code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): _a = list(range(len(lowerCamelCase__ ) ) ) _a = [v / w for v, w in zip(lowerCamelCase__, lowerCamelCase__ )] index.sort(key=lambda lowerCamelCase__ : ratio[i], reverse=lowerCamelCase__ ) _a = 0 _a = [0] * len(lowerCamelCase__ ) for i in index: if weight[i] <= capacity: _a = 1 max_value += value[i] capacity -= weight[i] else: _a = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : int ): _a = word.split() def justify(lowerCamelCase__ : list, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> str: _a = max_width - width _a = len(lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _a = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _a = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _a = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase__ ): num_spaces_between_words_list[i] += 1 _a = [] for i in range(lowerCamelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase__ ) _a = [] _a = [] _a = 0 for word in words: if width + len(lowerCamelCase__ ) + len(lowerCamelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase__ ) width += len(lowerCamelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) ) # reset new line and new width _a , _a = [word], len(lowerCamelCase__ ) _a = max_width - width - len(lowerCamelCase__ ) answer.append(" ".join(lowerCamelCase__ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") __snake_case : Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : __UpperCAmelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """A folder containing the training data."""} ) __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """A folder containing the validation data."""} ) __UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __UpperCAmelCase : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""} ) __UpperCAmelCase : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ) -> Tuple: _a = {} if self.train_dir is not None: _a = self.train_dir if self.validation_dir is not None: _a = self.validation_dir _a = data_files if data_files else None @dataclass class A : __UpperCAmelCase : str = field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) __UpperCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase : str = field(default=a , metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={"""help""": """Stride to use for the encoder."""} , ) class A : def __init__( self , snake_case_=1_9_2 , snake_case_=3_2 , snake_case_=4 , snake_case_=0.6 ) -> str: _a = input_size _a = mask_patch_size _a = model_patch_size _a = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _a = self.input_size // self.mask_patch_size _a = self.mask_patch_size // self.model_patch_size _a = self.rand_size**2 _a = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: _a = np.random.permutation(self.token_count )[: self.mask_count] _a = np.zeros(self.token_count , dtype=snake_case_ ) _a = 1 _a = mask.reshape((self.rand_size, self.rand_size) ) _a = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _lowercase ( lowerCamelCase__ : Any ): _a = torch.stack([example["pixel_values"] for example in examples] ) _a = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim", lowerCamelCase__, lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. _a = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, lowerCamelCase__ ) and data_args.train_val_split > 0.0: _a = ds["train"].train_test_split(data_args.train_val_split ) _a = split["train"] _a = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _a = AutoConfig.from_pretrained(model_args.config_name_or_path, **lowerCamelCase__ ) elif model_args.model_name_or_path: _a = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCamelCase__ ) else: _a = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowerCamelCase__, "decoder_type" ): _a = "simmim" # adapt config _a = model_args.image_size if model_args.image_size is not None else config.image_size _a = model_args.patch_size if model_args.patch_size is not None else config.patch_size _a = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _a = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **lowerCamelCase__ ) elif model_args.model_name_or_path: _a = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **lowerCamelCase__ ) else: _a = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _a = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _a = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) _a = AutoModelForMaskedImageModeling.from_config(lowerCamelCase__ ) if training_args.do_train: _a = ds["train"].column_names else: _a = ds["validation"].column_names if data_args.image_column_name is not None: _a = data_args.image_column_name elif "image" in column_names: _a = "image" elif "img" in column_names: _a = "img" else: _a = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _a = Compose( [ Lambda(lambda lowerCamelCase__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator _a = MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(lowerCamelCase__ : Tuple ): _a = [transforms(lowerCamelCase__ ) for image in examples[image_column_name]] _a = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _a = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _a = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase__ ) # Initialize our trainer _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _a = trainer.evaluate() trainer.log_metrics("eval", lowerCamelCase__ ) trainer.save_metrics("eval", lowerCamelCase__ ) # Write model card and (optionally) push to hub _a = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[int] = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case : Union[str, Any] = 16 __snake_case : Optional[Any] = 32 def _lowercase ( lowerCamelCase__ : Accelerator, lowerCamelCase__ : int = 16, lowerCamelCase__ : str = "bert-base-cased" ): _a = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _a = load_dataset("glue", "mrpc" ) def tokenize_function(lowerCamelCase__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"], examples["sentence2"], truncation=lowerCamelCase__, max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _a = datasets.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=lowerCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(lowerCamelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(lowerCamelCase__, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"], shuffle=lowerCamelCase__, collate_fn=lowerCamelCase__, batch_size=lowerCamelCase__ ) _a = DataLoader( tokenized_datasets["validation"], shuffle=lowerCamelCase__, collate_fn=lowerCamelCase__, batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): # Initialize accelerator _a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) _a = args.model_name_or_path set_seed(lowerCamelCase__ ) _a , _a = get_dataloaders(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__, return_dict=lowerCamelCase__ ) # Instantiate optimizer _a = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _a = optimizer_cls(params=model.parameters(), lr=lowerCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: _a = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _a = 1 _a = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _a = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__, num_warmup_steps=0, num_training_steps=lowerCamelCase__, ) else: _a = DummyScheduler(lowerCamelCase__, total_num_steps=lowerCamelCase__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over _a = 0 # We also need to keep track of the stating epoch so files are named properly _a = 0 # Now we train the model _a = evaluate.load("glue", "mrpc" ) _a = 0 _a = {} for epoch in range(lowerCamelCase__, lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): _a = model(**lowerCamelCase__ ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _a = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**lowerCamelCase__ ) _a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _a , _a = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase__ ) - 1: _a = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase__, references=lowerCamelCase__, ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', lowerCamelCase__ ) _a = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _a = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( ): _a = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=lowerCamelCase__, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=lowerCamelCase__, ) parser.add_argument( "--output_dir", type=lowerCamelCase__, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=lowerCamelCase__, default=lowerCamelCase__, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=lowerCamelCase__, default=3, help="Number of train epochs.", ) _a = parser.parse_args() _a = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowerCamelCase__, lowerCamelCase__ ) if __name__ == "__main__": main()
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __snake_case : Any = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __snake_case : List[Any] = { "gpt-neox-20b": 2048, } class A ( a ): __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_=False , **snake_case_ , ) -> Any: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> List[int]: _a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] ) if len(snake_case_ ) > self.model_max_length: _a = input_ids[-self.model_max_length :] return input_ids
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Tuple = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A ( a ): __UpperCAmelCase : Optional[int] = """deta""" __UpperCAmelCase : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case_=None , snake_case_=9_0_0 , snake_case_=2_0_4_8 , snake_case_=6 , snake_case_=2_0_4_8 , snake_case_=8 , snake_case_=6 , snake_case_=1_0_2_4 , snake_case_=8 , snake_case_=0.0 , snake_case_=True , snake_case_="relu" , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1.0 , snake_case_=True , snake_case_=False , snake_case_="sine" , snake_case_=5 , snake_case_=4 , snake_case_=4 , snake_case_=True , snake_case_=3_0_0 , snake_case_=True , snake_case_=True , snake_case_=1 , snake_case_=5 , snake_case_=2 , snake_case_=1 , snake_case_=1 , snake_case_=5 , snake_case_=2 , snake_case_=0.1 , snake_case_=0.25 , **snake_case_ , ) -> Dict: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(snake_case_ , snake_case_ ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(snake_case_ ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def __lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) -> int: return self.d_model def __lowerCAmelCase ( self ) -> Any: _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _lowercase ( *lowerCamelCase__ : str ): with open(lowerCamelCase__, "r" ) as fh: fcntl.flock(lowerCamelCase__, fcntl.LOCK_EX ) try: print(*lowerCamelCase__ ) finally: fcntl.flock(lowerCamelCase__, fcntl.LOCK_UN ) __snake_case : Dict = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __snake_case : Dict = torch.device("cuda", local_rank) __snake_case : str = socket.gethostname() __snake_case : Union[str, Any] = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __snake_case : Optional[int] = dist.get_rank() __snake_case : Optional[Any] = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __snake_case : int = None __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __snake_case : List[Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __snake_case : str = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class A ( a ): __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : Union[str, Any] = TaTokenizer __UpperCAmelCase : List[int] = [] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=1_0_0 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _a = [F'''<extra_id_{i}>''' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _a = len(set(filter(lambda snake_case_ : bool("extra_id_" in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) _a = vocab_file _a = False if not self.vocab_file else True _a = extra_ids @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ , snake_case_ ) -> int: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _a = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , snake_case_ , ) return max_model_length def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _a = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self ) -> Tuple: return list( set(filter(lambda snake_case_ : bool(re.search(R"<extra_id_\d+>" , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return [self.convert_tokens_to_ids(snake_case_ ) for token in self.get_sentinel_tokens()]
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' from typing import Any class A : def __init__( self , snake_case_ ) -> List[str]: _a = data _a = None class A : def __init__( self ) -> int: _a = None def __lowerCAmelCase ( self ) -> Dict: _a = self.head while temp is not None: print(temp.data , end=" " ) _a = temp.next print() def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = Node(snake_case_ ) _a = self.head _a = new_node def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Tuple: if node_data_a == node_data_a: return else: _a = self.head while node_a is not None and node_a.data != node_data_a: _a = node_a.next _a = self.head while node_a is not None and node_a.data != node_data_a: _a = node_a.next if node_a is None or node_a is None: return _a , _a = node_a.data, node_a.data if __name__ == "__main__": __snake_case : List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' import math def _lowercase ( lowerCamelCase__ : float, lowerCamelCase__ : float ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCamelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __snake_case : int = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __snake_case : str = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = (images / 2 + 0.5).clamp(0, 1 ) _a = images.cpu().permute(0, 2, 3, 1 ).float().numpy() _a = numpy_to_pil(lowerCamelCase__ ) return images def _lowercase ( lowerCamelCase__ : str ): if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze(), mode="L" ) for image in images] else: _a = [Image.fromarray(lowerCamelCase__ ) for image in images] return pil_images
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' import os import pytest from attr import dataclass __snake_case : Dict = "us-east-1" # defaults region @dataclass class A : __UpperCAmelCase : str __UpperCAmelCase : List[str] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" __UpperCAmelCase : Tuple = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } __UpperCAmelCase : List[str] = {**hyperparameters, """max_steps""": 1000} @property def __lowerCAmelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCAmelCase ( self ) -> str: return F'''{self.framework}-transfromers-test''' @property def __lowerCAmelCase ( self ) -> str: return F'''./tests/sagemaker/scripts/{self.framework}''' @property def __lowerCAmelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _lowercase ( lowerCamelCase__ : Dict ): _a = SageMakerTestEnvironment(framework=request.cls.framework )
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __snake_case : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) __snake_case : List[Any] = "sshleifer/student_marian_en_ro_6_1" __snake_case : Any = "sshleifer/tiny-mbart" @require_torch class A ( a ): def __lowerCAmelCase ( self , snake_case_=False , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , ) -> Any: _a = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) _a = TrainerState.load_from_json(os.path.join(snake_case_ , "trainer_state.json" ) ).log_history if not do_eval: return _a = [log for log in logs if "eval_loss" in log.keys()] _a = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _a = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , snake_case_ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=snake_case_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _a = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } _a = experiments[experiment_id] _a = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} _a = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["extra_args_str"] ) _a = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["n_matches"] ) @slow def __lowerCAmelCase ( self ) -> Dict: _a = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=snake_case_ , ) # Check metrics _a = TrainerState.load_from_json(os.path.join(snake_case_ , "trainer_state.json" ) ).log_history _a = [log for log in logs if "eval_loss" in log.keys()] _a = eval_metrics[0] _a = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , snake_case_ ) # test if do_predict saves generations and metrics _a = os.listdir(snake_case_ ) _a = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self ) -> Tuple: from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ ) -> Tuple[int, float]: _a = "--skip_memory_metrics 0" _a = self.run_trainer( max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics _a = TrainerState.load_from_json(Path(snake_case_ , "trainer_state.json" ) ).log_history _a = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**2_0 ) _a = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**2_0 ) _a = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _a , _a , _a = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _a , _a , _a = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _a = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _a = gpu_peak_mem_orig + gpu_alloc_mem_orig _a = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _a = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _a = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( snake_case_ , snake_case_ , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( snake_case_ , snake_case_ , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 3E-3 , snake_case_ = "adafactor" , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = None , ) -> Dict: _a = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" _a = self.get_auto_remove_tmp_dir() _a = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(snake_case_ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(snake_case_ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() _a = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(snake_case_ )} '''.split() _a = "\n --do_predict\n ".split() _a = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _a = get_gpu_count() _a = get_torch_dist_unique_port() _a = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() _a = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: _a = ["run_translation.py"] + args with patch.object(snake_case_ , "argv" , snake_case_ ): main() return output_dir
