"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["vision"] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Union[str, Any]: return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase_ , return_tensors="pt" ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: with torch.no_grad(): _a = self.model(**lowerCamelCase_ ).logits return logits def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = outputs.cpu().detach().numpy() _a = 0 _a = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): __UpperCAmelCase : List[Any] = (DDPMScheduler,) def __lowerCAmelCase ( self , **snake_case_ ) -> str: _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__UpperCamelCase ) return config def __lowerCAmelCase ( self ) -> Union[str, Any]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> List[str]: self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def __lowerCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> int: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> Any: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) _a = len(__UpperCamelCase ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _a = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a = pred_prev_sample _a = torch.sum(torch.abs(__UpperCamelCase ) ) _a = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def __lowerCAmelCase ( self ) -> Dict: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**__UpperCamelCase ) _a = len(__UpperCamelCase ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _a = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a = pred_prev_sample _a = torch.sum(torch.abs(__UpperCamelCase ) ) _a = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) _a = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) _a = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(__UpperCamelCase ) _a = prev_t.item() self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) _a = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__UpperCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) _a = [1_0_0, 8_7, 5_0, 1, 0] _a = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__UpperCamelCase ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
719
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
0
'''simple docstring''' __snake_case : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __snake_case : Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __snake_case : Optional[int] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple ): assert len(str(lowerCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _a = year // 100 _a = (5 * (century % 4) + 2) % 7 _a = year % 100 _a = centurian % 12 _a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: _a = tempfile.mkdtemp() # fmt: off _a = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _a = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _a = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _a = {"""unk_token""": """<unk>"""} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) _a = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _a = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def __lowerCAmelCase ( self , **snake_case_ ) -> Any: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def __lowerCAmelCase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> List[str]: _a = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> int: _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = self.get_image_processor() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) _a = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) _a = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def __lowerCAmelCase ( self ) -> List[str]: _a = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _a = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) _a = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _a = self.prepare_image_inputs() _a = image_processor(_lowercase , return_tensors="np" ) _a = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.get_image_processor() _a = self.get_tokenizer() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _a = """lower newer""" _a = processor(text=_lowercase ) _a = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _a = """lower newer""" _a = self.prepare_image_inputs() _a = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def __lowerCAmelCase ( self ) -> List[str]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(_lowercase ) _a = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _a = """lower newer""" _a = self.prepare_image_inputs() _a = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __snake_case : List[str] = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class A ( _lowercase ): __UpperCAmelCase : Tuple = '''albert''' def __init__( self , snake_case_=3_0_0_0_0 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=1_2 , snake_case_=1 , snake_case_=6_4 , snake_case_=1_6_3_8_4 , snake_case_=1 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=0 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-1_2 , snake_case_=0.1 , snake_case_="absolute" , snake_case_=0 , snake_case_=2 , snake_case_=3 , **snake_case_ , ) -> Any: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) _a = vocab_size _a = embedding_size _a = hidden_size _a = num_hidden_layers _a = num_hidden_groups _a = num_attention_heads _a = inner_group_num _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = classifier_dropout_prob _a = position_embedding_type class A ( _lowercase ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__SCREAMING_SNAKE_CASE ): requests.request("GET", "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET", "https://huggingface.co", timeout=1.0 ) @pytest.mark.integration def _lowercase ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET", "https://huggingface.co" ) def _lowercase ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" )
