code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : Tuple ): '''simple docstring''' snake_case: List[Any] = '' for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' return data[1:] + data[0] def lowerCAmelCase_ ( __A : Dict , __A : Any ): '''simple docstring''' snake_case: List[Any] = '' for i in range(len(__A ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( __A : List[str] , __A : Optional[int] ): '''simple docstring''' snake_case: Union[str, Any] = int('0b' + data[0] + data[-1] , 2 ) snake_case: List[Any] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( __A : Any , __A : Union[str, Any] , __A : Optional[Any] , __A : Dict , __A : Union[str, Any] ): '''simple docstring''' snake_case: Optional[Any] = message[:4] snake_case: Union[str, Any] = message[4:] snake_case: Dict = apply_table(__A , __A ) snake_case: Dict = xor(__A , __A ) snake_case: Tuple = apply_sbox(__A , temp[:4] ) # noqa: E741 snake_case: Any = apply_sbox(__A , temp[4:] ) snake_case: Any = '0' * (2 - len(__A )) + l # noqa: E741 snake_case: Optional[Any] = '0' * (2 - len(__A )) + r snake_case: Optional[Any] = apply_table(l + r , __A ) snake_case: str = xor(__A , __A ) return temp + right if __name__ == "__main__": __UpperCAmelCase = input("Enter 10 bit key: ") __UpperCAmelCase = input("Enter 8 bit message: ") __UpperCAmelCase = [6, 3, 7, 4, 8, 5, 10, 9] __UpperCAmelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __UpperCAmelCase = [2, 4, 3, 1] __UpperCAmelCase = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase = apply_table(key, paa_table) __UpperCAmelCase = temp[:5] __UpperCAmelCase = temp[5:] __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = apply_table(left + right, pa_table) __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = left_shift(left) __UpperCAmelCase = left_shift(right) __UpperCAmelCase = apply_table(left + right, pa_table) # encryption __UpperCAmelCase = apply_table(message, IP) __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = temp[4:] + temp[:4] __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase = apply_table(CT, IP) __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = temp[4:] + temp[:4] __UpperCAmelCase = function(expansion, sa, sa, keya, temp) __UpperCAmelCase = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' import math __UpperCAmelCase = 10 __UpperCAmelCase = 7 __UpperCAmelCase = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase_ ( __A : int = 20 ): '''simple docstring''' snake_case: Dict = math.comb(__A , __A ) snake_case: Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A ) snake_case: Tuple = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import re def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Optional[Any] = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(__A , __A ) ) if __name__ == "__main__": __UpperCAmelCase = "0094702343221" print(is_sri_lankan_phone_number(phone))
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __UpperCAmelCase = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") __UpperCAmelCase = parser.parse_args() if args.check_lib: __UpperCAmelCase = importlib.import_module("transformers") __UpperCAmelCase = Path(transformers_module.__file__).parent else: __UpperCAmelCase = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = "tokenizer_file" __UpperCamelCase = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: str = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_rust_tokenizer() snake_case: Dict = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] snake_case: Dict = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] snake_case: Optional[int] = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE__ )['input_ids'] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case: Optional[Any] = 'This is a simple input' snake_case: str = ['This is a simple input 1', 'This is a simple input 2'] snake_case: Union[str, Any] = ('This is a simple input', 'This is a pair') snake_case: str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) snake_case: Optional[Any] = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='max_length' , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_rust_tokenizer() snake_case: List[str] = load_dataset('xnli' , 'all_languages' , split='test' , streaming=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = next(iter(SCREAMING_SNAKE_CASE__ ) )['premise'] # pick up one data snake_case: int = list(sample_data.values() ) snake_case: str = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[int] = [tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : str , __A : list[str] | None = None ): '''simple docstring''' snake_case: str = word_bank or [] # create a table snake_case: int = len(__A ) + 1 snake_case: list[list[list[str]]] = [] for _ in range(__A ): table.append([] ) # seed value snake_case: List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__A )] == word: snake_case: list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__A )]: combination.reverse() return table[len(__A )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if not is_accelerate_available(): return method snake_case: Optional[Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__A ) < version.parse('0.17.0' ): return method def wrapper(self : Any , *__A : List[str] , **__A : Union[str, Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__A , **__A ) return wrapper
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) __UpperCamelCase = Features({"text": Value("string" )} ) __UpperCamelCase = Features({"labels": ClassLabel} ) __UpperCamelCase = "text" __UpperCamelCase = "labels" def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) snake_case: Optional[Any] = copy.deepcopy(self ) snake_case: str = self.label_schema.copy() snake_case: Optional[Any] = features[self.label_column] snake_case: Optional[int] = label_schema return task_template @property def _UpperCamelCase ( self ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __UpperCAmelCase = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = mock.Mock() snake_case: Any = 5_00 snake_case: int = {} snake_case: Union[str, Any] = HTTPError snake_case: int = {} # Download this model to make sure it's in the cache. snake_case: List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE__ ) as mock_head: snake_case: Optional[int] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case: Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) snake_case: Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' snake_case: List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) snake_case: List[Any] = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE__ , repo_id='test-image-processor' , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token ) snake_case: Dict = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) snake_case: int = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE__ , repo_id='valid_org/test-image-processor-org' , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token ) snake_case: Union[str, Any] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() snake_case: List[Any] = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) snake_case: List[Any] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(SCREAMING_SNAKE_CASE__ ) for s in shape] )}.npy""" def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=(4, 4, 64, 64) , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case: Any = jnp.bfloataa if fpaa else jnp.floataa snake_case: List[str] = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) , dtype=SCREAMING_SNAKE_CASE__ ) return image def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' snake_case: List[str] = jnp.bfloataa if fpaa else jnp.floataa snake_case: Union[str, Any] = 'bf16' if fpaa else None snake_case , snake_case: str = FlaxUNetaDConditionModel.from_pretrained( SCREAMING_SNAKE_CASE__ , subfolder='unet' , dtype=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ ) return model, params def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=(4, 77, 7_68) , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa snake_case: Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) , dtype=SCREAMING_SNAKE_CASE__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 10_00, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: List[str] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self.get_latents(SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = model.apply( {'params': params} , SCREAMING_SNAKE_CASE__ , jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , ).sample assert sample.shape == latents.shape snake_case: str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case: Union[str, Any] = jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 10_00, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: Union[str, Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = self.get_latents(SCREAMING_SNAKE_CASE__ , shape=(4, 4, 96, 96) , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE__ , shape=(4, 77, 10_24) , fpaa=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = model.apply( {'params': params} , SCREAMING_SNAKE_CASE__ , jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , ).sample assert sample.shape == latents.shape snake_case: Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-2 )
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class SCREAMING_SNAKE_CASE : '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: Any = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) snake_case: List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) snake_case: int = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case: List[str] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) snake_case: Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: int = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) snake_case: Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) snake_case: Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case: str = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) snake_case: int = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) snake_case: Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_dummy_components() snake_case: str = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: str = inputs['prompt'] snake_case: str = inputs['generator'] snake_case: Optional[int] = inputs['num_inference_steps'] snake_case: Any = inputs['output_type'] if "image" in inputs: snake_case: List[str] = inputs['image'] else: snake_case: Optional[Any] = None if "mask_image" in inputs: snake_case: int = inputs['mask_image'] else: snake_case: str = None if "original_image" in inputs: snake_case: str = inputs['original_image'] else: snake_case: Optional[int] = None snake_case , snake_case: List[str] = pipe.encode_prompt(SCREAMING_SNAKE_CASE__ ) # inputs with prompt converted to embeddings snake_case: Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: snake_case: Union[str, Any] = image if mask_image is not None: snake_case: Union[str, Any] = mask_image if original_image is not None: snake_case: Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) snake_case: Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = inputs['generator'] snake_case: Dict = inputs['num_inference_steps'] snake_case: Any = inputs['output_type'] # inputs with prompt converted to embeddings snake_case: Dict = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: snake_case: int = image if mask_image is not None: snake_case: Optional[Any] = mask_image if original_image is not None: snake_case: List[str] = original_image snake_case: List[Any] = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] snake_case: Any = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_dummy_components() snake_case: int = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests snake_case: Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] snake_case: str = np.abs(to_np(SCREAMING_SNAKE_CASE__ ) - to_np(SCREAMING_SNAKE_CASE__ ) ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1E-4 )