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ : int ): _a = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __snake_case : List[Any] = logging.getLogger(__name__) @dataclass class A : __UpperCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class A : __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ) -> Optional[Any]: if self.train_file is not None: _a = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _a = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A : __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None def __call__( self , snake_case_ ) -> Dict: _a = "label" if "label" in features[0].keys() else "labels" _a = [feature.pop(snake_case_ ) for feature in features] _a = len(snake_case_ ) _a = len(features[0]["input_ids"] ) _a = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] _a = list(chain(*snake_case_ ) ) _a = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _a = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels _a = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def _lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", lowerCamelCase__, lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _a = {} if data_args.train_file is not None: _a = data_args.train_file if data_args.validation_file is not None: _a = data_args.validation_file _a = data_args.train_file.split("." )[-1] _a = load_dataset( lowerCamelCase__, data_files=lowerCamelCase__, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _a = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _a = [F'''ending{i}''' for i in range(4 )] _a = "sent1" _a = "sent2" if data_args.max_seq_length is None: _a = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _a = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _a = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : Tuple ): _a = [[context] * 4 for context in examples[context_name]] _a = examples[question_header_name] _a = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out _a = list(chain(*lowerCamelCase__ ) ) _a = list(chain(*lowerCamelCase__ ) ) # Tokenize _a = tokenizer( lowerCamelCase__, lowerCamelCase__, truncation=lowerCamelCase__, max_length=lowerCamelCase__, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(lowerCamelCase__ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _a = raw_datasets["train"] if data_args.max_train_samples is not None: _a = min(len(lowerCamelCase__ ), data_args.max_train_samples ) _a = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _a = train_dataset.map( lowerCamelCase__, batched=lowerCamelCase__, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _a = raw_datasets["validation"] if data_args.max_eval_samples is not None: _a = min(len(lowerCamelCase__ ), data_args.max_eval_samples ) _a = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _a = eval_dataset.map( lowerCamelCase__, batched=lowerCamelCase__, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : int ): _a , _a = eval_predictions _a = np.argmax(lowerCamelCase__, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) _a = min(lowerCamelCase__, len(lowerCamelCase__ ) ) trainer.log_metrics("train", lowerCamelCase__ ) trainer.save_metrics("train", lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _a = trainer.evaluate() _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) _a = min(lowerCamelCase__, len(lowerCamelCase__ ) ) trainer.log_metrics("eval", lowerCamelCase__ ) trainer.save_metrics("eval", lowerCamelCase__ ) _a = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case : Union[str, Any] = random.Random() if is_torch_available(): import torch def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str=1.0, lowerCamelCase__ : str=None, lowerCamelCase__ : Any=None ): if rng is None: _a = global_rng _a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=4_0_0 , snake_case_=2_0_0_0 , snake_case_=1 , snake_case_=0.0 , snake_case_=1_6_0_0_0 , snake_case_=True , snake_case_=True , ) -> str: _a = parent _a = batch_size _a = min_seq_length _a = max_seq_length _a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a = feature_size _a = padding_value _a = sampling_rate _a = return_attention_mask _a = do_normalize def __lowerCAmelCase ( self ) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self , snake_case_=False , snake_case_=False ) -> int: def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( a , unittest.TestCase ): __UpperCAmelCase : Tuple = ASTFeatureExtractor def __lowerCAmelCase ( self ) -> str: _a = ASTFeatureExtractionTester(self ) def __lowerCAmelCase ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values _a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched _a = feat_extract(snake_case_ , padding=snake_case_ , return_tensors="np" ).input_values _a = feat_extract(snake_case_ , padding=snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _a = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a = np.asarray(snake_case_ ) _a = feat_extract(snake_case_ , return_tensors="np" ).input_values _a = feat_extract(snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) @require_torch def __lowerCAmelCase ( self ) -> Dict: import torch _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = np.random.rand(1_0_0 ).astype(np.floataa ) _a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: from datasets import load_dataset _a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _a = ds.sort("id" ).select(range(snake_case_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def __lowerCAmelCase ( self ) -> Optional[int]: # fmt: off _a = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on _a = self._load_datasamples(1 ) _a = ASTFeatureExtractor() _a = feature_extractor(snake_case_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , snake_case_ , atol=1E-4 ) )
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case : List[Any] = logging.getLogger(__name__) class A ( a ): __UpperCAmelCase : int = """summarization""" __UpperCAmelCase : Union[str, Any] = ["""loss"""] __UpperCAmelCase : Any = ROUGE_KEYS __UpperCAmelCase : int = """rouge2""" def __init__( self , snake_case_ , **snake_case_ ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: _a = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(snake_case_ , num_labels=snake_case_ , mode=self.mode , **snake_case_ ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) _a = Path(self.output_dir ) / "metrics.json" _a = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) _a = 0 _a = defaultdict(snake_case_ ) _a = self.config.model_type _a = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size _a = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _a = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } _a = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _a = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _a = get_git_info()["repo_sha"] _a = hparams.num_workers _a = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case_ ): _a = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _a = self.decoder_start_token_id _a = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) _a = False _a = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _a = self.hparams.eval_max_gen_length else: _a = self.model.config.max_length _a = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __lowerCAmelCase ( self , snake_case_ ) -> Dict[str, List[str]]: _a = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(snake_case_ , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) _a = True return readable_batch def __lowerCAmelCase ( self , snake_case_ , **snake_case_ ) -> List[str]: return self.model(snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: _a = self.tokenizer.batch_decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return lmap(str.strip , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: _a = self.tokenizer.pad_token_id _a , _a = batch["input_ids"], batch["attention_mask"] _a = batch["labels"] if isinstance(self.model , snake_case_ ): _a = self.model._shift_right(snake_case_ ) else: _a = shift_tokens_right(snake_case_ , snake_case_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _a = decoder_input_ids self.save_readable_batch(snake_case_ ) _a = self(snake_case_ , attention_mask=snake_case_ , decoder_input_ids=snake_case_ , use_cache=snake_case_ ) _a = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _a = nn.CrossEntropyLoss(ignore_index=snake_case_ ) assert lm_logits.shape[-1] == self.vocab_size _a = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _a = nn.functional.log_softmax(snake_case_ , dim=-1 ) _a , _a = label_smoothed_nll_loss( snake_case_ , snake_case_ , self.hparams.label_smoothing , ignore_index=snake_case_ ) return (loss,) @property def __lowerCAmelCase ( self ) -> int: return self.tokenizer.pad_token_id def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: _a = self._step(snake_case_ ) _a = dict(zip(self.loss_names , snake_case_ ) ) # tokens per batch _a = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() _a = batch["input_ids"].shape[0] _a = batch["input_ids"].eq(self.pad ).sum() _a = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: return self._generative_step(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_="val" ) -> Dict: self.step_count += 1 _a = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _a = losses["loss"] _a = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } _a = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _a = torch.tensor(snake_case_ ).type_as(snake_case_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(snake_case_ ) _a = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} _a = self.step_count self.metrics[prefix].append(snake_case_ ) # callback writes this to self.metrics_save_path _a = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: return calculate_rouge(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> dict: _a = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _a = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=snake_case_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _a = (time.time() - ta) / batch["input_ids"].shape[0] _a = self.ids_to_clean_text(snake_case_ ) _a = self.ids_to_clean_text(batch["labels"] ) _a = self._step(snake_case_ ) _a = dict(zip(self.loss_names , snake_case_ ) ) _a = self.calc_generative_metrics(snake_case_ , snake_case_ ) _a = np.mean(lmap(snake_case_ , snake_case_ ) ) base_metrics.update(gen_time=snake_case_ , gen_len=snake_case_ , preds=snake_case_ , target=snake_case_ , **snake_case_ ) return base_metrics def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: return self._generative_step(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> int: return self.validation_epoch_end(snake_case_ , prefix="test" ) def __lowerCAmelCase ( self , snake_case_ ) -> SeqaSeqDataset: _a = self.n_obs[type_path] _a = self.target_lens[type_path] _a = self.dataset_class( self.tokenizer , type_path=snake_case_ , n_obs=snake_case_ , max_target_length=snake_case_ , **self.dataset_kwargs , ) return dataset def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = False ) -> DataLoader: _a = self.get_dataset(snake_case_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _a = dataset.make_sortish_sampler(snake_case_ , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case_ , batch_size=snake_case_ , collate_fn=dataset.collate_fn , shuffle=snake_case_ , num_workers=self.num_workers , sampler=snake_case_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _a = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case_ , batch_sampler=snake_case_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( snake_case_ , batch_size=snake_case_ , collate_fn=dataset.collate_fn , shuffle=snake_case_ , num_workers=self.num_workers , sampler=snake_case_ , ) def __lowerCAmelCase ( self ) -> DataLoader: _a = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=snake_case_ ) return dataloader def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ ) -> List[str]: BaseTransformer.add_model_specific_args(snake_case_ , snake_case_ ) add_generic_args(snake_case_ , snake_case_ ) parser.add_argument( "--max_source_length" , default=1_0_2_4 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=5_6 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=1_4_2 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=1_4_2 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=snake_case_ ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=snake_case_ ) parser.add_argument("--max_tokens_per_batch" , type=snake_case_ , default=snake_case_ ) parser.add_argument("--logger_name" , type=snake_case_ , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=snake_case_ , default=-1 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=snake_case_ , default=5_0_0 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=snake_case_ , default=-1 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=snake_case_ , default="summarization" , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=snake_case_ , default=0.0 , required=snake_case_ ) parser.add_argument("--src_lang" , type=snake_case_ , default="" , required=snake_case_ ) parser.add_argument("--tgt_lang" , type=snake_case_ , default="" , required=snake_case_ ) parser.add_argument("--eval_beams" , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( "--val_metric" , type=snake_case_ , default=snake_case_ , required=snake_case_ , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=snake_case_ , default=snake_case_ , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=snake_case_ , default=1 , required=snake_case_ , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=snake_case_ , default=-1 , required=snake_case_ , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class A ( a ): __UpperCAmelCase : str = """translation""" __UpperCAmelCase : str = ["""loss"""] __UpperCAmelCase : List[Any] = ["""bleu"""] __UpperCAmelCase : Dict = """bleu""" def __init__( self , snake_case_ , **snake_case_ ) -> int: super().__init__(snake_case_ , **snake_case_ ) _a = hparams.src_lang _a = hparams.tgt_lang def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> dict: return calculate_bleu(snake_case_ , snake_case_ ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : List[Any]=None ): Path(args.output_dir ).mkdir(exist_ok=lowerCamelCase__ ) check_output_dir(lowerCamelCase__, expected_items=3 ) if model is None: if "summarization" in args.task: _a = SummarizationModule(lowerCamelCase__ ) else: _a = TranslationModule(lowerCamelCase__ ) _a = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): _a = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _a = os.environ.get("WANDB_PROJECT", lowerCamelCase__ ) _a = WandbLogger(name=model.output_dir.name, project=lowerCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _a = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _a = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: _a = False _a = args.val_metric == "loss" _a = generic_train( lowerCamelCase__, lowerCamelCase__, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, lowerCamelCase__ ), early_stopping_callback=lowerCamelCase__, logger=lowerCamelCase__, ) pickle_save(model.hparams, model.output_dir / "hparams.pkl" ) if not args.do_predict: return model _a = "" _a = sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt" ), recursive=lowerCamelCase__ ) ) if checkpoints: _a = checkpoints[-1] _a = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() __snake_case : List[Any] = pl.Trainer.add_argparse_args(parser) __snake_case : Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case : List[str] = parser.parse_args() main(args)
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int] ): assert isinstance(lowerCamelCase__, lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory", [False, True] ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : int, lowerCamelCase__ : Tuple ): _a = tmp_path / "cache" _a = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = SqlDatasetReader( "dataset", "sqlite:///" + sqlite_path, cache_dir=lowerCamelCase__, keep_in_memory=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__, lowerCamelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any] ): _a = tmp_path / "cache" _a = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _a = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, features=lowerCamelCase__, cache_dir=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Tuple ): with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: _a = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : List[str], lowerCamelCase__ : str ): _a = tmp_path / "cache" _a = os.path.join(lowerCamelCase__, "tmp.sql" ) _a = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__, "dataset", "sqlite:///" + output_sqlite_path, num_proc=1 ).write() _a = iter_sql_file(lowerCamelCase__ ) _a = iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__, lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str] ): _a = tmp_path / "cache" _a = os.path.join(lowerCamelCase__, "tmp.sql" ) _a = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__, "dataset", "sqlite:///" + output_sqlite_path, num_proc=2 ).write() _a = iter_sql_file(lowerCamelCase__ ) _a = iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__, lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any] ): _a = tmp_path / "cache" _a = os.path.join(lowerCamelCase__, "tmp.sql" ) _a = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=lowerCamelCase__ ).read() with pytest.raises(lowerCamelCase__ ): SqlDatasetWriter(lowerCamelCase__, "dataset", "sqlite:///" + output_sqlite_path, num_proc=0 ).write()