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[Any] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case : List[str] = 16 __snake_case : Any = 32 def _lowercase ( lowerCamelCase__ : Accelerator, lowerCamelCase__ : int = 16, lowerCamelCase__ : str = "bert-base-cased" ): _a = AutoTokenizer.from_pretrained(snake_case_ ) _a = load_dataset("glue", "mrpc" ) def tokenize_function(lowerCamelCase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"], examples["sentence2"], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _a = datasets.map( snake_case_, batched=snake_case_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(lowerCamelCase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(snake_case_, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) _a = DataLoader( tokenized_datasets["validation"], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : int ): # Initialize accelerator _a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) _a = args.model_name_or_path set_seed(snake_case_ ) _a = get_dataloaders(snake_case_, snake_case_, snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained(snake_case_, return_dict=snake_case_ ) # Instantiate optimizer _a = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _a = optimizer_cls(params=model.parameters(), lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: _a = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _a = 1 _a = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=0, num_training_steps=snake_case_, ) else: _a = DummyScheduler(snake_case_, total_num_steps=snake_case_, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # We need to keep track of how many total steps we have iterated over _a = 0 # We also need to keep track of the stating epoch so files are named properly _a = 0 # Now we train the model _a = evaluate.load("glue", "mrpc" ) _a = 0 _a = {} for epoch in range(snake_case_, snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): _a = model(**snake_case_ ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _a = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**snake_case_ ) _a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _a = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: _a = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_, references=snake_case_, ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', snake_case_ ) _a = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _a = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(snake_case_, snake_case_ ) def _lowercase ( ): _a = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=snake_case_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=snake_case_, ) parser.add_argument( "--output_dir", type=snake_case_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=snake_case_, default=snake_case_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=snake_case_, default=3, help="Number of train epochs.", ) _a = parser.parse_args() _a = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = BlipImageProcessor() _a = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) _a = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) _a = InstructBlipProcessor(snake_case_ , snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def __lowerCAmelCase ( self , **snake_case_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def __lowerCAmelCase ( self , **snake_case_ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).qformer_tokenizer def __lowerCAmelCase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> List[str]: _a = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> Tuple: _a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _a = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) _a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case_ ) def __lowerCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_tokenizer() _a = self.get_qformer_tokenizer() _a = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) _a = self.prepare_image_inputs() _a = image_processor(snake_case_ , return_tensors="np" ) _a = processor(images=snake_case_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> Dict: _a = self.get_image_processor() _a = self.get_tokenizer() _a = self.get_qformer_tokenizer() _a = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) _a = "lower newer" _a = processor(text=snake_case_ ) _a = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) _a = qformer_tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def __lowerCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_tokenizer() _a = self.get_qformer_tokenizer() _a = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) _a = "lower newer" _a = self.prepare_image_inputs() _a = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = self.get_qformer_tokenizer() _a = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(snake_case_ ) _a = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = self.get_qformer_tokenizer() _a = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) _a = "lower newer" _a = self.prepare_image_inputs() _a = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A ( __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Dict = """char""" __UpperCAmelCase : List[Any] = """bpe""" __UpperCAmelCase : Optional[Any] = """wp""" __snake_case : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A ( __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Optional[int] = ["""image_processor""", """char_tokenizer"""] __UpperCAmelCase : Union[str, Any] = """ViTImageProcessor""" __UpperCAmelCase : Union[str, Any] = """MgpstrTokenizer""" def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> int: _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _a = tokenizer _a = AutoTokenizer.from_pretrained("gpt2" ) _a = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(_a , _a ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[int]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _a = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None: _a = self.char_tokenizer(_a , return_tensors=_a , **_a ) if text is None: return inputs elif images is None: return encodings else: _a = encodings["""input_ids"""] return inputs def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = sequences _a = char_preds.size(0 ) _a = self._decode_helper(_a , "char" ) _a = self._decode_helper(_a , "bpe" ) _a = self._decode_helper(_a , "wp" ) _a = [] _a = [] for i in range(_a ): _a = [char_scores[i], bpe_scores[i], wp_scores[i]] _a = [char_strs[i], bpe_strs[i], wp_strs[i]] _a = scores.index(max(_a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _a = {} _a = final_strs _a = final_scores _a = char_strs _a = bpe_strs _a = wp_strs return out def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[Any]: if format == DecodeType.CHARACTER: _a = self.char_decode _a = 1 _a = """[s]""" elif format == DecodeType.BPE: _a = self.bpe_decode _a = 2 _a = """#""" elif format == DecodeType.WORDPIECE: _a = self.wp_decode _a = 1_0_2 _a = """[SEP]""" else: raise ValueError(F'''Format {format} is not supported.''' ) _a = [], [] _a = pred_logits.size(0 ) _a = pred_logits.size(1 ) _a = pred_logits.topk(1 , dim=-1 , largest=_a , sorted=_a ) _a = preds_index.view(-1 , _a )[:, 1:] _a = decoder(_a ) _a = torch.nn.functional.softmax(_a , dim=2 ).max(dim=2 ) _a = preds_max_prob[:, 1:] for index in range(_a ): _a = preds_str[index].find(_a ) _a = preds_str[index][:pred_eos] _a = preds_index[index].cpu().tolist() _a = pred_index.index(_a ) if eos_token in pred_index else -1 _a = preds_max_prob[index][: pred_eos_index + 1] _a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_a ) conf_scores.append(_a ) return dec_strs, conf_scores def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(_a )] return decode_strs def __lowerCAmelCase ( self , snake_case_ ) -> Any: return self.bpe_tokenizer.batch_decode(_a ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(_a )] return decode_strs
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int ): _a = 1 for i in range(1, num + 1 ): fact *= i return fact def _lowercase ( lowerCamelCase__ : int ): _a = 0 while number > 0: _a = number % 10 sum_of_digits += last_digit _a = number // 10 # Removing the last_digit from the given number return sum_of_digits def _lowercase ( lowerCamelCase__ : int = 100 ): _a = factorial(snake_case__ ) _a = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( a , a , unittest.TestCase ): __UpperCAmelCase : List[str] = StableDiffusionDiffEditPipeline __UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __UpperCAmelCase : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Optional[int] = frozenset([] ) def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) _a = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCAmelCase , set_alpha_to_zero=__lowerCAmelCase , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) _a = CLIPTextModel(__lowerCAmelCase ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Tuple: _a = floats_tensor((1, 1_6, 1_6) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _a = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith("mps" ): _a = torch.manual_seed(__lowerCAmelCase ) else: _a = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _a = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Any: _a = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ) if str(__lowerCAmelCase ).startswith("mps" ): _a = torch.manual_seed(__lowerCAmelCase ) else: _a = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _a = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[Any]: _a = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ) if str(__lowerCAmelCase ).startswith("mps" ): _a = torch.manual_seed(__lowerCAmelCase ) else: _a = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _a = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self ) -> Tuple: if not hasattr(self.pipeline_class , "_optional_components" ): return _a = self.get_dummy_components() _a = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _a = self.get_dummy_inputs(__lowerCAmelCase ) _a = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _a = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase , __lowerCAmelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) _a = self.get_dummy_inputs(__lowerCAmelCase ) _a = pipe_loaded(**__lowerCAmelCase )[0] _a = np.abs(output - output_loaded ).max() self.assertLess(__lowerCAmelCase , 1E-4 ) def __lowerCAmelCase ( self ) -> List[str]: _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _a = self.get_dummy_mask_inputs(__lowerCAmelCase ) _a = pipe.generate_mask(**__lowerCAmelCase ) _a = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) _a = np.array([0] * 9 ) _a = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowerCAmelCase ( self ) -> str: _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _a = self.get_dummy_inversion_inputs(__lowerCAmelCase ) _a = pipe.invert(**__lowerCAmelCase ).images _a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _a = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowerCAmelCase ( self ) -> List[Any]: _a = "cpu" _a = self.get_dummy_components() _a = {"beta_start": 0.00_085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} _a = DPMSolverMultistepScheduler(**__lowerCAmelCase ) _a = DPMSolverMultistepInverseScheduler(**__lowerCAmelCase ) _a = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _a = self.get_dummy_inversion_inputs(__lowerCAmelCase ) _a = pipe.invert(**__lowerCAmelCase ).images _a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _a = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowerCAmelCase ( cls ) -> List[str]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) _a = raw_image.convert("RGB" ).resize((7_6_8, 7_6_8) ) _a = raw_image def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = torch.manual_seed(0 ) _a = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _a = DDIMScheduler.from_config(pipe.scheduler.config ) _a = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _a = "a bowl of fruit" _a = "a bowl of pears" _a = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , ) _a = pipe.invert( prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase ).latents _a = pipe( prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] _a = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowerCAmelCase ( self ) -> List[Any]: _a = torch.manual_seed(0 ) _a = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _a = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _a = "a bowl of fruit" _a = "a bowl of pears" _a = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCAmelCase , target_prompt=__lowerCAmelCase , generator=__lowerCAmelCase , ) _a = pipe.invert( prompt=__lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCAmelCase , num_inference_steps=2_5 , ).latents _a = pipe( prompt=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_latents=__lowerCAmelCase , generator=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type="numpy" , ).images[0] _a = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : List[Any] = logging.get_logger(__name__) class A ( _UpperCAmelCase ): __UpperCAmelCase : Tuple = ["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PIL.Image.BICUBIC , snake_case_ = True , snake_case_ = None , snake_case_ = 1 / 2_5_5 , snake_case_ = True , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> Any: super().