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Dict = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __snake_case : Optional[int] = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __snake_case : Optional[int] = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __snake_case : str = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __snake_case : Any = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __snake_case : Tuple = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __snake_case : int = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __snake_case : Any = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __snake_case : Tuple = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __snake_case : Dict = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __snake_case : Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __snake_case : List[str] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __snake_case : Optional[Any] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __snake_case : Union[str, Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __snake_case : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __snake_case : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __snake_case : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __snake_case : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __snake_case : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __snake_case : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __snake_case : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __snake_case : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __snake_case : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __snake_case : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __snake_case : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __snake_case : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __snake_case : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __snake_case : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Union[str, Any] = FLAX_MODEL_MAPPING __snake_case : Union[str, Any] = auto_class_update(FlaxAutoModel) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING __snake_case : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class A ( _BaseAutoModelClass ): __UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __snake_case : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class A ( _BaseAutoModelClass ): __UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING __snake_case : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class A ( _BaseAutoModelClass ): __UpperCAmelCase : List[str] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __snake_case : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __snake_case : Dict = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class A ( _BaseAutoModelClass ): __UpperCAmelCase : List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __snake_case : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __snake_case : str = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class A ( _BaseAutoModelClass ): __UpperCAmelCase : str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __snake_case : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Optional[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __snake_case : Any = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class A ( _BaseAutoModelClass ): __UpperCAmelCase : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class A ( _BaseAutoModelClass ): __UpperCAmelCase : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __snake_case : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' __snake_case : Union[str, Any] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( a ): __UpperCAmelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __UpperCAmelCase : Optional[int] = """CLIPImageProcessor""" __UpperCAmelCase : Optional[int] = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Any: _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[int]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _a = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: _a = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> str: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __lowerCAmelCase ( self ) -> Dict: _a = self.tokenizer.model_input_names _a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _lowercase ( lowerCamelCase__ : Callable[[int | float], int | float], lowerCamelCase__ : int | float, lowerCamelCase__ : int | float, lowerCamelCase__ : int = 100, ): _a = x_start _a = fnc(lowerCamelCase__ ) _a = 0.0 for _ in range(lowerCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length _a = (x_end - x_start) / steps + xa _a = fnc(lowerCamelCase__ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step _a = xa _a = fxa return length if __name__ == "__main__": def _lowercase ( lowerCamelCase__ : Union[str, Any] ): return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __snake_case : Union[str, Any] = 10 while i <= 10_0000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __snake_case : int = TypeVar("T") __snake_case : List[Any] = TypeVar("U") class A ( Generic[T, U] ): def __init__( self , snake_case_ , snake_case_ ) -> Any: _a = key _a = val _a = None _a = None def __repr__( self ) -> str: return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A ( Generic[T, U] ): def __init__( self ) -> None: _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a , _a = self.rear, self.head def __repr__( self ) -> str: _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(snake_case_ ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> None: _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def __lowerCAmelCase ( self , snake_case_ ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class A ( Generic[T, U] ): __UpperCAmelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case_ ) -> Any: _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self ) -> str: return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , snake_case_ ) -> bool: return key in self.cache def __lowerCAmelCase ( self , snake_case_ ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case_ ) return node.val self.miss += 1 return None def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(snake_case_ ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case_ ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(snake_case_ ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*snake_case_ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case_ , "cache_info" , snake_case_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : str = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class A ( a , a ): __UpperCAmelCase : List[str] = """swin""" __UpperCAmelCase : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=2_2_4 , snake_case_=4 , snake_case_=3 , snake_case_=9_6 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 1_2, 2_4] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=3_2 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(snake_case_ ) _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = layer_norm_eps _a = initializer_range _a = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) _a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names ) class A ( a ): __UpperCAmelCase : Tuple = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import math class A : def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(snake_case_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> list[list[int | float]]: for i in range(len(snake_case_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowercase ( ): # Training Examples ( m, n ) _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCamelCase__ ): for j in range(len(lowerCamelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCamelCase__, lowerCamelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCamelCase__, lowerCamelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' class A : # Public class to implement a graph def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> None: _a = row _a = col _a = graph def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # Checking all 8 elements surrounding nth element _a = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _a = [-1, 0, 1, -1, 1, -1, 0, 1] _a = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , snake_case_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , snake_case_ ) def __lowerCAmelCase ( self ) -> int: # And finally, count all islands. _a = [[False for j in range(self.COL )] for i in range(self.ROW )] _a = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(snake_case_ , snake_case_ , snake_case_ ) count += 1 return count
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : float, lowerCamelCase__ : float, lowerCamelCase__ : float, ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __snake_case : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): __UpperCAmelCase : int = 10000 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class A ( datasets.ArrowBasedBuilder ): __UpperCAmelCase : Union[str, Any] = ParquetConfig def __lowerCAmelCase ( self ) -> Union[str, Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): _a = data_files if isinstance(snake_case_ , snake_case_ ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _a = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(snake_case_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case_ ): with open(snake_case_ , "rb" ) as f: _a = datasets.Features.from_arrow_schema(pq.read_schema(snake_case_ ) ) break splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"files": files} ) ) return splits def __lowerCAmelCase ( self , snake_case_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a = table_cast(snake_case_ , self.info.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): with open(snake_case_ , "rb" ) as f: _a = pq.ParquetFile(snake_case_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _a = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(snake_case_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Any: _a = tempfile.mkdtemp() return TatoebaConverter(save_dir=snake_case_ ) @slow def __lowerCAmelCase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def __lowerCAmelCase ( self ) -> List[Any]: _a , _a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=snake_case_ ) assert mmeta["long_pair"] == "heb-eng"
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str ): if n_term == "": return [] _a = [] for temp in range(int(lowerCamelCase__ ) ): series.append(F'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": __snake_case : int = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowercase ( lowerCamelCase__ : List[str] ): def wrapper(*lowerCamelCase__ : Tuple, **lowerCamelCase__ : Tuple ): _a = timeit.default_timer() _a = func(*lowerCamelCase__, **lowerCamelCase__ ) _a = timeit.default_timer() - starttime return delta _a = func.__name__ return wrapper def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : int=100, lowerCamelCase__ : Optional[Any]=None ): _a = [] _a = seq_shapes or {} for i in range(lowerCamelCase__ ): _a = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase__, _ArrayXD ): _a = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase__, datasets.Value ): if v.dtype == "string": _a = "The small grey turtle was surprisingly fast when challenged." else: _a = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase__, datasets.Sequence ): while isinstance(lowerCamelCase__, datasets.Sequence ): _a = v.feature _a = seq_shapes[k] _a = np.random.rand(*lowerCamelCase__ ).astype(v.dtype ) _a = data dummy_data.append((i, example) ) return dummy_data def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any]=100, lowerCamelCase__ : Optional[Any]=None ): _a = generate_examples(lowerCamelCase__, num_examples=lowerCamelCase__, seq_shapes=lowerCamelCase__ ) with ArrowWriter(features=lowerCamelCase__, path=lowerCamelCase__ ) as writer: for key, record in dummy_data: _a = features.encode_example(lowerCamelCase__ ) writer.write(lowerCamelCase__ ) _a , _a = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _a = datasets.Dataset.from_file(filename=lowerCamelCase__, info=datasets.DatasetInfo(features=lowerCamelCase__ ) ) return dataset
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A : @staticmethod def __lowerCAmelCase ( *snake_case_ , **snake_case_ ) -> str: pass def _lowercase ( lowerCamelCase__ : Image ): _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _lowercase ( lowerCamelCase__ : Image ): _a = np.array(lowerCamelCase__ ) _a = npimg.shape return {"hash": hashimage(lowerCamelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A ( unittest.TestCase ): __UpperCAmelCase : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __UpperCAmelCase : Any = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = MaskGenerationPipeline(model=snake_case_ , image_processor=snake_case_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> str: pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowerCAmelCase ( self ) -> Any: pass @slow @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) _a = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_5_6 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_871} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[int]: _a = "facebook/sam-vit-huge" _a = pipeline("mask-generation" , model=snake_case_ ) _a = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, ] , )
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __snake_case : int = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : int, lowerCamelCase__ : List[str]=None ): # Initialise PyTorch model _a = XLNetConfig.from_json_file(lowerCamelCase__ ) _a = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _a = finetuning_task _a = GLUE_TASKS_NUM_LABELS[finetuning_task] _a = XLNetForSequenceClassification(lowerCamelCase__ ) elif "squad" in finetuning_task: _a = finetuning_task _a = XLNetForQuestionAnswering(lowerCamelCase__ ) else: _a = XLNetLMHeadModel(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # Save pytorch-model _a = os.path.join(lowerCamelCase__, lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, lowerCamelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}''' ) torch.save(model.state_dict(), lowerCamelCase__ ) print(F'''Save configuration file to {os.path.abspath(lowerCamelCase__ )}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) __snake_case : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : List[str] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class A ( a ): def __init__( self , snake_case_=None , snake_case_=None , *snake_case_ , **snake_case_ ) -> str: super().__init__(*snake_case_ , **snake_case_ ) if config is None: assert isinstance(self.model , snake_case_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _a = self.model.config else: _a = config _a = data_args _a = self.config.tgt_vocab_size if isinstance(self.config , snake_case_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: _a = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a = label_smoothed_nll_loss def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: if self.optimizer is None: _a = ["bias", "LayerNorm.weight"] _a = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _a = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a = Adafactor _a = {"scale_parameter": False, "relative_step": False} else: _a = AdamW _a = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _a = self.args.learning_rate if self.sharded_ddp: _a = OSS( params=snake_case_ , optim=snake_case_ , **snake_case_ , ) else: _a = optimizer_cls(snake_case_ , **snake_case_ ) if self.lr_scheduler is None: _a = self._get_lr_scheduler(snake_case_ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __lowerCAmelCase ( self , snake_case_ ) -> Union[str, Any]: _a = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _a = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case_ ) return scheduler def __lowerCAmelCase ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a = model(**snake_case_ , use_cache=snake_case_ )[0] _a = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _a , _a = model(**snake_case_ , labels=snake_case_ , use_cache=snake_case_ )[:2] else: # compute label smoothed loss _a = model(**snake_case_ , use_cache=snake_case_ )[0] _a = torch.nn.functional.log_softmax(snake_case_ , dim=-1 ) _a , _a = self.loss_fn(snake_case_ , snake_case_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = inputs.pop("labels" ) _a , _a = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) return loss def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _a = self._prepare_inputs(snake_case_ ) _a = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **snake_case_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs["max_length"] ) _a = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _a , _a = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) _a = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs["max_length"] ) return (loss, logits, labels) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[Any]: # If PAD token is not defined at least EOS token has to be defined _a = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F''' padded to `max_length`={max_length}''' ) _a = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _a = tensor return padded_tensor