__init__(**lowercase_ ) _a = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} _a = get_size_dict(lowercase_ ) _a = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a = get_size_dict(lowercase_ , param_name="crop_size" ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = PIL.Image.BICUBIC , snake_case_ = None , **snake_case_ , ) -> str: _a = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowercase_ , size=(size["height"], size["width"]) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> Dict: _a = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> int: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> Any: _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(lowercase_ ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowercase_ , param_name="crop_size" ) _a = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowercase_ ) for image in images] if do_resize: _a = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] _a = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _a = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : int ): _a = word.split() def justify(lowerCamelCase__ : list, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> str: _a = max_width - width _a = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _a = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _a = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _a = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _a = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _a = [] _a = [] _a = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _a = [word], len(_lowercase ) _a = max_width - width - len(_lowercase ) answer.append(" ".join(_lowercase ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
709
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _a = "" while len(UpperCAmelCase__ ) % 3 != 0: _a = "0" + bin_string _a = [ bin_string[index : index + 3] for index in range(len(UpperCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _a = 0 for index, val in enumerate(UpperCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(UpperCAmelCase__ ) ) oct_string += str(UpperCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
def _lowercase ( lowerCamelCase__ : Tuple ): if not isinstance(_snake_case, _snake_case ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str = 600_851_475_143 ): try: _a = int(_lowercase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _a = 1 _a = 2 while i * i <= n: while n % i == 0: _a = i n //= i i += 1 if n > 1: _a = n return int(_lowercase ) if __name__ == "__main__": print(f'''{solution() = }''')
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __snake_case : Tuple = object() # For specifying empty leaf dict `{}` __snake_case : Optional[Any] = object() def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str] ): _a = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): _a = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase, ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def _lowercase ( lowerCamelCase__ : Optional[Any] ): def replace(lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple ): for rule, replacement in rules: if _match(__UpperCamelCase, __UpperCamelCase ): return replacement return val return replace def _lowercase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __UpperCamelCase )), (("transformer", "wte", "embedding"), P("mp", __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowercase ( lowerCamelCase__ : Dict ): _a = _get_partition_rules() _a = _replacement_rules(__UpperCamelCase ) _a = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} _a = {k: replace(__UpperCamelCase, __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
713
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : List[Any] = 10 ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ) or n < 0: raise ValueError("Invalid input" ) _a = 10**n _a = 28_433 * (pow(2, 7_830_457, lowerCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
714
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any] ): return x if y == 0 else greatest_common_divisor(SCREAMING_SNAKE_CASE_, x % y ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : List[Any] ): return (x * y) // greatest_common_divisor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def _lowercase ( lowerCamelCase__ : str = 20 ): _a = 1 for i in range(1, n + 1 ): _a = lcm(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return g if __name__ == "__main__": print(f'''{solution() = }''')
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A ( __snake_case ): __UpperCAmelCase : int = 'xlm-roberta-xl' def __init__( self , snake_case_=2_5_0_8_8_0 , snake_case_=2_5_6_0 , snake_case_=3_6 , snake_case_=3_2 , snake_case_=1_0_2_4_0 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_4 , snake_case_=1 , snake_case_=0.02 , snake_case_=1E-0_5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> int: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Union[str, Any]: if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
716
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> List[str]: _a = parent _a = 1_3 _a = 7 _a = True _a = True _a = True _a = True _a = 9_9 _a = 3_8_4 _a = 2 _a = 4 _a = 3_7 _a = "gelu" _a = 0.1 _a = 0.1 _a = 5_1_2 _a = 1_6 _a = 2 _a = 0.02 _a = 3 _a = 4 _a = 1_2_8 _a = 2 _a = 9 _a = 1 _a = None def __lowerCAmelCase ( self ) -> Optional[Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = TFConvBertModel(config=snake_case_ ) _a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _a = [input_ids, input_mask] _a = model(snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: _a = TFConvBertForMaskedLM(config=snake_case_ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: _a = self.num_labels _a = TFConvBertForSequenceClassification(config=snake_case_ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = self.num_choices _a = TFConvBertForMultipleChoice(config=snake_case_ ) _a = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _a = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: _a = self.num_labels _a = TFConvBertForTokenClassification(config=snake_case_ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: _a = TFConvBertForQuestionAnswering(config=snake_case_ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __UpperCAmelCase : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : str = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __lowerCAmelCase ( self ) -> Optional[int]: _a = TFConvBertModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __lowerCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def __lowerCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = True if hasattr(snake_case_ , "use_cache" ): _a = True _a = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _a = getattr(self.model_tester , "key_length" , snake_case_ ) for model_class in self.all_model_classes: _a = self._prepare_for_class(snake_case_ , snake_case_ ) _a = model_class(snake_case_ ) _a = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) _a = os.path.join(snake_case_ , "saved_model" , "1" ) _a = tf.keras.models.load_model(snake_case_ ) _a = model(snake_case_ ) if self.is_encoder_decoder: _a = outputs["encoder_hidden_states"] _a = outputs["encoder_attentions"] else: _a = outputs["hidden_states"] _a = outputs["attentions"] self.assertEqual(len(snake_case_ ) , snake_case_ ) _a = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self ) -> str: _a = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _a = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _a = getattr(self.model_tester , "key_length" , snake_case_ ) _a = getattr(self.model_tester , "key_length" , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): _a = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) _a = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): _a = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _a = True _a = False _a = model_class(snake_case_ ) _a = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: _a = model_class(snake_case_ ) _a = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _a = True _a = model_class(snake_case_ ) _a = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(snake_case_ ) _a = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> int: _a = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _a = tf.constant([[0, 1, 2, 3, 4, 5]] ) _a = model(snake_case_ )[0] _a = [1, 6, 7_6_8] self.assertEqual(output.shape , snake_case_ ) _a = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
717
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : str = logging.get_logger(__name__) __snake_case : Dict = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A ( UpperCAmelCase__ ): __UpperCAmelCase : List[str] = "unispeech" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=8_0 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=0.5 , **snake_case_ , ) -> Any: super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = list(lowerCamelCase__ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case : List[str] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowercase , unittest.TestCase ): __UpperCAmelCase : List[Any] = GPTSanJapaneseTokenizer __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = {'''do_clean_text''': False, '''add_prefix_space''': False} def __lowerCAmelCase ( self ) -> int: super().setUp() # fmt: off _a = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on _a = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 _a = {"""unk_token""": """<unk>"""} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__a ) ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__a ) def __lowerCAmelCase ( self , snake_case_ ) -> int: _a = """こんにちは、世界。 \nこんばんは、㔺界。😀""" _a = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = self.get_input_output_texts(__a ) _a = tokenizer.encode(__a , add_special_tokens=__a ) _a = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def __lowerCAmelCase ( self ) -> Tuple: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> Any: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> Optional[Any]: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> str: _a = self.get_tokenizer() # Testing tokenization _a = """こんにちは、世界。 こんばんは、㔺界。""" _a = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] _a = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _a = tokens + [tokenizer.unk_token] _a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] _a = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , __a ) def __lowerCAmelCase ( self ) -> Any: _a = self.get_tokenizer() # Testing tokenization _a = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" _a = """こんにちは、、、、世界。こんばんは、、、、世界。""" _a = tokenizer.encode(__a ) _a = tokenizer.decode(__a ) self.assertEqual(__a , __a ) @slow def __lowerCAmelCase ( self ) -> List[Any]: _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _a = """こんにちは、世界。""" _a = """こんばんは、㔺界。😀""" _a = """こんにちは、世界。こんばんは、世界。😀""" _a = tokenizer.encode(prefix_text + input_text ) _a = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _a = tokenizer.encode(__a , prefix_text=__a ) _a = tokenizer.decode(__a ) _a = tokenizer.decode(__a ) _a = tokenizer.decode(__a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) @slow def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _a = """こんにちは、世界。""" _a = """こんばんは、㔺界。😀""" _a = len(tokenizer.encode(__a ) ) - 2 _a = len(tokenizer.encode(__a ) ) - 2 _a = [1] + [0] * (len_prefix + len_text + 1) _a = [1] * (len_prefix + len_text + 1) + [0] _a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _a = tokenizer(prefix_text + input_text ).token_type_ids _a = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _a = tokenizer(__a , prefix_text=__a ).token_type_ids self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _a = tokenizer.encode("あンいワ" ) _a = tokenizer.encode("" , prefix_text="あンいワ" ) _a = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertEqual(tokenizer.decode(__a ) , tokenizer.decode(__a ) ) self.assertNotEqual(__a , __a ) self.assertNotEqual(__a , __a ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _a = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] _a = tokenizer(__a , padding=__a ) _a = tokenizer.batch_encode_plus(__a , padding=__a ) # fmt: off _a = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] _a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __a ) self.assertListEqual(x_token.token_type_ids , __a ) self.assertListEqual(x_token.attention_mask , __a ) self.assertListEqual(x_token_a.input_ids , __a ) self.assertListEqual(x_token_a.token_type_ids , __a ) self.assertListEqual(x_token_a.attention_mask , __a ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __lowerCAmelCase ( self ) -> Union[str, Any]: # tokenizer has no padding token pass