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __snake_case : Optional[int] = False __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[str] = "ybelkada/fonts" def _lowercase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): requires_backends(lowerCamelCase__, ["torch"] ) _check_torch_version() _a = image_tensor.unsqueeze(0 ) _a = torch.nn.functional.unfold(lowerCamelCase__, (patch_height, patch_width), stride=(patch_height, patch_width) ) _a = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), lowerCamelCase__, lowerCamelCase__, -1 ) _a = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : int = 36, lowerCamelCase__ : str = "black", lowerCamelCase__ : str = "white", lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : Optional[bytes] = None, lowerCamelCase__ : Optional[str] = None, ): requires_backends(lowerCamelCase__, "vision" ) # Add new lines so that each line is no more than 80 characters. _a = textwrap.TextWrapper(width=80 ) _a = wrapper.wrap(text=lowerCamelCase__ ) _a = "\n".join(lowerCamelCase__ ) if font_bytes is not None and font_path is None: _a = io.BytesIO(lowerCamelCase__ ) elif font_path is not None: _a = font_path else: _a = hf_hub_download(lowerCamelCase__, "Arial.TTF" ) _a = ImageFont.truetype(lowerCamelCase__, encoding="UTF-8", size=lowerCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _a = ImageDraw.Draw(Image.new("RGB", (1, 1), lowerCamelCase__ ) ) _a , _a , _a , _a = temp_draw.textbbox((0, 0), lowerCamelCase__, lowerCamelCase__ ) # Create the actual image with a bit of padding around the text. _a = text_width + left_padding + right_padding _a = text_height + top_padding + bottom_padding _a = Image.new("RGB", (image_width, image_height), lowerCamelCase__ ) _a = ImageDraw.Draw(lowerCamelCase__ ) draw.text(xy=(left_padding, top_padding), text=lowerCamelCase__, fill=lowerCamelCase__, font=lowerCamelCase__ ) return image def _lowercase ( lowerCamelCase__ : np.ndarray, lowerCamelCase__ : str, **lowerCamelCase__ : Dict ): requires_backends(lowerCamelCase__, "vision" ) # Convert to PIL image if necessary _a = to_pil_image(lowerCamelCase__ ) _a = render_text(lowerCamelCase__, **lowerCamelCase__ ) _a = max(header_image.width, image.width ) _a = int(image.height * (new_width / image.width) ) _a = int(header_image.height * (new_width / header_image.width) ) _a = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary _a = to_numpy_array(lowerCamelCase__ ) if infer_channel_dimension_format(lowerCamelCase__ ) == ChannelDimension.LAST: _a = to_channel_dimension_format(lowerCamelCase__, ChannelDimension.LAST ) return new_image class A ( a ): __UpperCAmelCase : Dict = ["""flattened_patches"""] def __init__( self , snake_case_ = True , snake_case_ = True , snake_case_ = None , snake_case_ = 2_0_4_8 , snake_case_ = False , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) _a = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} _a = do_normalize _a = do_convert_rgb _a = max_patches _a = is_vqa def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> np.ndarray: requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _a = to_channel_dimension_format(snake_case_ , ChannelDimension.FIRST ) _a = torch.from_numpy(snake_case_ ) _a , _a = patch_size["height"], patch_size["width"] _a , _a = get_image_size(snake_case_ ) # maximize scale s.t. _a = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _a = max(min(math.floor(scale * image_height / patch_height ) , snake_case_ ) , 1 ) _a = max(min(math.floor(scale * image_width / patch_width ) , snake_case_ ) , 1 ) _a = max(num_feasible_rows * patch_height , 1 ) _a = max(num_feasible_cols * patch_width , 1 ) _a = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=snake_case_ , antialias=snake_case_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _a = torch_extract_patches(snake_case_ , snake_case_ , snake_case_ ) _a = patches.shape _a = patches_shape[1] _a = patches_shape[2] _a = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _a = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _a = torch.arange(snake_case_ ).reshape([rows, 1] ).repeat(1 , snake_case_ ).reshape([rows * columns, 1] ) _a = torch.arange(snake_case_ ).reshape([1, columns] ).repeat(snake_case_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _a = row_ids.to(torch.floataa ) _a = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _a = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _a = torch.nn.functional.pad(snake_case_ , [0, 0, 0, max_patches - (rows * columns)] ).float() _a = to_numpy_array(snake_case_ ) return result def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , **snake_case_ ) -> np.ndarray: if image.dtype == np.uinta: _a = image.astype(np.floataa ) # take mean across the whole `image` _a = np.mean(snake_case_ ) _a = np.std(snake_case_ ) _a = max(snake_case_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> ImageInput: _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = patch_size if patch_size is not None else self.patch_size _a = max_patches if max_patches is not None else self.max_patches _a = self.is_vqa if kwargs.get("data_format" , snake_case_ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _a = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(snake_case_ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _a = kwargs.pop("font_bytes" , snake_case_ ) _a = kwargs.pop("font_path" , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _a = [header_text] * len(snake_case_ ) _a = [ render_header(snake_case_ , header_text[i] , font_bytes=snake_case_ , font_path=snake_case_ ) for i, image in enumerate(snake_case_ ) ] if do_normalize: _a = [self.normalize(image=snake_case_ ) for image in images] # convert to torch tensor and permute _a = [ self.extract_flattened_patches(image=snake_case_ , max_patches=snake_case_ , patch_size=snake_case_ ) for image in images ] # create attention mask in numpy _a = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _a = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=snake_case_ ) return encoded_outputs
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : str ): _a , _a = set(lowerCamelCase__ ), [start] while stack: _a = stack.pop() explored.add(lowerCamelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCamelCase__ ) return explored __snake_case : Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __snake_case : List[str] = datasets.utils.logging.get_logger(__name__) class A ( folder_based_builder.FolderBasedBuilderConfig ): __UpperCAmelCase : bool = None __UpperCAmelCase : bool = None class A ( folder_based_builder.FolderBasedBuilder ): __UpperCAmelCase : Any = datasets.Audio() __UpperCAmelCase : int = """audio""" __UpperCAmelCase : Union[str, Any] = AudioFolderConfig __UpperCAmelCase : List[str] # definition at the bottom of the script __UpperCAmelCase : Optional[int] = AudioClassification(audio_column="""audio""" , label_column="""label""" ) __snake_case : Tuple = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __snake_case : Union[str, Any] = AUDIO_EXTENSIONS
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int = 100 ): _a = set() _a = 0 _a = n + 1 # maximum limit for a in range(2, lowerCamelCase__ ): for b in range(2, lowerCamelCase__ ): _a = a**b # calculates the current power collect_powers.add(lowerCamelCase__ ) # adds the result to the set return len(lowerCamelCase__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowercase ( ): _a = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores", type=lowerCamelCase__, default=1, help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script", type=lowerCamelCase__, help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ), ) # rest from the training program parser.add_argument("training_script_args", nargs=lowerCamelCase__ ) return parser.parse_args() def _lowercase ( ): _a = parse_args() # Import training_script as a module. _a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a = script_fpath.stem _a = importlib.import_module(lowerCamelCase__ ) # Patch sys.argv _a = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : int = logging.get_logger(__name__) __snake_case : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __snake_case : List[Any] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __snake_case : str = {"facebook/blenderbot-3B": 128} class A ( a ): __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[str] = BlenderbotTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[Any]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Dict: return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ ) -> List[int]: _a = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(snake_case_ ) _a = " ".join(snake_case_ ) _a = self.encode(snake_case_ ) if len(snake_case_ ) > self.model_max_length: _a = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "spiece.model"} __snake_case : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } __snake_case : List[Any] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class A ( a ): __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_="<unk>" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="[SEP]" , snake_case_="[MASK]" , snake_case_="[CLS]" , snake_case_ = None , **snake_case_ , ) -> None: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sep_token=snake_case_ , mask_token=snake_case_ , cls_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def __lowerCAmelCase ( self ) -> Optional[Any]: return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) -> Optional[int]: _a = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _a = self.__dict__.copy() _a = None return state def __setstate__( self , snake_case_ ) -> Dict: _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return self.sp_model.piece_to_id(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: _a = self.sp_model.IdToPiece(snake_case_ ) return token def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = [] _a = "" _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _a = True _a = [] else: current_sub_tokens.append(snake_case_ ) _a = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __lowerCAmelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = None , snake_case_ = True , **snake_case_ , ) -> str: _a = kwargs.pop("use_source_tokenizer" , snake_case_ ) _a = self.convert_ids_to_tokens(snake_case_ , skip_special_tokens=snake_case_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a = [] _a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case_ ) ) _a = [] sub_texts.append(snake_case_ ) else: current_sub_text.append(snake_case_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(snake_case_ ) ) else: _a = "".join(snake_case_ ) _a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a = self.clean_up_tokenization(snake_case_ ) return clean_text else: return text def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class A ( a ): __UpperCAmelCase : List[str] = """audio-spectrogram-transformer""" def __init__( self , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1E-1_2 , snake_case_=1_6 , snake_case_=True , snake_case_=1_0 , snake_case_=1_0 , snake_case_=1_0_2_4 , snake_case_=1_2_8 , **snake_case_ , ) -> str: super().__init__(**snake_case_ ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = patch_size _a = qkv_bias _a = frequency_stride _a = time_stride _a = max_length _a = num_mel_bins
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowercase ( lowerCamelCase__ : Tuple ): return x + 2 class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Any: _a = "x = 3" _a = {} _a = evaluate(snake_case_ , {} , state=snake_case_ ) assert result == 3 self.assertDictEqual(snake_case_ , {"x": 3} ) _a = "x = y" _a = {"y": 5} _a = evaluate(snake_case_ , {} , state=snake_case_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case_ , {"x": 5, "y": 5} ) def __lowerCAmelCase ( self ) -> str: _a = "y = add_two(x)" _a = {"x": 3} _a = evaluate(snake_case_ , {"add_two": add_two} , state=snake_case_ ) assert result == 5 self.assertDictEqual(snake_case_ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: _a = evaluate(snake_case_ , {} , state=snake_case_ ) assert result is None assert "tried to execute add_two" in out.out def __lowerCAmelCase ( self ) -> List[Any]: _a = "x = 3" _a = {} _a = evaluate(snake_case_ , {} , state=snake_case_ ) assert result == 3 self.assertDictEqual(snake_case_ , {"x": 3} ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "test_dict = {'x': x, 'y': add_two(x)}" _a = {"x": 3} _a = evaluate(snake_case_ , {"add_two": add_two} , state=snake_case_ ) self.assertDictEqual(snake_case_ , {"x": 3, "y": 5} ) self.assertDictEqual(snake_case_ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "x = 3\ny = 5" _a = {} _a = evaluate(snake_case_ , {} , state=snake_case_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case_ , {"x": 3, "y": 5} ) def __lowerCAmelCase ( self ) -> List[str]: _a = "text = f'This is x: {x}.'" _a = {"x": 3} _a = evaluate(snake_case_ , {} , state=snake_case_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case_ , {"x": 3, "text": "This is x: 3."} ) def __lowerCAmelCase ( self ) -> Dict: _a = "if x <= 3:\n y = 2\nelse:\n y = 5" _a = {"x": 3} _a = evaluate(snake_case_ , {} , state=snake_case_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case_ , {"x": 3, "y": 2} ) _a = {"x": 8} _a = evaluate(snake_case_ , {} , state=snake_case_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case_ , {"x": 8, "y": 5} ) def __lowerCAmelCase ( self ) -> Any: _a = "test_list = [x, add_two(x)]" _a = {"x": 3} _a = evaluate(snake_case_ , {"add_two": add_two} , state=snake_case_ ) self.assertListEqual(snake_case_ , [3, 5] ) self.assertDictEqual(snake_case_ , {"x": 3, "test_list": [3, 5]} ) def __lowerCAmelCase ( self ) -> int: _a = "y = x" _a = {"x": 3} _a = evaluate(snake_case_ , {} , state=snake_case_ ) assert result == 3 self.assertDictEqual(snake_case_ , {"x": 3, "y": 3} ) def __lowerCAmelCase ( self ) -> Any: _a = "test_list = [x, add_two(x)]\ntest_list[1]" _a = {"x": 3} _a = evaluate(snake_case_ , {"add_two": add_two} , state=snake_case_ ) assert result == 5 self.assertDictEqual(snake_case_ , {"x": 3, "test_list": [3, 5]} ) _a = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" _a = {"x": 3} _a = evaluate(snake_case_ , {"add_two": add_two} , state=snake_case_ ) assert result == 5 self.assertDictEqual(snake_case_ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __lowerCAmelCase ( self ) -> List[Any]: _a = "x = 0\nfor i in range(3):\n x = i" _a = {} _a = evaluate(snake_case_ , {"range": range} , state=snake_case_ ) assert result == 2 self.assertDictEqual(snake_case_ , {"x": 2, "i": 2} )
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __snake_case : str = TypeVar("T") class A ( Generic[T] ): def __init__( self , snake_case_ , snake_case_ ) -> None: _a = None _a = len(snake_case_ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def __lowerCAmelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> None: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> T | None: # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(snake_case_ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(snake_case_ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __snake_case : Dict = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __snake_case : Optional[int] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __snake_case : int = SegmentTree(test_array, min) __snake_case : Optional[int] = SegmentTree(test_array, max) __snake_case : List[str] = SegmentTree(test_array, lambda a, b: a + b) def _lowercase ( ): for i in range(len(lowerCamelCase__ ) ): for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ): _a = reduce(lowerCamelCase__, test_array[i : j + 1] ) _a = reduce(lowerCamelCase__, test_array[i : j + 1] ) _a = reduce(lambda lowerCamelCase__, lowerCamelCase__ : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCamelCase__, lowerCamelCase__ ) assert max_range == max_segment_tree.query(lowerCamelCase__, lowerCamelCase__ ) assert sum_range == sum_segment_tree.query(lowerCamelCase__, lowerCamelCase__ ) test_all_segments() for index, value in test_updates.items(): __snake_case : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=1_8 , snake_case_=3_0 , snake_case_=4_0_0 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.48_145_466, 0.4_578_275, 0.40_821_073] , snake_case_=[0.26_862_954, 0.26_130_258, 0.27_577_711] , snake_case_=True , ) -> Optional[Any]: _a = size if size is not None else {"height": 2_2_4, "width": 2_2_4} _a = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = do_normalize _a = image_mean _a = image_std _a = do_convert_rgb def __lowerCAmelCase ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __lowerCAmelCase ( self , snake_case_=False , snake_case_=False , snake_case_=False ) -> List[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _a = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _a = [] for i in range(self.batch_size ): _a , _a = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _a = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] if torchify: _a = [torch.from_numpy(snake_case_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class A ( a , unittest.TestCase ): __UpperCAmelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> str: _a = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case_ ) @property def __lowerCAmelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Tuple: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , "do_resize" ) ) self.assertTrue(hasattr(snake_case_ , "size" ) ) self.assertTrue(hasattr(snake_case_ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case_ , "center_crop" ) ) self.assertTrue(hasattr(snake_case_ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case_ , "image_mean" ) ) self.assertTrue(hasattr(snake_case_ , "image_std" ) ) self.assertTrue(hasattr(snake_case_ , "do_convert_rgb" ) ) def __lowerCAmelCase ( self ) -> Dict: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> int: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _a = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _a = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCAmelCase ( self ) -> Dict: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _a = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class A ( a , unittest.TestCase ): __UpperCAmelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> int: _a = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case_ ) _a = 3 @property def __lowerCAmelCase ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> str: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , "do_resize" ) ) self.assertTrue(hasattr(snake_case_ , "size" ) ) self.assertTrue(hasattr(snake_case_ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case_ , "center_crop" ) ) self.assertTrue(hasattr(snake_case_ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case_ , "image_mean" ) ) self.assertTrue(hasattr(snake_case_ , "image_std" ) ) self.assertTrue(hasattr(snake_case_ , "do_convert_rgb" ) ) def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> List[str]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _a = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __snake_case : Tuple = [ "good first issue", "feature request", "wip", ] def _lowercase ( ): _a = Github(os.environ["GITHUB_TOKEN"] ) _a = g.get_repo("huggingface/accelerate" ) _a = repo.get_issues(state="open" ) for issue in open_issues: _a = sorted([comment for comment in issue.get_comments()], key=lambda lowerCamelCase__ : i.created_at, reverse=lowerCamelCase__ ) _a = comments[0] if len(lowerCamelCase__ ) > 0 else None _a = dt.utcnow() _a = (current_time - issue.updated_at).days _a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A ( a , unittest.TestCase ): __UpperCAmelCase : str = MvpTokenizer __UpperCAmelCase : Any = MvpTokenizerFast __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = filter_roberta_detectors def __lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def __lowerCAmelCase ( self , **snake_case_ ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self ) -> Tuple: return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def __lowerCAmelCase ( self ) -> Tuple: return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def __lowerCAmelCase ( self ) -> str: _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def __lowerCAmelCase ( self ) -> Dict: _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case_ ) self.assertIn("attention_mask" , snake_case_ ) self.assertNotIn("labels" , snake_case_ ) self.assertNotIn("decoder_attention_mask" , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(text_target=snake_case_ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def __lowerCAmelCase ( self ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def __lowerCAmelCase ( self ) -> str: _a = ["A long paragraph for summarization."] _a = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="pt" ) _a = inputs["input_ids"] _a = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __lowerCAmelCase ( self ) -> List[str]: pass def __lowerCAmelCase ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _a = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _a = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _a = "A, <mask> AllenNLP sentence." _a = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) _a = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : str = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __snake_case : Union[str, Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : str ): _a = "huggingface/label-files" _a = "imagenet-1k-id2label.json" _a = json.load(open(hf_hub_download(lowerCamelCase__, lowerCamelCase__, repo_type="dataset" ), "r" ) ) _a = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _a = {v: k for k, v in idalabel.items()} _a = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _a = BitConfig( conv_layer=lowerCamelCase__, num_labels=1_000, idalabel=lowerCamelCase__, labelaid=lowerCamelCase__, ) return config def _lowercase ( lowerCamelCase__ : Tuple ): if "stem.conv" in name: _a = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: _a = name.replace("blocks", "layers" ) if "head.fc" in name: _a = name.replace("head.fc", "classifier.1" ) if name.startswith("norm" ): _a = "bit." + name if "bit" not in name and "classifier" not in name: _a = "bit.encoder." + name return name def _lowercase ( ): _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : int=False ): _a = get_config(lowerCamelCase__ ) # load original model from timm _a = create_model(lowerCamelCase__, pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model _a = timm_model.state_dict() for key in state_dict.copy().keys(): _a = state_dict.pop(lowerCamelCase__ ) _a = val.squeeze() if "head" in key else val # load HuggingFace model _a = BitForImageClassification(lowerCamelCase__ ) model.eval() model.load_state_dict(lowerCamelCase__ ) # create image processor _a = create_transform(**resolve_data_config({}, model=lowerCamelCase__ ) ) _a = transform.transforms _a = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _a = BitImageProcessor( do_resize=lowerCamelCase__, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=lowerCamelCase__, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=lowerCamelCase__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) _a = prepare_img() _a = transform(lowerCamelCase__ ).unsqueeze(0 ) _a = processor(lowerCamelCase__, return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__, lowerCamelCase__ ) # verify logits with torch.no_grad(): _a = model(lowerCamelCase__ ) _a = outputs.logits print("Logits:", logits[0, :3] ) print("Predicted class:", model.config.idalabel[logits.argmax(-1 ).item()] ) _a = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__, outputs.logits, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(F'''ybelkada/{model_name}''' ) processor.push_to_hub(F'''ybelkada/{model_name}''' ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __snake_case : str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A ( a ): __UpperCAmelCase : "DiagonalGaussianDistribution" class A ( a , a ): __UpperCAmelCase : Optional[Any] = True @register_to_config def __init__( self , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = ("DownEncoderBlock2D",) , snake_case_ = ("UpDecoderBlock2D",) , snake_case_ = (6_4,) , snake_case_ = 1 , snake_case_ = "silu" , snake_case_ = 4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 0.18_215 , ) -> Dict: super().__init__() # pass init params to Encoder _a = Encoder( in_channels=snake_case_ , out_channels=snake_case_ , down_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , act_fn=snake_case_ , norm_num_groups=snake_case_ , double_z=snake_case_ , ) # pass init params to Decoder _a = Decoder( in_channels=snake_case_ , out_channels=snake_case_ , up_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , norm_num_groups=snake_case_ , act_fn=snake_case_ , ) _a = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _a = nn.Convad(snake_case_ , snake_case_ , 1 ) _a = False _a = False # only relevant if vae tiling is enabled _a = self.config.sample_size _a = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _a = 0.25 def __lowerCAmelCase ( self , snake_case_ , snake_case_=False ) -> Any: if isinstance(snake_case_ , (Encoder, Decoder) ): _a = value def __lowerCAmelCase ( self , snake_case_ = True ) -> List[str]: _a = use_tiling def __lowerCAmelCase ( self ) -> str: self.enable_tiling(snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = True def __lowerCAmelCase ( self ) -> Optional[int]: _a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCAmelCase ( self ) -> Dict[str, AttentionProcessor]: _a = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , "set_processor" ): _a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: _a = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , "set_processor" ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> int: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case_ , return_dict=snake_case_ ) if self.use_slicing and x.shape[0] > 1: _a = [self.encoder(snake_case_ ) for x_slice in x.split(1 )] _a = torch.cat(snake_case_ ) else: _a = self.encoder(snake_case_ ) _a = self.quant_conv(snake_case_ ) _a = DiagonalGaussianDistribution(snake_case_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case_ , return_dict=snake_case_ ) _a = self.post_quant_conv(snake_case_ ) _a = self.decoder(snake_case_ ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ ) @apply_forward_hook def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _a = [self._decode(snake_case_ ).sample for z_slice in z.split(1 )] _a = torch.cat(snake_case_ ) else: _a = self._decode(snake_case_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = min(a.shape[2] , b.shape[2] , snake_case_ ) for y in range(snake_case_ ): _a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _a = min(a.shape[3] , b.shape[3] , snake_case_ ) for x in range(snake_case_ ): _a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> AutoencoderKLOutput: _a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _a = int(self.tile_latent_min_size * self.tile_overlap_factor ) _a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _a = [] for i in range(0 , x.shape[2] , snake_case_ ): _a = [] for j in range(0 , x.shape[3] , snake_case_ ): _a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _a = self.encoder(snake_case_ ) _a = self.quant_conv(snake_case_ ) row.append(snake_case_ ) rows.append(snake_case_ ) _a = [] for i, row in enumerate(snake_case_ ): _a = [] for j, tile in enumerate(snake_case_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a = self.blend_v(rows[i - 1][j] , snake_case_ , snake_case_ ) if j > 0: _a = self.blend_h(row[j - 1] , snake_case_ , snake_case_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case_ , dim=3 ) ) _a = torch.cat(snake_case_ , dim=2 ) _a = DiagonalGaussianDistribution(snake_case_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: _a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _a = int(self.tile_sample_min_size * self.tile_overlap_factor ) _a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _a = [] for i in range(0 , z.shape[2] , snake_case_ ): _a = [] for j in range(0 , z.shape[3] , snake_case_ ): _a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _a = self.post_quant_conv(snake_case_ ) _a = self.decoder(snake_case_ ) row.append(snake_case_ ) rows.append(snake_case_ ) _a = [] for i, row in enumerate(snake_case_ ): _a = [] for j, tile in enumerate(snake_case_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a = self.blend_v(rows[i - 1][j] , snake_case_ , snake_case_ ) if j > 0: _a = self.blend_h(row[j - 1] , snake_case_ , snake_case_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case_ , dim=3 ) ) _a = torch.cat(snake_case_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = True , snake_case_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _a = sample _a = self.encode(snake_case_ ).latent_dist if sample_posterior: _a = posterior.sample(generator=snake_case_ ) else: _a = posterior.mode() _a = self.decode(snake_case_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ )
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowercase ( ): _a = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores", type=lowerCamelCase__, default=1, help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script", type=lowerCamelCase__, help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ), ) # rest from the training program parser.add_argument("training_script_args", nargs=lowerCamelCase__ ) return parser.parse_args() def _lowercase ( ): _a = parse_args() # Import training_script as a module. _a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a = script_fpath.stem _a = importlib.import_module(lowerCamelCase__ ) # Patch sys.argv _a = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : int = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A ( a ): __UpperCAmelCase : List[Any] = """mobilenet_v1""" def __init__( self , snake_case_=3 , snake_case_=2_2_4 , snake_case_=1.0 , snake_case_=8 , snake_case_="relu6" , snake_case_=True , snake_case_=0.999 , snake_case_=0.02 , snake_case_=0.001 , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _a = num_channels _a = image_size _a = depth_multiplier _a = min_depth _a = hidden_act _a = tf_padding _a = classifier_dropout_prob _a = initializer_range _a = layer_norm_eps class A ( a ): __UpperCAmelCase : int = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[float], lowerCamelCase__ : list[float] ): _a = sorted(numsa + numsa ) _a , _a = divmod(len(lowerCamelCase__ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __snake_case : List[str] = [float(x) for x in input("Enter the elements of first array: ").split()] __snake_case : Tuple = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , ) -> Optional[Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCAmelCase ( self ) -> Tuple: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCAmelCase ( self ) -> Tuple: _a = FlaxBertModelTester(self ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. _a = FlaxBertModel.from_pretrained("bert-base-cased" ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : str = "▁" __snake_case : Dict = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } __snake_case : Any = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } __snake_case : List[Any] = { "facebook/s2t-small-librispeech-asr": 1024, } __snake_case : Union[str, Any] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] __snake_case : Dict = {"mustc": MUSTC_LANGS} class A ( a ): __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = MAX_MODEL_INPUT_SIZES __UpperCAmelCase : int = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_=False , snake_case_=False , snake_case_=None , snake_case_=None , snake_case_ = None , **snake_case_ , ) -> None: _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , do_upper_case=snake_case_ , do_lower_case=snake_case_ , tgt_lang=snake_case_ , lang_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _a = do_upper_case _a = do_lower_case _a = load_json(snake_case_ ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(snake_case_ , self.sp_model_kwargs ) if lang_codes is not None: _a = lang_codes _a = LANGUAGES[lang_codes] _a = [F'''<lang:{lang}>''' for lang in self.langs] _a = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} _a = self.lang_tokens _a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _a = {} @property def __lowerCAmelCase ( self ) -> int: return len(self.encoder ) @property def __lowerCAmelCase ( self ) -> str: return self._tgt_lang @tgt_lang.setter def __lowerCAmelCase ( self , snake_case_ ) -> None: _a = new_tgt_lang self.set_tgt_lang_special_tokens(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> None: _a = self.lang_code_to_id[tgt_lang] _a = [lang_code_id] def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __lowerCAmelCase ( self , snake_case_ ) -> str: return self.decoder.get(snake_case_ , self.unk_token ) def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = [] _a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _a = self.sp_model.decode(snake_case_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _a = [] else: current_sub_tokens.append(snake_case_ ) _a = self.sp_model.decode(snake_case_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _a = [1] * len(self.prefix_tokens ) _a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __lowerCAmelCase ( self ) -> Dict: _a = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _a = self.__dict__.copy() _a = None return state def __setstate__( self , snake_case_ ) -> None: _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = Path(snake_case_ ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Dict[str, Any] ): _a = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def _lowercase ( lowerCamelCase__ : str ): with open(lowerCamelCase__, "r" ) as f: return json.load(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : str ): with open(lowerCamelCase__, "w" ) as f: json.dump(lowerCamelCase__, lowerCamelCase__, indent=2 )
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class A : __UpperCAmelCase : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) __UpperCAmelCase : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) __UpperCAmelCase : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def _lowercase ( ): _a = HfArgumentParser((ModelArguments,) ) ((_a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _a = True _a = True _a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=lowerCamelCase__, decoder_config=lowerCamelCase__, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _a = decoder_config.decoder_start_token_id _a = decoder_config.pad_token_id if decoder_start_token_id is None: _a = decoder_config.bos_token_id if pad_token_id is None: _a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _a = decoder_config.eos_token_id _a = decoder_start_token_id _a = pad_token_id _a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : Any ): if isinstance(lowerCamelCase__, torch.Tensor ): return image elif isinstance(lowerCamelCase__, PIL.Image.Image ): _a = [image] if isinstance(image[0], PIL.Image.Image ): _a = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _a = np.concatenate(lowerCamelCase__, axis=0 ) _a = np.array(lowerCamelCase__ ).astype(np.floataa ) / 2_55.0 _a = image.transpose(0, 3, 1, 2 ) _a = 2.0 * image - 1.0 _a = torch.from_numpy(lowerCamelCase__ ) elif isinstance(image[0], torch.Tensor ): _a = torch.cat(lowerCamelCase__, dim=0 ) return image def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str]=0.99_95 ): if not isinstance(lowerCamelCase__, np.ndarray ): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(lowerCamelCase__ ) * np.linalg.norm(lowerCamelCase__ )) ) if np.abs(lowerCamelCase__ ) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(lowerCamelCase__ ) _a = np.sin(lowerCamelCase__ ) _a = theta_a * t _a = np.sin(lowerCamelCase__ ) _a = np.sin(theta_a - theta_t ) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) return va def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple ): _a = F.normalize(lowerCamelCase__, dim=-1 ) _a = F.normalize(lowerCamelCase__, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any] ): for param in model.parameters(): _a = value class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , ) -> List[Any]: super().__init__() self.register_modules( vae=snake_case_ , text_encoder=snake_case_ , clip_model=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , scheduler=snake_case_ , feature_extractor=snake_case_ , coca_model=snake_case_ , coca_tokenizer=snake_case_ , coca_transform=snake_case_ , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , snake_case_ ) else feature_extractor.size["shortest_edge"] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , snake_case_ ) set_requires_grad(self.clip_model , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.enable_attention_slicing(snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: set_requires_grad(self.vae , snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: set_requires_grad(self.vae , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: set_requires_grad(self.unet , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: set_requires_grad(self.unet , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: # get the original timestep using init_timestep _a = min(int(num_inference_steps * strength ) , snake_case_ ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Optional[Any]: if not isinstance(snake_case_ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(snake_case_ )}''' ) _a = image.to(device=snake_case_ , dtype=snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case_ ) ] _a = torch.cat(snake_case_ , dim=0 ) else: _a = self.vae.encode(snake_case_ ).latent_dist.sample(snake_case_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18_215 * init_latents _a = init_latents.repeat_interleave(snake_case_ , dim=0 ) _a = randn_tensor(init_latents.shape , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) # get latents _a = self.scheduler.add_noise(snake_case_ , snake_case_ , snake_case_ ) _a = init_latents return latents def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = self.coca_transform(snake_case_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[Any]: _a = self.feature_extractor.preprocess(snake_case_ ) _a = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(snake_case_ ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case_ ) _a = image_embeddings_clip.repeat_interleave(snake_case_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _a = self.unet(snake_case_ , snake_case_ , encoder_hidden_states=snake_case_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(snake_case_ ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case_ ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18_215 * sample _a = self.vae.decode(snake_case_ ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(snake_case_ ) _a = self.normalize(snake_case_ ).to(latents.dtype ) _a = self.clip_model.get_image_features(snake_case_ ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case_ ) _a = spherical_dist_loss(snake_case_ , snake_case_ ).mean() * clip_guidance_scale _a = -torch.autograd.grad(snake_case_ , snake_case_ )[0] if isinstance(self.scheduler , snake_case_ ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(snake_case_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = 5_1_2 , snake_case_ = 5_1_2 , snake_case_ = 0.6 , snake_case_ = 5_0 , snake_case_ = 7.5 , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = 1_0_0 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , snake_case_ = 0.8 , snake_case_ = 0.1 , snake_case_ = 0.1 , ) -> List[str]: if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(snake_case_ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(snake_case_ , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ", ".join(snake_case_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case_ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(snake_case_ ) if style_prompt is None: if len(snake_case_ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(snake_case_ ) # get prompt text embeddings for content and style _a = self.tokenizer( snake_case_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case_ , return_tensors="pt" , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( snake_case_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case_ , return_tensors="pt" , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(snake_case_ , snake_case_ , snake_case_ ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(snake_case_ , dim=0 ) # set timesteps _a = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(snake_case_ , **snake_case_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(snake_case_ , snake_case_ , self.device ) _a = timesteps[:1].repeat(snake_case_ ) # Preprocess image _a = preprocess(snake_case_ , snake_case_ , snake_case_ ) _a = self.prepare_latents( snake_case_ , snake_case_ , snake_case_ , text_embeddings.dtype , self.device , snake_case_ ) _a = preprocess(snake_case_ , snake_case_ , snake_case_ ) _a = self.prepare_latents( snake_case_ , snake_case_ , snake_case_ , text_embeddings.dtype , self.device , snake_case_ ) _a = slerp(snake_case_ , snake_case_ , snake_case_ ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(snake_case_ , snake_case_ ) _a = self.get_clip_image_embeddings(snake_case_ , snake_case_ ) _a = slerp( snake_case_ , snake_case_ , snake_case_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([""] , padding="max_length" , max_length=snake_case_ , return_tensors="pt" ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(snake_case_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(snake_case_ , generator=snake_case_ , device="cpu" , dtype=snake_case_ ).to( self.device ) else: _a = torch.randn(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=snake_case_ ): for i, t in enumerate(snake_case_ ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _a = self.unet(snake_case_ , snake_case_ , encoder_hidden_states=snake_case_ ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18_215 * latents _a = self.vae.decode(snake_case_ ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case_ , nsfw_content_detected=snake_case_ )