720
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
0
'''simple docstring''' import numpy as np def _lowercase ( lowerCamelCase__ : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Any ): _a = "" for i in table: res += inp[i - 1] return res def _lowercase ( lowerCamelCase__ : str ): return data[1:] + data[0] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str] ): _a = "" for i in range(len(lowerCamelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict ): _a = int("0b" + data[0] + data[-1], 2 ) _a = int("0b" + data[1:3], 2 ) return bin(s[row][col] )[2:] def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any] ): _a = message[:4] _a = message[4:] _a = apply_table(lowerCamelCase__, lowerCamelCase__ ) _a = xor(lowerCamelCase__, lowerCamelCase__ ) _a = apply_sbox(lowerCamelCase__, temp[:4] ) # noqa: E741 _a = apply_sbox(lowerCamelCase__, temp[4:] ) _a = "0" * (2 - len(lowerCamelCase__ )) + l # noqa: E741 _a = "0" * (2 - len(lowerCamelCase__ )) + r _a = apply_table(l + r, lowerCamelCase__ ) _a = xor(lowerCamelCase__, lowerCamelCase__ ) return temp + right if __name__ == "__main__": __snake_case : Any = input("Enter 10 bit key: ") __snake_case : Dict = input("Enter 8 bit message: ") __snake_case : Optional[int] = [6, 3, 7, 4, 8, 5, 10, 9] __snake_case : Any = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __snake_case : Union[str, Any] = [2, 4, 3, 1] __snake_case : int = [2, 6, 3, 1, 4, 8, 5, 7] __snake_case : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __snake_case : Any = [4, 1, 2, 3, 2, 3, 4, 1] __snake_case : Dict = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __snake_case : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __snake_case : Dict = apply_table(key, paa_table) __snake_case : Dict = temp[:5] __snake_case : str = temp[5:] __snake_case : List[Any] = left_shift(left) __snake_case : List[Any] = left_shift(right) __snake_case : Tuple = apply_table(left + right, pa_table) __snake_case : List[str] = left_shift(left) __snake_case : Optional[int] = left_shift(right) __snake_case : Optional[Any] = left_shift(left) __snake_case : Union[str, Any] = left_shift(right) __snake_case : List[str] = apply_table(left + right, pa_table) # encryption __snake_case : int = apply_table(message, IP) __snake_case : Any = function(expansion, sa, sa, keya, temp) __snake_case : List[str] = temp[4:] + temp[:4] __snake_case : Tuple = function(expansion, sa, sa, keya, temp) __snake_case : Optional[Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __snake_case : Tuple = apply_table(CT, IP) __snake_case : Dict = function(expansion, sa, sa, keya, temp) __snake_case : Dict = temp[4:] + temp[:4] __snake_case : List[str] = function(expansion, sa, sa, keya, temp) __snake_case : Dict = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Any, lowerCamelCase__ : str, lowerCamelCase__ : Any, lowerCamelCase__ : Any ): _a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_SCREAMING_SNAKE_CASE )] ) _a = np.array(_SCREAMING_SNAKE_CASE ) _a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), _SCREAMING_SNAKE_CASE ) ), x.transpose() ), _SCREAMING_SNAKE_CASE ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any] ): _a = (1, 2, 1) _a = (1, 1, 0, 7) _a = SARIMAX( _SCREAMING_SNAKE_CASE, exog=_SCREAMING_SNAKE_CASE, order=_SCREAMING_SNAKE_CASE, seasonal_order=_SCREAMING_SNAKE_CASE ) _a = model.fit(disp=_SCREAMING_SNAKE_CASE, maxiter=600, method="nm" ) _a = model_fit.predict(1, len(_SCREAMING_SNAKE_CASE ), exog=[test_match] ) return result[0] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict ): _a = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1 ) regressor.fit(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) _a = regressor.predict(_SCREAMING_SNAKE_CASE ) return y_pred[0] def _lowercase ( lowerCamelCase__ : int ): train_user.sort() _a = np.percentile(_SCREAMING_SNAKE_CASE, 25 ) _a = np.percentile(_SCREAMING_SNAKE_CASE, 75 ) _a = qa - qa _a = qa - (iqr * 0.1) return low_lim def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any ): _a = 0 _a = 0 for i in list_vote: if i > actual_result: _a = not_safe + 1 else: if abs(abs(_SCREAMING_SNAKE_CASE ) - abs(_SCREAMING_SNAKE_CASE ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case : str = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __snake_case : List[str] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __snake_case : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data __snake_case : Optional[Any] = normalize_df[:, 2].tolist() __snake_case : Dict = normalize_df[:, 0].tolist() __snake_case : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case : Optional[Any] = normalize_df[:, [1, 2]].tolist() __snake_case : Any = x[: len(x) - 1] __snake_case : Any = x[len(x) - 1 :] # for linear regression & sarimax __snake_case : int = total_date[: len(total_date) - 1] __snake_case : Union[str, Any] = total_user[: len(total_user) - 1] __snake_case : Optional[Any] = total_match[: len(total_match) - 1] __snake_case : str = total_date[len(total_date) - 1 :] __snake_case : Optional[Any] = total_user[len(total_user) - 1 :] __snake_case : int = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case : Union[str, Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case : Dict = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' import sys def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = len(lowercase__ ) _a = [[0 for x in range(lowercase__ )] for x in range(lowercase__ )] _a = [[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2, lowercase__ ): for a in range(1, n - chain_length + 1 ): _a = a + chain_length - 1 _a = sys.maxsize for c in range(lowercase__, lowercase__ ): _a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a = cost _a = c return matrix, sol def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): if i == j: print("A" + str(lowercase__ ), end=" " ) else: print("(", end=" " ) print_optiomal_solution(lowercase__, lowercase__, optimal_solution[i][j] ) print_optiomal_solution(lowercase__, optimal_solution[i][j] + 1, lowercase__ ) print(")", end=" " ) def _lowercase ( ): _a = [30, 35, 15, 5, 10, 20, 25] _a = len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a , _a = matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__, 1, n - 1 ) if __name__ == "__main__": main()