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A ( a ): def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> int: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def __lowerCAmelCase ( self ) -> Optional[Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> List[str]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: _a = DistilBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = DistilBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = DistilBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model( snake_case_ , attention_mask=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = self.num_labels _a = DistilBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = self.num_labels _a = DistilBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: _a = self.num_choices _a = DistilBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( snake_case_ , attention_mask=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.prepare_config_and_inputs() ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) = config_and_inputs _a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Optional[int] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : List[Any] = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = True __UpperCAmelCase : Optional[int] = True def __lowerCAmelCase ( self ) -> Any: _a = DistilBertModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , dim=3_7 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case_ ) @slow def __lowerCAmelCase ( self ) -> List[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DistilBertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _a = True _a = model_class(config=snake_case_ ) _a = self._prepare_for_class(snake_case_ , snake_case_ ) _a = torch.jit.trace( snake_case_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case_ , os.path.join(snake_case_ , "traced_model.pt" ) ) _a = torch.jit.load(os.path.join(snake_case_ , "traced_model.pt" ) , map_location=snake_case_ ) loaded(inputs_dict["input_ids"].to(snake_case_ ) , inputs_dict["attention_mask"].to(snake_case_ ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Dict: _a = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _a = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(snake_case_ , attention_mask=snake_case_ )[0] _a = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case_ ) _a = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) )
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) class A ( a ): __UpperCAmelCase : str = """encoder-decoder""" __UpperCAmelCase : List[str] = True def __init__( self , **snake_case_ ) -> Optional[Any]: super().__init__(**snake_case_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _a = kwargs.pop("encoder" ) _a = encoder_config.pop("model_type" ) _a = kwargs.pop("decoder" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = True @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _a = True _a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: _a = copy.deepcopy(self.__dict__ ) _a = self.encoder.to_dict() _a = self.decoder.to_dict() _a = self.__class__.model_type return output
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ , config_name=snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ , config_name=snake_case_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , snake_case_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = AutoConfig.from_pretrained("gpt2" ) _a = GenerationConfig.from_model_config(snake_case_ ) _a = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(snake_case_ , snake_case_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __lowerCAmelCase ( self ) -> Dict: _a = GenerationConfig() _a = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _a = copy.deepcopy(snake_case_ ) _a = generation_config.update(**snake_case_ ) # update_kwargs was not modified (no side effects) self.assertEqual(snake_case_ , snake_case_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(snake_case_ , {"foo": "bar"} ) def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig() _a = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) _a = GenerationConfig.from_model_config(snake_case_ ) assert not hasattr(snake_case_ , "foo" ) # no new kwargs should be initialized if from config def __lowerCAmelCase ( self ) -> int: _a = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , snake_case_ ) self.assertEqual(default_config.num_beams , 1 ) _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , snake_case_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , snake_case_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ) -> Tuple: _a = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="test-generation-config" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="valid_org/test-generation-config-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) )
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = "sshleifer/mar_enro_6_3_student" class A ( a ): def __lowerCAmelCase ( self ) -> str: super().setUp() _a = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=snake_case_ , ) _a = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> Dict: MarianMTModel.from_pretrained(snake_case_ ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> List[str]: _a = { "$MAX_LEN": 6_4, "$BS": 6_4, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script _a = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _a = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _a = ["finetune.py"] + bash_script.split() + args with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationModule.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() _a = main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class A ( a ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> int: _a = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _a = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_2_8, "$BS": 1_6, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script _a = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) _a = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() _a = bash_script.replace("--fp16" , "" ) _a = 6 _a = ( ["distillation.py"] + bash_script.split() + [ F'''--output_dir={output_dir}''', "--gpus=1", "--learning_rate=1e-3", F'''--num_train_epochs={epochs}''', "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationDistiller.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _a = distill_main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case : Optional[int] = logging.get_logger("transformers.models.speecht5") __snake_case : int = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __snake_case : str = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __snake_case : int = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __snake_case : Dict = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __snake_case : Optional[Any] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __snake_case : str = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __snake_case : List[str] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __snake_case : Dict = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __snake_case : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case : List[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : str = [] __snake_case : Tuple = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __snake_case : str = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __snake_case : Any = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __snake_case : List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[int], lowerCamelCase__ : int, lowerCamelCase__ : Dict, lowerCamelCase__ : int ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any] ): _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : int ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any, lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[int]=None, lowerCamelCase__ : List[Any]=None, lowerCamelCase__ : int=None, ): if config_path is not None: _a = SpeechTaConfig.from_pretrained(lowerCamelCase__ ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(lowerCamelCase__ ) elif task == "t2s": _a = 1_876 _a = 600 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(lowerCamelCase__ ) elif task == "s2s": _a = 1_876 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(lowerCamelCase__ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _a = SpeechTaTokenizer(lowerCamelCase__, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken("<mask>", lstrip=lowerCamelCase__, rstrip=lowerCamelCase__ ) _a = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) recursively_load_weights(fairseq_checkpoint["model"], lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int] ): # Check if the input is valid if not len(lowerCamelCase__ ) == len(lowerCamelCase__ ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _a , _a , _a = equationa _a , _a , _a = equationa # Calculate the determinants of the matrices _a = aa * ba - aa * ba _a = ca * ba - ca * ba _a = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a = determinant_x / determinant _a = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A ( unittest.TestCase ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[str]: _a = jnp.ones((batch_size, length) ) / length return scores def __lowerCAmelCase ( self ) -> int: _a = None _a = 2_0 _a = self._get_uniform_logits(batch_size=2 , length=snake_case_ ) # tweak scores to not be uniform anymore _a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _a = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _a = jax.nn.softmax(snake_case_ , axis=-1 ) _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTemperatureLogitsWarper(temperature=1.3 ) _a = jax.nn.softmax(temp_dist_warper_sharper(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) _a = jax.nn.softmax(temp_dist_warper_smoother(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __lowerCAmelCase ( self ) -> Dict: _a = None _a = 1_0 _a = 2 # create ramp distribution _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() _a = ramp_logits[1:, : vocab_size // 2] + vocab_size _a = FlaxTopKLogitsWarper(3 ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _a = 5 _a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, length) ).copy() _a = top_k_warp_safety_check(snake_case_ , snake_case_ , cur_len=snake_case_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = None _a = 1_0 _a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _a = FlaxTopPLogitsWarper(0.8 ) _a = np.exp(top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _a = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __lowerCAmelCase ( self ) -> List[str]: _a = 2_0 _a = 4 _a = 0 _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) # check that min length is applied at length 5 _a = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) _a = 5 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = 1_5 _a = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = 2_0 _a = 4 _a = 0 _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) # check that all scores are -inf except the bos_token_id score _a = ids_tensor((batch_size, 1) , vocab_size=2_0 ) _a = 1 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _a = 3 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> int: _a = 2_0 _a = 4 _a = 0 _a = 5 _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) # check that all scores are -inf except the eos_token_id when max_length is reached _a = ids_tensor((batch_size, 4) , vocab_size=2_0 ) _a = 4 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _a = 3 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> Dict: _a = 4 _a = 1_0 _a = 1_5 _a = 2 _a = 1 _a = 1_5 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , snake_case_ ) _a = input_ids.copy() _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) _a = 1_0 # no processor list _a = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) # with processor list _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __lowerCAmelCase ( self ) -> Dict: _a = 4 _a = 1_0 _a = 1_5 _a = 2 _a = 1 _a = 1_5 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , snake_case_ ) _a = input_ids.copy() _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) _a = 1_0 # no processor list def run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ): _a = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores # with processor list def run_processor_list(snake_case_ , snake_case_ , snake_case_ ): _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores _a = jax.jit(snake_case_ ) _a = jax.jit(snake_case_ ) _a = jitted_run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ) _a = jitted_run_processor_list(snake_case_ , snake_case_ , snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): __UpperCAmelCase : List[str] = ViTImageProcessor if is_vision_available() else None @property def __lowerCAmelCase ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Optional[Any]: _a = (3, 3_2, 1_2_8) _a = tempfile.mkdtemp() # fmt: off _a = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) _a = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 3_2, "width": 1_2_8}, } _a = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , **snake_case_ ) -> Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , **snake_case_ ) -> Optional[int]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> List[Any]: _a = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) _a = Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) return image_input def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.get_tokenizer() _a = self.get_image_processor() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _a = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = self.get_image_processor() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _a = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) _a = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = self.prepare_image_inputs() _a = image_processor(snake_case_ , return_tensors="np" ) _a = processor(images=snake_case_ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = "test" _a = processor(text=snake_case_ ) _a = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = "test" _a = self.prepare_image_inputs() _a = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _a = processor.char_decode(snake_case_ ) _a = tokenizer.batch_decode(snake_case_ ) _a = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = None _a = self.prepare_image_inputs() _a = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.get_image_processor() _a = self.get_tokenizer() _a = MgpstrProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) _a = torch.randn(1 , 2_7 , 3_8 ) _a = torch.randn(1 , 2_7 , 5_0_2_5_7 ) _a = torch.randn(1 , 2_7 , 3_0_5_2_2 ) _a = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , "tf_padding" ) ) self.parent.assertTrue(hasattr(snake_case_ , "depth_multiplier" ) ) class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3 , snake_case_=3_2 , snake_case_=0.25 , snake_case_=8 , snake_case_=True , snake_case_=1_0_2_4 , snake_case_=3_2 , snake_case_="relu6" , snake_case_=0.1 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=1_0 , snake_case_=None , ) -> List[Any]: _a = parent _a = batch_size _a = num_channels _a = image_size _a = depth_multiplier _a = min_depth _a = tf_padding _a = int(last_hidden_size * depth_multiplier ) _a = output_stride _a = hidden_act _a = classifier_dropout_prob _a = use_labels _a = is_training _a = num_labels _a = initializer_range _a = scope def __lowerCAmelCase ( self ) -> Optional[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ) -> List[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = MobileNetVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: _a = self.num_labels _a = MobileNetVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Optional[int] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCAmelCase : Optional[Any] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __lowerCAmelCase ( self ) -> List[str]: _a = MobileNetVaModelTester(self ) _a = MobileNetVaConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __lowerCAmelCase ( self ) -> Dict: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> List[str]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(snake_case_ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __lowerCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): _a = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _a = outputs.hidden_states _a = 2_6 self.assertEqual(len(snake_case_ ) , snake_case_ ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __lowerCAmelCase ( self ) -> int: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = MobileNetVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _lowercase ( ): _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Any: _a = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(snake_case_ ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _a = model(**snake_case_ ) # verify the logits _a = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _a = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __snake_case : Tuple = logging.get_logger("transformers.models.speecht5") def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any] ): hf_model.apply_weight_norm() _a = checkpoint["input_conv.weight_g"] _a = checkpoint["input_conv.weight_v"] _a = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): _a = checkpoint[F'''upsamples.{i}.1.weight_g'''] _a = checkpoint[F'''upsamples.{i}.1.weight_v'''] _a = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] _a = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] _a = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] _a = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] _a = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] _a = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] _a = checkpoint["output_conv.1.weight_g"] _a = checkpoint["output_conv.1.weight_v"] _a = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict=None, lowerCamelCase__ : Any=None, ): if config_path is not None: _a = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase__ ) else: _a = SpeechTaHifiGanConfig() _a = SpeechTaHifiGan(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) load_weights(orig_checkpoint["model"]["generator"], lowerCamelCase__, lowerCamelCase__ ) _a = np.load(lowerCamelCase__ ) _a = stats[0].reshape(-1 ) _a = stats[1].reshape(-1 ) _a = torch.from_numpy(lowerCamelCase__ ).float() _a = torch.from_numpy(lowerCamelCase__ ).float() model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: _a = dataset _a = process _a = params def __len__( self ) -> Tuple: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> Tuple: _a = self.dataset[i] _a = self.process(snake_case_ , **self.params ) return processed class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Dict: _a = loader _a = infer _a = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _a = None _a = loader_batch_size # Internal bookkeeping _a = None _a = None def __len__( self ) -> Union[str, Any]: return len(self.loader ) def __iter__( self ) -> Union[str, Any]: _a = iter(self.loader ) return self def __lowerCAmelCase ( self ) -> List[Any]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _a = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _a = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case_ , snake_case_ ): # Convert ModelOutput to tuple first _a = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _a = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _a = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _a = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _a = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _a = self._loader_batch_data.__class__(snake_case_ ) self._loader_batch_index += 1 return result def __lowerCAmelCase ( self ) -> str: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _a = next(self.iterator ) _a = self.infer(snake_case_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case_ , torch.Tensor ): _a = processed else: _a = list(processed.keys() )[0] _a = processed[key] if isinstance(snake_case_ , snake_case_ ): _a = len(snake_case_ ) else: _a = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _a = observed_batch_size # Setting internal index to unwrap the batch _a = processed _a = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Any: super().__init__(snake_case_ , snake_case_ , snake_case_ ) def __iter__( self ) -> Dict: _a = iter(self.loader ) _a = None return self def __lowerCAmelCase ( self ) -> int: if self.subiterator is None: _a = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _a = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _a = self.infer(next(self.iterator ) , **self.params ) _a = next(self.subiterator ) return processed class A ( a ): def __iter__( self ) -> Any: _a = iter(self.loader ) return self def __lowerCAmelCase ( self ) -> Tuple: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _a = False _a = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _a = self.loader_batch_item() _a = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator while not is_last: _a = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case_ , torch.Tensor ): _a = processed else: _a = list(processed.keys() )[0] _a = processed[key] if isinstance(snake_case_ , snake_case_ ): _a = len(snake_case_ ) else: _a = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _a = observed_batch_size _a = processed _a = 0 while self._loader_batch_index < self.loader_batch_size: _a = self.loader_batch_item() _a = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator else: _a = processed _a = item.pop("is_last" ) accumulator.append(snake_case_ ) return accumulator class A ( a ): def __init__( self , snake_case_ , snake_case_ ) -> Tuple: _a = dataset _a = key def __len__( self ) -> str: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> Dict: return self.dataset[i][self.key] class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _a = dataset _a = keya _a = keya def __len__( self ) -> List[Any]: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> List[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
691
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Tuple ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): _a = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight" in name: _a = "weight" elif "bias" in name: _a = "bias" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : int, lowerCamelCase__ : List[Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Union[str, Any]=True ): if config_path is not None: _a = HubertConfig.from_pretrained(lowerCamelCase__ ) else: _a = HubertConfig() if is_finetuned: if dict_path: _a = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols ) _a = os.path.join(lowerCamelCase__, "vocab.json" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__, exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, lowerCamelCase__ ) _a = WavaVecaCTCTokenizer( lowerCamelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=lowerCamelCase__, ) _a = True if config.feat_extract_norm == "layer" else False _a = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=lowerCamelCase__, return_attention_mask=lowerCamelCase__, ) _a = WavaVecaProcessor(feature_extractor=lowerCamelCase__, tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) _a = HubertForCTC(lowerCamelCase__ ) else: _a = HubertModel(lowerCamelCase__ ) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a = model[0].eval() recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __snake_case : List[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _a = b * b - 4 * a * c _a = (-b + sqrt(lowerCamelCase__ )) / (2 * a) _a = (-b - sqrt(lowerCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowercase ( ): _a , _a = quadratic_roots(a=5, b=6, c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
691
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __snake_case : Union[str, Any] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: _a = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def __lowerCAmelCase ( self ) -> Any: _a = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _a = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ , repo_id="test-config" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _a = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __lowerCAmelCase ( self ) -> Any: CustomConfig.register_for_auto_class() _a = CustomConfig(attribute=4_2 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _a = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 4_2 ) class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: _a = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _a = c.n_embd + 1 # int _a = c.resid_pdrop + 1.0 # float _a = not c.scale_attn_weights # bool _a = c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(snake_case_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case_ , c.summary_type , "mismatch for key: summary_type" ) def __lowerCAmelCase ( self ) -> List[str]: _a = PretrainedConfig() _a = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _a = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case_ , snake_case_ )] if len(snake_case_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(snake_case_ )}.''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: with self.assertRaises(snake_case_ ): # config is in subfolder, the following should not work without specifying the subfolder _a = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _a = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case_ ) def __lowerCAmelCase ( self ) -> Any: # A mock response for an HTTP head request to emulate server down _a = mock.Mock() _a = 5_0_0 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case_ ) as mock_head: _a = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 _a = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def __lowerCAmelCase ( self ) -> Tuple: _a = AutoConfig.from_pretrained("bert-base-cased" ) _a = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case_ ) _a = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _a = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _a = ["config.42.0.0.json"] _a = 7_6_8 configuration.save_pretrained(snake_case_ ) shutil.move(os.path.join(snake_case_ , "config.4.0.0.json" ) , os.path.join(snake_case_ , "config.42.0.0.json" ) ) _a = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def __lowerCAmelCase ( self ) -> Tuple: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _a = "hf-internal-testing/test-two-configs" import transformers as new_transformers _a = "v4.0.0" _a , _a = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case_ , return_unused_kwargs=snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _a = "v3.0.0" _a = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = len(lowerCamelCase__ ) for i in range(length - 1 ): _a = i for k in range(i + 1, lowerCamelCase__ ): if collection[k] < collection[least]: _a = k if least != i: _a , _a = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __snake_case : List[str] = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowerCamelCase__ : Dict[str, torch.Tensor] ): _a = [] _a = [] _a = [] for rt in rc.restypes: _a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _a = {name: i for i, name in enumerate(lowerCamelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _a = torch.tensor( lowerCamelCase__, dtype=torch.intaa, device=protein["aatype"].device, ) _a = torch.tensor( lowerCamelCase__, dtype=torch.intaa, device=protein["aatype"].device, ) _a = torch.tensor( lowerCamelCase__, dtype=torch.floataa, device=protein["aatype"].device, ) _a = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _a = restype_atomaa_to_atomaa[protein_aatype] _a = restype_atomaa_mask[protein_aatype] _a = residx_atomaa_mask _a = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _a = restype_atomaa_to_atomaa[protein_aatype] _a = residx_atomaa_to_atomaa.long() # create the corresponding mask _a = torch.zeros([21, 37], dtype=torch.floataa, device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): _a = rc.restype_atoa[restype_letter] _a = rc.residue_atoms[restype_name] for atom_name in atom_names: _a = rc.atom_order[atom_name] _a = 1 _a = restype_atomaa_mask[protein_aatype] _a = residx_atomaa_mask return protein def _lowercase ( lowerCamelCase__ : Dict[str, torch.Tensor] ): _a = tree_map(lambda lowerCamelCase__ : torch.tensor(lowerCamelCase__, device=batch["aatype"].device ), lowerCamelCase__, np.ndarray ) _a = tensor_tree_map(lambda lowerCamelCase__ : np.array(lowerCamelCase__ ), make_atomaa_masks(lowerCamelCase__ ) ) return out
691
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
1
'''simple docstring''' import argparse __snake_case : Union[str, Any] = "docs/source/_static/js/custom.js" def _lowercase ( lowerCamelCase__ : str ): with open(lowerCamelCase__, encoding="utf-8", newline="\n" ) as f: _a = f.readlines() _a = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 _a = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(lowerCamelCase__, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") __snake_case : Dict = parser.parse_args() update_custom_js(args.version)
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A ( unittest.TestCase ): __UpperCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING __UpperCAmelCase : Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _a = text_generator("This is a test" , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _a = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( snake_case_ , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _a = text_generator("This is a test" , do_sample=snake_case_ , num_return_sequences=2 , return_tensors=snake_case_ ) self.assertEqual( snake_case_ , [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ] , ) _a = text_generator.model.config.eos_token_id _a = "<pad>" _a = text_generator( ["This is a test", "This is a second test"] , do_sample=snake_case_ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case_ , ) self.assertEqual( snake_case_ , [ [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ], [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) -> Any: _a = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _a = text_generator("This is a test" , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _a = text_generator(["This is a test", "This is a second test"] , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: _a = TextGenerationPipeline(model=snake_case_ , tokenizer=snake_case_ ) return text_generator, ["This is a test", "Another test"] def __lowerCAmelCase ( self ) -> Dict: _a = "Hello I believe in" _a = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _a = text_generator(snake_case_ ) self.assertEqual( snake_case_ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _a = text_generator(snake_case_ , stop_sequence=" fe" ) self.assertEqual(snake_case_ , [{"generated_text": "Hello I believe in fe"}] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[Any]: _a = text_generator.model _a = text_generator.tokenizer _a = text_generator("This is a test" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _a = text_generator("This is a test" , return_full_text=snake_case_ ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _a = pipeline(task="text-generation" , model=snake_case_ , tokenizer=snake_case_ , return_full_text=snake_case_ ) _a = text_generator("This is a test" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _a = text_generator("This is a test" , return_full_text=snake_case_ ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _a = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: _a = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], ] , ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_full_text=snake_case_ , return_text=snake_case_ ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_full_text=snake_case_ , return_tensors=snake_case_ ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_text=snake_case_ , return_tensors=snake_case_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _a = text_generator("" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _a = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _a = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_0_0 , max_new_tokens=2_0 ) _a = text_generator("This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(snake_case_ ): text_generator( "This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[int]: import torch # Classic `model_kwargs` _a = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __lowerCAmelCase ( self ) -> str: import torch _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[int]: import torch _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=snake_case_ , top_p=0.5 ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = "Hello world" _a = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _a = logging.get_logger("transformers.generation.tf_utils" ) else: _a = logging.get_logger("transformers.generation.utils" ) _a = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(snake_case_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_new_tokens=1 ) self.assertNotIn(snake_case_ , cl.out ) with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_length=1_0 ) self.assertNotIn(snake_case_ , cl.out )
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def __lowerCAmelCase ( *snake_case_ , **snake_case_ ) -> Tuple: pass @is_pipeline_test @require_vision @require_timm @require_torch class A ( unittest.TestCase ): __UpperCAmelCase : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _a = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Tuple: _a = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { "score": ANY(snake_case_ ), "label": ANY(snake_case_ ), "box": {"xmin": ANY(snake_case_ ), "ymin": ANY(snake_case_ ), "xmax": ANY(snake_case_ ), "ymax": ANY(snake_case_ )}, } , ) import datasets _a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _a = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _a = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { "score": ANY(snake_case_ ), "label": ANY(snake_case_ ), "box": {"xmin": ANY(snake_case_ ), "ymin": ANY(snake_case_ ), "xmax": ANY(snake_case_ ), "ymax": ANY(snake_case_ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __lowerCAmelCase ( self ) -> Optional[int]: pass @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = "hf-internal-testing/tiny-detr-mobilenetsv3" _a = AutoModelForObjectDetection.from_pretrained(snake_case_ ) _a = AutoFeatureExtractor.from_pretrained(snake_case_ ) _a = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> List[str]: _a = "facebook/detr-resnet-50" _a = AutoModelForObjectDetection.from_pretrained(snake_case_ ) _a = AutoFeatureExtractor.from_pretrained(snake_case_ ) _a = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[int]: _a = "facebook/detr-resnet-50" _a = pipeline("object-detection" , model=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = 0.9_985 _a = "facebook/detr-resnet-50" _a = pipeline("object-detection" , model=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCAmelCase ( self ) -> List[str]: _a = "Narsil/layoutlmv3-finetuned-funsd" _a = 0.9_993 _a = pipeline("object-detection" , model=snake_case_ , threshold=snake_case_ ) _a = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, ] , )