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[str], lowerCamelCase__ : str, lowerCamelCase__ : Dict ): for attribute in key.split("." ): _a = getattr(lowerCAmelCase_, lowerCAmelCase_ ) if weight_type is not None: _a = getattr(lowerCAmelCase_, lowerCAmelCase_ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : Any ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _a = True if "*" in mapped_key: _a = name.split(lowerCAmelCase_ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCAmelCase_ ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "weight" in name: _a = '''weight''' elif "bias" in name: _a = '''bias''' else: _a = None set_recursively(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, lowerCamelCase__ : Optional[Any]=True ): if config_path is not None: _a = HubertConfig.from_pretrained(lowerCAmelCase_ ) else: _a = HubertConfig() if is_finetuned: if dict_path: _a = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols ) _a = os.path.join(lowerCAmelCase_, "vocab.json" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, lowerCAmelCase_ ) _a = WavaVecaCTCTokenizer( lowerCAmelCase_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=lowerCAmelCase_, ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_, ) _a = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _a = HubertForCTC(lowerCAmelCase_ ) else: _a = HubertModel(lowerCAmelCase_ ) if is_finetuned: _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a = model[0].eval() recursively_load_weights(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __snake_case : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCAmelCase : Tuple = CycleDiffusionPipeline __UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __UpperCAmelCase : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) __UpperCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_0_0_0 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a = CLIPTextModel(__snake_case ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Any: _a = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) _a = image / 2 + 0.5 if str(__snake_case ).startswith("mps" ): _a = torch.manual_seed(__snake_case ) else: _a = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _a = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = CycleDiffusionPipeline(**__snake_case ) _a = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a = self.get_dummy_inputs(__snake_case ) _a = pipe(**__snake_case ) _a = output.images _a = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _a = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , "half" ): _a = module.half() _a = CycleDiffusionPipeline(**__snake_case ) _a = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a = self.get_dummy_inputs(__snake_case ) _a = pipe(**__snake_case ) _a = output.images _a = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) _a = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCAmelCase ( self ) -> Any: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def __lowerCAmelCase ( self ) -> Any: return super().test_inference_batch_single_identical() @skip_mps def __lowerCAmelCase ( self ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowerCAmelCase ( self ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self ) -> Tuple: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> List[str]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) _a = init_image.resize((5_1_2, 5_1_2) ) _a = '''CompVis/stable-diffusion-v1-4''' _a = DDIMScheduler.from_pretrained(__snake_case , subfolder="scheduler" ) _a = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _a = '''A black colored car''' _a = '''A blue colored car''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type="np" , ) _a = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __lowerCAmelCase ( self ) -> Optional[int]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) _a = init_image.resize((5_1_2, 5_1_2) ) _a = '''CompVis/stable-diffusion-v1-4''' _a = DDIMScheduler.from_pretrained(__snake_case , subfolder="scheduler" ) _a = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _a = '''A black colored car''' _a = '''A blue colored car''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type="np" , ) _a = output.images assert np.abs(image - expected_image ).max() < 2E-2
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : Tuple = DebertaTokenizer __UpperCAmelCase : str = True __UpperCAmelCase : Any = DebertaTokenizerFast def __lowerCAmelCase ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _a = {"unk_token": "[UNK]"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = "lower newer" _a = "lower newer" return input_text, output_text def __lowerCAmelCase ( self ) -> List[str]: _a = self.get_tokenizer() _a = "lower newer" _a = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _a = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = self.get_tokenizer() _a = tokenizer("Hello" , "World" ) _a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , snake_case_ ) @slow def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.encode( "sequence builders" , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) _a = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCAmelCase ( self ) -> List[Any]: _a = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _a = tokenizer_class.from_pretrained("microsoft/deberta-base" ) _a = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] _a = tokenizer(snake_case_ , padding=snake_case_ ) _a = [tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) for seq in encoding["input_ids"]] # fmt: off _a = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _a = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , snake_case_ ) for expected, decoded in zip(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ )
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() _a = dict(zip(__a , range(len(__a ) ) ) ) _a = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } _a = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_6_0_0_0, "return_attention_mask": False, "do_normalize": True, } _a = tempfile.mkdtemp() _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) # load decoder from hub _a = "hf-internal-testing/ngram-beam-search-decoder" def __lowerCAmelCase ( self , **snake_case_ ) -> int: _a = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def __lowerCAmelCase ( self , **snake_case_ ) -> int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def __lowerCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = self.get_feature_extractor() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) _a = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _a = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__a , "include" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = floats_list((3, 1_0_0_0) ) _a = feature_extractor(__a , return_tensors="np" ) _a = processor(__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> int: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = "This is a test string" _a = processor(text=__a ) _a = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self , snake_case_=(2, 1_0, 1_6) , snake_case_=7_7 ) -> List[Any]: np.random.seed(__a ) return np.random.rand(*__a ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) _a = processor.decode(__a ) _a = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _a = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: _a = processor.batch_decode(__a , __a ) _a = list(__a ) with get_context("fork" ).Pool() as p: _a = decoder.decode_beams_batch(__a , __a ) _a = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def __lowerCAmelCase ( self ) -> int: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = self._get_dummy_logits() _a = 1_5 _a = -20.0 _a = -4.0 _a = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) _a = decoded_processor_out.text _a = list(__a ) with get_context("fork" ).Pool() as pool: _a = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) _a = [d[0][0] for d in decoded_decoder_out] _a = [d[0][2] for d in decoded_decoder_out] _a = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __a , atol=1E-3 ) ) def __lowerCAmelCase ( self ) -> Any: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) _a = self._get_dummy_logits() _a = 2.0 _a = 5.0 _a = -20.0 _a = True _a = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) _a = decoded_processor_out.text _a = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("fork" ).Pool() as pool: _a = decoder.decode_beams_batch( __a , __a , ) _a = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __a ) _a = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def __lowerCAmelCase ( self ) -> Dict: _a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _a = processor.decoder.model_container[processor.decoder._model_key] _a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _a = os.listdir(__a ) _a = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = snapshot_download("hf-internal-testing/processor_with_lm" ) _a = WavaVecaProcessorWithLM.from_pretrained(__a ) _a = processor.decoder.model_container[processor.decoder._model_key] _a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() _a = os.listdir(__a ) _a = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def __lowerCAmelCase ( self ) -> List[str]: _a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _a = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) _a = floats_list((3, 1_0_0_0) ) _a = processor_wavaveca(__a , return_tensors="np" ) _a = processor_auto(__a , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _a = self._get_dummy_logits() _a = processor_wavaveca.batch_decode(__a ) _a = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.get_feature_extractor() _a = self.get_tokenizer() _a = self.get_decoder() _a = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ ) -> int: _a = [d[key] for d in offsets] return retrieved_list def __lowerCAmelCase ( self ) -> Optional[Any]: _a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _a = self._get_dummy_logits()[0] _a = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) _a = self._get_dummy_logits() _a = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__a , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch _a = load_dataset("common_voice" , "en" , split="train" , streaming=__a ) _a = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) _a = iter(__a ) _a = next(__a ) _a = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) _a = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _a = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): _a = model(__a ).logits.cpu().numpy() _a = processor.decode(logits[0] , output_word_offsets=__a ) _a = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _a = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] _a = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__a , "word" ) ) , __a ) self.assertEqual(" ".join(self.get_from_offsets(__a , "word" ) ) , output.text ) # output times _a = torch.tensor(self.get_from_offsets(__a , "start_time" ) ) _a = torch.tensor(self.get_from_offsets(__a , "end_time" ) ) # fmt: off _a = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _a = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
from typing import List from .keymap import KEYMAP, get_character def _lowercase ( lowerCamelCase__ : Union[str, Any] ): def decorator(lowerCamelCase__ : Optional[int] ): _a = getattr(__UpperCamelCase, "handle_key", [] ) handle += [key] setattr(__UpperCamelCase, "handle_key", __UpperCamelCase ) return func return decorator def _lowercase ( *lowerCamelCase__ : str ): def decorator(lowerCamelCase__ : Any ): _a = getattr(__UpperCamelCase, "handle_key", [] ) handle += keys setattr(__UpperCamelCase, "handle_key", __UpperCamelCase ) return func return decorator class A ( UpperCAmelCase_ ): def __new__( cls , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: _a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , "key_handler" ): setattr(_snake_case , "key_handler" , {} ) setattr(_snake_case , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): _a = getattr(_snake_case , "handle_key" , [] ) for key in handled_keys: _a = value return new_cls @staticmethod def __lowerCAmelCase ( cls ) -> Tuple: _a = get_character() if char != KEYMAP["undefined"]: _a = ord(_snake_case ) _a = cls.key_handler.get(_snake_case ) if handler: _a = char return handler(cls ) else: return None def _lowercase ( cls : Any ): return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0