691
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
1
'''simple docstring''' from __future__ import annotations import math class A : def __init__( self , snake_case_ ) -> None: _a = size # approximate the overall size of segment tree with given value _a = [0 for i in range(0 , 4 * size )] # create array to store lazy update _a = [0 for i in range(0 , 4 * size )] _a = [0 for i in range(0 , 4 * size )] # flag for lazy update def __lowerCAmelCase ( self , snake_case_ ) -> int: return idx * 2 def __lowerCAmelCase ( self , snake_case_ ) -> int: return idx * 2 + 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> None: if left_element == right_element: _a = a[left_element - 1] else: _a = (left_element + right_element) // 2 self.build(self.left(snake_case_ ) , snake_case_ , snake_case_ , snake_case_ ) self.build(self.right(snake_case_ ) , mid + 1 , snake_case_ , snake_case_ ) _a = max( self.segment_tree[self.left(snake_case_ )] , self.segment_tree[self.right(snake_case_ )] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> bool: if self.flag[idx] is True: _a = self.lazy[idx] _a = False if left_element != right_element: _a = self.lazy[idx] _a = self.lazy[idx] _a = True _a = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _a = val if left_element != right_element: _a = val _a = val _a = True _a = True return True _a = (left_element + right_element) // 2 self.update(self.left(snake_case_ ) , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.update(self.right(snake_case_ ) , mid + 1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = max( self.segment_tree[self.left(snake_case_ )] , self.segment_tree[self.right(snake_case_ )] ) return True def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int | float: if self.flag[idx] is True: _a = self.lazy[idx] _a = False if left_element != right_element: _a = self.lazy[idx] _a = self.lazy[idx] _a = True _a = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _a = (left_element + right_element) // 2 _a = self.query(self.left(snake_case_ ) , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = self.query(self.right(snake_case_ ) , mid + 1 , snake_case_ , snake_case_ , snake_case_ ) return max(snake_case_ , snake_case_ ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , snake_case_ , snake_case_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __snake_case : Tuple = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __snake_case : List[Any] = 15 __snake_case : List[str] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __snake_case : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def _lowercase ( lowerCamelCase__ : List[Any]="no", lowerCamelCase__ : str = default_json_config_file, lowerCamelCase__ : bool = False ): _a = Path(lowerCamelCase__ ) path.parent.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False _a = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) _a = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): _a = torch.cuda.device_count() _a = num_gpus _a = False if num_gpus > 1: _a = "MULTI_GPU" else: _a = "NO" elif is_xpu_available() and use_xpu: _a = torch.xpu.device_count() _a = num_xpus _a = False if num_xpus > 1: _a = "MULTI_XPU" else: _a = "NO" elif is_npu_available(): _a = torch.npu.device_count() _a = num_npus _a = False if num_npus > 1: _a = "MULTI_NPU" else: _a = "NO" else: _a = 0 _a = True _a = 1 _a = "NO" _a = ClusterConfig(**lowerCamelCase__ ) config.to_json_file(lowerCamelCase__ ) return path def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): _a = parser.add_parser("default", parents=lowerCamelCase__, help=lowerCamelCase__, formatter_class=lowerCamelCase__ ) parser.add_argument( "--config_file", default=lowerCamelCase__, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), dest="save_location", ) parser.add_argument( "--mixed_precision", choices=["no", "fp16", "bf16"], type=lowerCamelCase__, help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.", default="no", ) parser.set_defaults(func=lowerCamelCase__ ) return parser def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
691
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( a ): __UpperCAmelCase : Optional[int] = ["""image_processor""", """tokenizer"""] __UpperCAmelCase : Optional[int] = """ViTImageProcessor""" __UpperCAmelCase : Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Any: _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[int]: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: _a = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None: _a = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: _a = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None and images is not None: _a = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _a = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Optional[Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __lowerCAmelCase ( self ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case_ , ) return self.image_processor_class @property def __lowerCAmelCase ( self ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case_ , ) return self.image_processor
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: _a = 1_0 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [1, 2, 3, 4] _a = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(snake_case_ , self.block_size , 0 ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] _a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(snake_case_ , self.block_size , 0 ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] _a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(snake_case_ , self.block_size , 0 ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _a , _a = process_story(snake_case_ ) self.assertEqual(snake_case_ , [] ) def __lowerCAmelCase ( self ) -> Dict: _a = "" _a , _a = process_story(snake_case_ ) self.assertEqual(snake_case_ , [] ) self.assertEqual(snake_case_ , [] ) def __lowerCAmelCase ( self ) -> Dict: _a = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _a , _a = process_story(snake_case_ ) _a = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(snake_case_ , snake_case_ ) _a = ["It was the best of times."] self.assertEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = torch.tensor([1, 2, 3, 4] ) _a = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(snake_case_ , 0 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) -> List[Any]: _a = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) _a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case_ , 2_3 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) -> List[str]: _a = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case_ , 1 ).numpy() , expected.numpy() ) def __lowerCAmelCase ( self ) -> List[Any]: _a = 1_0_1 _a = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) _a = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _a = compute_token_type_ids(snake_case_ , snake_case_ ) np.testing.assert_array_equal(snake_case_ , snake_case_ )
691
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __snake_case : int = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __snake_case : Optional[int] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __snake_case : str = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = CHRF.CHAR_ORDER , snake_case_ = CHRF.WORD_ORDER , snake_case_ = CHRF.BETA , snake_case_ = False , snake_case_ = False , snake_case_ = False , ) -> Dict: _a = len(references[0] ) if any(len(snake_case_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _a = [[refs[i] for refs in references] for i in range(snake_case_ )] _a = CHRF(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = sb_chrf.corpus_score(snake_case_ , snake_case_ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
691
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str ): _a = [int(lowerCamelCase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowerCamelCase__ ) == 4 and all(0 <= int(lowerCamelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __snake_case : int = input().strip() __snake_case : str = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Dict, lowerCamelCase__ : Any ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCamelCase__, n - 1, lowerCamelCase__ ) * a) % mod else: _a = binary_exponentiation(lowerCamelCase__, n / 2, lowerCamelCase__ ) return (b * b) % mod # a prime number __snake_case : List[Any] = 701 __snake_case : str = 10_0000_0000 __snake_case : List[str] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A : __UpperCAmelCase : Tuple = PegasusConfig __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : str = """gelu""" def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=9_9 , snake_case_=3_2 , snake_case_=2 , snake_case_=4 , snake_case_=3_7 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=4_0 , snake_case_=2 , snake_case_=1 , snake_case_=0 , ) -> List[str]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = eos_token_id _a = pad_token_id _a = bos_token_id def __lowerCAmelCase ( self ) -> Optional[int]: _a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _a = tf.concat([input_ids, eos_tensor] , axis=1 ) _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _a = prepare_pegasus_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: _a = TFPegasusModel(config=snake_case_ ).get_decoder() _a = inputs_dict["input_ids"] _a = input_ids[:1, :] _a = inputs_dict["attention_mask"][:1, :] _a = inputs_dict["head_mask"] _a = 1 # first forward pass _a = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _a = tf.concat([input_ids, next_tokens] , axis=-1 ) _a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _a = model(snake_case_ , attention_mask=snake_case_ )[0] _a = model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _a = output_from_no_past[:, -3:, random_slice_idx] _a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1E-3 ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[Any]=None, lowerCamelCase__ : Optional[Any]=None, lowerCamelCase__ : Optional[Any]=None, lowerCamelCase__ : Tuple=None, lowerCamelCase__ : Optional[int]=None, ): if attention_mask is None: _a = tf.cast(tf.math.not_equal(lowerCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A ( a , a , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __UpperCAmelCase : Any = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Tuple = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = False __UpperCAmelCase : Tuple = False def __lowerCAmelCase ( self ) -> str: _a = TFPegasusModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ ) def __lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class A ( unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : str = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __UpperCAmelCase : Any = """google/pegasus-xsum""" @cached_property def __lowerCAmelCase ( self ) -> str: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self ) -> Optional[int]: _a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self , **snake_case_ ) -> Optional[Any]: _a = self.translate_src_text(**snake_case_ ) assert self.expected_text == generated_words def __lowerCAmelCase ( self , **snake_case_ ) -> Optional[int]: _a = self.tokenizer(self.src_text , **snake_case_ , padding=snake_case_ , return_tensors="tf" ) _a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case_ , ) _a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case_ ) return generated_words @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: self._assert_generated_batch_equal_expected()
691
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( a ): __UpperCAmelCase : List[Any] = (DDPMParallelScheduler,) def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case_ ) return config def __lowerCAmelCase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> List[str]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(snake_case_ )[0:3, None].repeat(1 , snake_case_ ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(snake_case_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def __lowerCAmelCase ( self ) -> Any: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual _a = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def __lowerCAmelCase ( self ) -> str: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual _a = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) _a = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(snake_case_ ) _a = prev_t.item() self.assertEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(snake_case_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 1, 0] _a = len(snake_case_ ) with self.assertRaises(snake_case_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case_ )
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
'''simple docstring''' # using dfs for finding eulerian path traversal def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[int]=None ): _a = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _a , _a = True, True _a = dfs(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return path def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : int ): _a = 0 _a = -1 for i in range(lowerCamelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _a = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any] ): _a = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _a , _a = check_circuit_or_path(lowerCamelCase__, lowerCamelCase__ ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return _a = 1 if check == 2: _a = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) _a = dfs(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) print(lowerCamelCase__ ) def _lowercase ( ): _a = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _a = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _a = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _a = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _a = { 1: [], 2: [] # all degree is zero } _a = 10 check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) if __name__ == "__main__": main()
691
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : int = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } __snake_case : str = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = EfficientNetConfig() _a = CONFIG_MAP[model_name]["hidden_dim"] _a = CONFIG_MAP[model_name]["width_coef"] _a = CONFIG_MAP[model_name]["depth_coef"] _a = CONFIG_MAP[model_name]["image_size"] _a = CONFIG_MAP[model_name]["dropout_rate"] _a = CONFIG_MAP[model_name]["dw_padding"] _a = "huggingface/label-files" _a = "imagenet-1k-id2label.json" _a = 1_000 _a = json.load(open(hf_hub_download(lowerCamelCase__, lowerCamelCase__, repo_type="dataset" ), "r" ) ) _a = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowercase ( ): _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ) return im def _lowercase ( lowerCamelCase__ : Tuple ): _a = CONFIG_MAP[model_name]["image_size"] _a = EfficientNetImageProcessor( size={"height": size, "width": size}, image_mean=[0.4_85, 0.4_56, 0.4_06], image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63], do_center_crop=lowerCamelCase__, ) return preprocessor def _lowercase ( lowerCamelCase__ : Tuple ): _a = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] _a = sorted(set(lowerCamelCase__ ) ) _a = len(lowerCamelCase__ ) _a = {b: str(lowerCamelCase__ ) for b, i in zip(lowerCamelCase__, range(lowerCamelCase__ ) )} _a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: _a = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) _a = {} for item in rename_keys: if item[0] in original_param_names: _a = "efficientnet." + item[1] _a = "classifier.weight" _a = "classifier.bias" return key_mapping def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple ): for key, value in tf_params.items(): if "normalization" in key: continue _a = key_mapping[key] if "_conv" in key and "kernel" in key: _a = torch.from_numpy(lowerCamelCase__ ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: _a = torch.from_numpy(lowerCamelCase__ ).permute(2, 3, 0, 1 ) elif "kernel" in key: _a = torch.from_numpy(np.transpose(lowerCamelCase__ ) ) else: _a = torch.from_numpy(lowerCamelCase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase__ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : int ): _a = model_classes[model_name]( include_top=lowerCamelCase__, weights="imagenet", input_tensor=lowerCamelCase__, input_shape=lowerCamelCase__, pooling=lowerCamelCase__, classes=1_000, classifier_activation="softmax", ) _a = original_model.trainable_variables _a = original_model.non_trainable_variables _a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _a = param.numpy() _a = list(tf_params.keys() ) # Load HuggingFace model _a = get_efficientnet_config(lowerCamelCase__ ) _a = EfficientNetForImageClassification(lowerCamelCase__ ).eval() _a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) _a = rename_keys(lowerCamelCase__ ) replace_params(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # Initialize preprocessor and preprocess input image _a = convert_image_processor(lowerCamelCase__ ) _a = preprocessor(images=prepare_img(), return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = outputs.logits.detach().numpy() # Original model inference _a = False _a = CONFIG_MAP[model_name]["image_size"] _a = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) _a = image.img_to_array(lowerCamelCase__ ) _a = np.expand_dims(lowerCamelCase__, axis=0 ) _a = original_model.predict(lowerCamelCase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase__ ): os.mkdir(lowerCamelCase__ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase__ ) preprocessor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _a = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase__ ) hf_model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") __snake_case : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _lowercase ( lowerCamelCase__ : dict ): return (data["data"], data["target"]) def _lowercase ( lowerCamelCase__ : np.ndarray, lowerCamelCase__ : np.ndarray ): _a = XGBClassifier() classifier.fit(lowerCamelCase__, lowerCamelCase__ ) return classifier def _lowercase ( ): _a = load_iris() _a , _a = data_handling(lowerCamelCase__ ) _a , _a , _a , _a = train_test_split( lowerCamelCase__, lowerCamelCase__, test_size=0.25 ) _a = iris["target_names"] # Create an XGBoost Classifier from the training data _a = xgboost(lowerCamelCase__, lowerCamelCase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, display_labels=lowerCamelCase__, cmap="Blues", normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
691
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
1