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _UpperCamelCase ( self ): '''simple docstring''' return self._get_dummy_components() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): snake_case: str = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: snake_case: int = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_local() def _UpperCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) snake_case: int = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) snake_case , snake_case: List[Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case: int = None snake_case: str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case: int = IFImgaImgPipeline(**pipe_a.components ) snake_case: List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case: List[Any] = IFInpaintingPipeline(**pipe_a.components ) snake_case: List[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _start_torch_memory_measurement() snake_case: List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: Tuple = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) snake_case: Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 snake_case: Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() snake_case: List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' , ) snake_case: str = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case: List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case: Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _start_torch_memory_measurement() snake_case: str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Any = output.images[0] assert image.shape == (64, 64, 3) snake_case: List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case: List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() snake_case: Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: Union[str, Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' , ) snake_case: Any = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case: List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case: Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _start_torch_memory_measurement() snake_case: str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Any = output.images[0] assert image.shape == (64, 64, 3) snake_case: str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case: List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() snake_case: Any = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' , ) snake_case: List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) snake_case: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case: Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = UNetaDModel __UpperCamelCase = "sample" @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = 4 snake_case: Tuple = 3 snake_case: List[str] = (32, 32) snake_case: Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) snake_case: str = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ): '''simple docstring''' return (3, 32, 32) @property def _UpperCamelCase ( self ): '''simple docstring''' return (3, 32, 32) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } snake_case: Optional[Any] = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = UNetaDModel __UpperCamelCase = "sample" @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = 4 snake_case: Optional[int] = 4 snake_case: Optional[Any] = (32, 32) snake_case: List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ): '''simple docstring''' return (4, 32, 32) @property def _UpperCamelCase ( self ): '''simple docstring''' return (4, 32, 32) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } snake_case: str = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Union[str, Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: str = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) snake_case: int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model_accelerate.to(SCREAMING_SNAKE_CASE__ ) model_accelerate.eval() snake_case: Optional[int] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case: List[Any] = noise.to(SCREAMING_SNAKE_CASE__ ) snake_case: int = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Any = model_accelerate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case , snake_case: int = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ ) model_normal_load.to(SCREAMING_SNAKE_CASE__ ) model_normal_load.eval() snake_case: Optional[int] = model_normal_load(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case: Any = noise.to(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): snake_case: Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample snake_case: List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case: List[Any] = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) ) class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = UNetaDModel __UpperCamelCase = "sample" @property def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=(32, 32) ): '''simple docstring''' snake_case: Optional[int] = 4 snake_case: List[Any] = 3 snake_case: List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ): '''simple docstring''' return (3, 32, 32) @property def _UpperCamelCase ( self ): '''simple docstring''' return (3, 32, 32) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } snake_case: Any = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.dummy_input snake_case: Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = noise snake_case: Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(SCREAMING_SNAKE_CASE__ ) snake_case: int = 4 snake_case: Optional[int] = 3 snake_case: Any = (2_56, 2_56) snake_case: Tuple = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): snake_case: Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample snake_case: int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case: List[Any] = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-2 ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = 4 snake_case: Union[str, Any] = 3 snake_case: Dict = (32, 32) snake_case: Any = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample snake_case: List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case: Tuple = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-2 ) ) def _UpperCamelCase ( self ): '''simple docstring''' pass
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCAmelCase_ ( __A : Dict , __A : str , __A : Optional[int]=None , __A : Any=None ): '''simple docstring''' if attention_mask is None: snake_case: Optional[int] = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = OPTConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=16 , ): '''simple docstring''' snake_case: Optional[int] = parent snake_case: Any = batch_size snake_case: List[str] = seq_length snake_case: Any = is_training snake_case: Optional[Any] = use_labels snake_case: Union[str, Any] = vocab_size snake_case: int = hidden_size snake_case: List[str] = num_hidden_layers snake_case: Any = num_attention_heads snake_case: Union[str, Any] = intermediate_size snake_case: Dict = hidden_act snake_case: Optional[int] = hidden_dropout_prob snake_case: Any = attention_probs_dropout_prob snake_case: Tuple = max_position_embeddings snake_case: Union[str, Any] = eos_token_id snake_case: Optional[Any] = pad_token_id snake_case: str = bos_token_id snake_case: int = embed_dim snake_case: Optional[Any] = word_embed_proj_dim snake_case: Optional[int] = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case: Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case: Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case: Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **self.config_updates , ) snake_case: Optional[int] = prepare_opt_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = TFOPTModel(config=SCREAMING_SNAKE_CASE__ ) snake_case: Any = inputs_dict['input_ids'] snake_case: List[Any] = input_ids[:1, :] snake_case: Dict = inputs_dict['attention_mask'][:1, :] snake_case: int = 1 # first forward pass snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) snake_case , snake_case: Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case: str = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case: Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case: Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case: Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case: str = output_from_no_past[:, -3:, random_slice_idx] snake_case: List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) @require_tf class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 10 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = TFOPTModelTester(self ) snake_case: Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if hasattr(SCREAMING_SNAKE_CASE__ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(SCREAMING_SNAKE_CASE__ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case: List[str] = model_class(config=SCREAMING_SNAKE_CASE__ ) snake_case: Any = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_input_embeddings() ) snake_case: Optional[int] = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(SCREAMING_SNAKE_CASE__ ) snake_case: int = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_input_embeddings() ) snake_case: List[Any] = _get_word_embedding_weight(SCREAMING_SNAKE_CASE__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case: List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , SCREAMING_SNAKE_CASE__ ) # check that weights remain the same after resizing snake_case: int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case: Optional[int] = False self.assertTrue(SCREAMING_SNAKE_CASE__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , SCREAMING_SNAKE_CASE__ ) snake_case: Any = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case: Any = False self.assertTrue(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' return tf.constant(__A , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 99 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case: Optional[Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case: Tuple = input_ids.shape[0] snake_case: Dict = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = TFOPTModel.from_pretrained('facebook/opt-350m' ) snake_case: Dict = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case: int = tf.not_equal(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id ) with tf.GradientTape(): snake_case: Dict = model(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).last_hidden_state snake_case: Union[str, Any] = (1, 11, 5_12) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) snake_case: int = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=4E-3 ) ) snake_case: List[Any] = tf.function(SCREAMING_SNAKE_CASE__ , jit_compile=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = xla_generate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=4E-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Optional[Any] = 'facebook/opt-350m' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case: Union[str, Any] = GPTaTokenizer.from_pretrained(self.path_model ) snake_case: Dict = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case: Tuple = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case: Tuple = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) snake_case: Tuple = tf.function(SCREAMING_SNAKE_CASE__ , jit_compile=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = 'facebook/opt-125m' snake_case: str = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] snake_case: Dict = [] snake_case: int = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: int = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) for prompt in self.prompts: snake_case: Any = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ).input_ids snake_case: Optional[Any] = model.generate(SCREAMING_SNAKE_CASE__ , max_length=10 ) snake_case: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) predicted_outputs += generated_string self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = 'facebook/opt-350m' snake_case: Any = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'left' # use different length sentences to test batching snake_case: int = [ 'Hello, my dog is a little', 'Today, I', ] snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = inputs['input_ids'] snake_case: List[str] = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=inputs['attention_mask'] ) snake_case: Dict = tokenizer(sentences[0] , return_tensors='tf' ).input_ids snake_case: List[str] = model.generate(input_ids=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) snake_case: str = tokenizer(sentences[1] , return_tensors='tf' ).input_ids snake_case: List[str] = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_length=model.config.max_length - num_paddings ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [non_padded_sentence, padded_sentence] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = 'facebook/opt-350m' snake_case: Dict = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] snake_case: Union[str, Any] = [] snake_case: Dict = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = TFOPTForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) for prompt in self.prompts: snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ).input_ids snake_case: Any = model.generate(SCREAMING_SNAKE_CASE__ , max_length=10 ) snake_case: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) predicted_outputs += generated_string self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = 1 snake_case: List[Any] = 3 snake_case: List[str] = (32, 32) snake_case: Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) return image @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ): '''simple docstring''' def extract(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: str = torch.ones([0] ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.pixel_values.to(SCREAMING_SNAKE_CASE__ ) return self return Out() return extract def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case: Optional[Any] = self.dummy_cond_unet snake_case: List[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.dummy_vae snake_case: int = self.dummy_text_encoder snake_case: List[str] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case: Dict = 77 snake_case: str = self.dummy_image.to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case: Dict = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=self.dummy_extractor , ) snake_case: str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: int = alt_pipe.to(SCREAMING_SNAKE_CASE__ ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = 'A painting of a squirrel eating a burger' snake_case: List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) snake_case: List[Any] = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = output.images snake_case: Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) snake_case: int = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] snake_case: List[Any] = image[0, -3:, -3:, -1] snake_case: Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case: Dict = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.dummy_cond_unet snake_case: List[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.dummy_vae snake_case: Any = self.dummy_text_encoder snake_case: Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case: List[Any] = 77 snake_case: str = self.dummy_image.to(SCREAMING_SNAKE_CASE__ ) # put models in fp16 snake_case: Tuple = unet.half() snake_case: List[Any] = vae.half() snake_case: Tuple = bert.half() # make sure here that pndm scheduler skips prk snake_case: str = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=self.dummy_extractor , ) snake_case: str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: str = alt_pipe.to(SCREAMING_SNAKE_CASE__ ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'A painting of a squirrel eating a burger' snake_case: int = torch.manual_seed(0 ) snake_case: Optional[int] = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' , image=SCREAMING_SNAKE_CASE__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case: List[str] = init_image.resize((7_60, 5_04) ) snake_case: Any = 'BAAI/AltDiffusion' snake_case: Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() snake_case: Optional[Any] = 'A fantasy landscape, trending on artstation' snake_case: Union[str, Any] = torch.manual_seed(0 ) snake_case: Dict = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Union[str, Any] = output.images[0] snake_case: int = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) snake_case: List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case: Tuple = init_image.resize((7_68, 5_12) ) snake_case: Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) snake_case: Optional[Any] = 'BAAI/AltDiffusion' snake_case: Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() snake_case: str = 'A fantasy landscape, trending on artstation' snake_case: Union[str, Any] = torch.manual_seed(0 ) snake_case: Dict = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: str = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __UpperCAmelCase = 4 __UpperCAmelCase = 3 class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' pass def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' for shard in shards: for i in range(__A ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: int = int(os.environ['RANK'] ) snake_case: Tuple = int(os.environ['WORLD_SIZE'] ) snake_case: Any = ArgumentParser() parser.add_argument('--streaming' , type=__A ) parser.add_argument('--local_rank' , type=__A ) parser.add_argument('--num_workers' , type=__A , default=0 ) snake_case: Tuple = parser.parse_args() snake_case: Optional[Any] = args.streaming snake_case: Tuple = args.num_workers snake_case: Optional[Any] = {'shards': [f"""shard_{shard_idx}""" for shard_idx in range(__A )]} snake_case: str = IterableDataset.from_generator(__A , gen_kwargs=__A ) if not streaming: snake_case: Union[str, Any] = Dataset.from_list(list(__A ) ) snake_case: Optional[int] = split_dataset_by_node(__A , rank=__A , world_size=__A ) snake_case: List[Any] = torch.utils.data.DataLoader(__A , num_workers=__A ) snake_case: Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD snake_case: Tuple = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) snake_case: List[str] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = jnp.ones((batch_size, length) ) / length return scores def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = None snake_case: Union[str, Any] = 20 snake_case: Optional[int] = self._get_uniform_logits(batch_size=2 , length=SCREAMING_SNAKE_CASE__ ) # tweak scores to not be uniform anymore snake_case: Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch snake_case: List[str] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax snake_case: Any = jax.nn.softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) snake_case: List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) snake_case: Tuple = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE__ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE__ ) , axis=-1 ) snake_case: Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE__ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = None snake_case: Optional[Any] = 10 snake_case: Optional[Any] = 2 # create ramp distribution snake_case: List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, vocab_size) ).copy() snake_case: Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size snake_case: List[Any] = FlaxTopKLogitsWarper(3 ) snake_case: List[str] = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case snake_case: Any = 5 snake_case: Any = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) snake_case: List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, length) ).copy() snake_case: str = top_k_warp_safety_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = None snake_case: List[str] = 10 snake_case: List[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) snake_case: Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) snake_case: Dict = FlaxTopPLogitsWarper(0.8 ) snake_case: str = np.exp(top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 snake_case: List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits snake_case: List[str] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme snake_case: str = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept snake_case: Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) snake_case: str = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = 20 snake_case: str = 4 snake_case: Dict = 0 snake_case: Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=SCREAMING_SNAKE_CASE__ ) # check that min length is applied at length 5 snake_case: int = ids_tensor((batch_size, 20) , vocab_size=20 ) snake_case: Optional[Any] = 5 snake_case: Optional[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = min_dist_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 snake_case: List[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = 15 snake_case: Optional[int] = min_dist_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = 20 snake_case: Optional[Any] = 4 snake_case: int = 0 snake_case: Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) # check that all scores are -inf except the bos_token_id score snake_case: Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) snake_case: int = 1 snake_case: int = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 snake_case: int = 3 snake_case: str = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = 20 snake_case: Dict = 4 snake_case: Optional[int] = 0 snake_case: Optional[int] = 5 snake_case: Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) # check that all scores are -inf except the eos_token_id when max_length is reached snake_case: int = ids_tensor((batch_size, 4) , vocab_size=20 ) snake_case: Dict = 4 snake_case: str = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: str = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached snake_case: Optional[int] = 3 snake_case: int = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = 4 snake_case: Tuple = 10 snake_case: str = 15 snake_case: Optional[Any] = 2 snake_case: str = 1 snake_case: Tuple = 15 # dummy input_ids and scores snake_case: List[Any] = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = input_ids.copy() snake_case: str = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = scores.copy() # instantiate all dist processors snake_case: Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case: Tuple = FlaxTopKLogitsWarper(3 ) snake_case: Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: str = 10 # no processor list snake_case: Any = temp_dist_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: str = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = min_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = bos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: str = eos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # with processor list snake_case: Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case: Union[str, Any] = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = 4 snake_case: Any = 10 snake_case: Union[str, Any] = 15 snake_case: List[Any] = 2 snake_case: Any = 1 snake_case: Any = 15 # dummy input_ids and scores snake_case: Any = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE__ ) snake_case: str = input_ids.copy() snake_case: Dict = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = scores.copy() # instantiate all dist processors snake_case: Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case: Tuple = FlaxTopKLogitsWarper(3 ) snake_case: List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case: Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: str = 10 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Any = temp_dist_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = min_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: str = bos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = eos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case: Dict = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) return scores snake_case: Any = jax.jit(SCREAMING_SNAKE_CASE__ ) snake_case: Any = jax.jit(SCREAMING_SNAKE_CASE__ ) snake_case: int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = jitted_run_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' snake_case: Dict = parent snake_case: List[Any] = batch_size snake_case: Dict = image_size snake_case: Optional[int] = patch_size snake_case: Optional[Any] = num_channels snake_case: Tuple = is_training snake_case: Any = use_labels snake_case: List[str] = hidden_size snake_case: Tuple = num_hidden_layers snake_case: List[str] = num_attention_heads snake_case: Any = intermediate_size snake_case: int = hidden_act snake_case: Optional[Any] = hidden_dropout_prob snake_case: List[Any] = attention_probs_dropout_prob snake_case: Dict = type_sequence_label_size snake_case: Union[str, Any] = initializer_range snake_case: str = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case: Union[str, Any] = (image_size // patch_size) ** 2 snake_case: Tuple = num_patches + 1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: Optional[int] = None if self.use_labels: snake_case: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: List[Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = ViTMSNModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = self.type_sequence_label_size snake_case: Tuple = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Dict = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case: Tuple = 1 snake_case: Any = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case: str = config_and_inputs snake_case: Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = ViTMSNModelTester(self ) snake_case: Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Tuple = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: Optional[Any] = [*signature.parameters.keys()] snake_case: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: Optional[Any] = ViTMSNModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(2 ) snake_case: Optional[int] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.default_image_processor snake_case: Dict = prepare_img() snake_case: Dict = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): snake_case: Dict = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits snake_case: Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) snake_case: str = torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: int = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } snake_case: str = Dataset.from_dict(__A ) return dataset class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = get_dataset() snake_case: Any = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = get_dataset() snake_case , snake_case: List[Any] = deduplicate_dataset(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 2 ) print(SCREAMING_SNAKE_CASE__ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "mctct" def __init__( self , SCREAMING_SNAKE_CASE__=80_65 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=9_20 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=(7,) , SCREAMING_SNAKE_CASE__=(3,) , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = vocab_size snake_case: Any = hidden_size snake_case: List[str] = num_hidden_layers snake_case: Union[str, Any] = intermediate_size snake_case: str = num_attention_heads snake_case: Optional[Any] = attention_head_dim snake_case: int = max_position_embeddings snake_case: int = layer_norm_eps snake_case: str = layerdrop snake_case: int = hidden_act snake_case: List[str] = initializer_range snake_case: Optional[int] = hidden_dropout_prob snake_case: Optional[Any] = attention_probs_dropout_prob snake_case: Any = pad_token_id snake_case: Any = bos_token_id snake_case: str = eos_token_id snake_case: Union[str, Any] = conv_glu_dim snake_case: Optional[int] = conv_dropout snake_case: List[str] = num_conv_layers snake_case: Dict = input_feat_per_channel snake_case: List[Any] = input_channels snake_case: str = conv_channels snake_case: str = ctc_loss_reduction snake_case: Optional[int] = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case: int = list(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = list(SCREAMING_SNAKE_CASE__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' import re def lowerCAmelCase_ ( __A : str ): '''simple docstring''' if len(re.findall('[ATCG]' , __A ) ) != len(__A ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case: int = PegasusTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ("This is a test", "This is a test") def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = '</s>' snake_case: Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 11_03 ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case: List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case: Union[str, Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) snake_case: Any = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] snake_case: Optional[int] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word snake_case: Optional[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' snake_case: List[str] = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] snake_case: Tuple = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 snake_case: Tuple = 'To ensure a smooth flow of bank resolutions.' snake_case: Dict = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] snake_case: str = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = ['This is going to be way too long.' * 1_50, 'short example'] snake_case: int = ['not super long but more than 5 tokens', 'tiny'] snake_case: Any = self._large_tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) snake_case: Optional[int] = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=5 , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE__ ) == 2 # input_ids, attention_mask. @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = {'input_ids': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case: Union[str, Any] = PegasusTokenizer(SCREAMING_SNAKE_CASE__ , offset=0 , mask_token_sent=SCREAMING_SNAKE_CASE__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ("This is a test", "This is a test") def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case: Any = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) snake_case: List[str] = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] snake_case: Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ['This is going to be way too long.' * 10_00, 'short example'] snake_case: Tuple = ['not super long but more than 5 tokens', 'tiny'] snake_case: Union[str, Any] = self._large_tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) snake_case: int = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=5 , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE__ ) == 2 # input_ids, attention_mask. def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) snake_case: Union[str, Any] = self._large_tokenizer(SCREAMING_SNAKE_CASE__ ).input_ids self.assertListEqual( SCREAMING_SNAKE_CASE__ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' from __future__ import annotations from math import pi def lowerCAmelCase_ ( __A : float , __A : float , __A : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__() snake_case: str = value_function snake_case: Union[str, Any] = unet snake_case: int = scheduler snake_case: Any = env snake_case: List[str] = env.get_dataset() snake_case: str = {} for key in self.data.keys(): try: snake_case: List[str] = self.data[key].mean() except: # noqa: E722 pass snake_case: Any = {} for key in self.data.keys(): try: snake_case: str = self.data[key].std() except: # noqa: E722 pass snake_case: int = env.observation_space.shape[0] snake_case: Optional[int] = env.action_space.shape[0] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if type(SCREAMING_SNAKE_CASE__ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE__ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE__ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE__ , device=self.unet.device ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key, val in cond.items(): snake_case: Optional[int] = val.clone() return x_in def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = x.shape[0] snake_case: Optional[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case: int = torch.full((batch_size,) , SCREAMING_SNAKE_CASE__ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case: int = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE__ ).sample snake_case: Any = torch.autograd.grad([y.sum()] , [x] )[0] snake_case: List[Any] = self.scheduler._get_variance(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.exp(0.5 * posterior_variance ) snake_case: Any = model_std * grad snake_case: Optional[int] = 0 snake_case: Dict = x.detach() snake_case: List[str] = x + scale * grad snake_case: Optional[Any] = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) snake_case: List[str] = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case: Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , predict_epsilon=SCREAMING_SNAKE_CASE__ )['prev_sample'] # apply conditions to the trajectory (set the initial state) snake_case: int = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) snake_case: List[str] = self.to_torch(SCREAMING_SNAKE_CASE__ ) return x, y def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 ): '''simple docstring''' snake_case: Any = self.normalize(SCREAMING_SNAKE_CASE__ , 'observations' ) snake_case: Union[str, Any] = obs[None].repeat(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case: Optional[int] = {0: self.to_torch(SCREAMING_SNAKE_CASE__ )} snake_case: Union[str, Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case: Optional[Any] = randn_tensor(SCREAMING_SNAKE_CASE__ , device=self.unet.device ) snake_case: Optional[Any] = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) snake_case: Dict = self.to_torch(SCREAMING_SNAKE_CASE__ ) # run the diffusion process snake_case , snake_case: List[str] = self.run_diffusion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # sort output trajectories by value snake_case: Any = y.argsort(0 , descending=SCREAMING_SNAKE_CASE__ ).squeeze() snake_case: List[str] = x[sorted_idx] snake_case: Dict = sorted_values[:, :, : self.action_dim] snake_case: Tuple = actions.detach().cpu().numpy() snake_case: Tuple = self.de_normalize(SCREAMING_SNAKE_CASE__ , key='actions' ) # select the action with the highest value if y is not None: snake_case: Optional[Any] = 0 else: # if we didn't run value guiding, select a random action snake_case: List[str] = np.random.randint(0 , SCREAMING_SNAKE_CASE__ ) snake_case: str = denorm_actions[selected_index, 0] return denorm_actions
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "roformer" def __init__( self , SCREAMING_SNAKE_CASE__=5_00_00 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Any = vocab_size snake_case: List[Any] = hidden_size if embedding_size is None else embedding_size snake_case: str = hidden_size snake_case: List[Any] = num_hidden_layers snake_case: Union[str, Any] = num_attention_heads snake_case: Optional[Any] = hidden_act snake_case: List[str] = intermediate_size snake_case: Any = hidden_dropout_prob snake_case: str = attention_probs_dropout_prob snake_case: Any = max_position_embeddings snake_case: int = type_vocab_size snake_case: str = initializer_range snake_case: Tuple = layer_norm_eps snake_case: Dict = rotary_value snake_case: str = use_cache class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case: Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case: Union[str, Any] = {0: 'batch', 1: 'sequence'} snake_case: Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 50),) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**SCREAMING_SNAKE_CASE__ ) return config def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = dict(self.forward_default_kwargs ) snake_case: Any = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.dummy_sample snake_case: Optional[Any] = 0.1 * sample snake_case: Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case: int = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) snake_case: Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals snake_case: str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) snake_case: str = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals snake_case: Any = dummy_past_residuals[:] snake_case: List[str] = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: Dict = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case: Optional[int] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: List[str] = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = dict(self.forward_default_kwargs ) snake_case: int = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.dummy_sample snake_case: Optional[int] = 0.1 * sample snake_case: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case: List[Any] = self.get_scheduler_config() snake_case: Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) snake_case: Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) snake_case: Tuple = dummy_past_residuals[:] snake_case: str = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: List[Any] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case: Tuple = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: Optional[Any] = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = self.scheduler_classes[0] snake_case: List[str] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = 10 snake_case: int = self.dummy_model() snake_case: List[Any] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case: Dict = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = dict(self.forward_default_kwargs ) snake_case: Dict = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: snake_case: int = self.get_scheduler_config() snake_case: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case: str = self.dummy_sample snake_case: List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): snake_case: Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case: Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case: int = dummy_past_residuals[:] snake_case: Any = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: Dict = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case: Any = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: Union[str, Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCamelCase ( self ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self.scheduler_classes[0] snake_case: Optional[Any] = self.get_scheduler_config(steps_offset=1 ) snake_case: Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def _UpperCamelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = 27 for scheduler_class in self.scheduler_classes: snake_case: Optional[Any] = self.dummy_sample snake_case: Optional[int] = 0.1 * sample snake_case: Dict = self.get_scheduler_config() snake_case: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case: List[Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): snake_case: str = self.scheduler_classes[0] snake_case: List[Any] = self.get_scheduler_config() snake_case: Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.full_loop() snake_case: Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.full_loop(prediction_type='v_prediction' ) snake_case: List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) snake_case: Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) snake_case: Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase_ ( __A : Iterable[str] , __A : int ): '''simple docstring''' snake_case: Optional[Any] = iter(__A ) while True: snake_case: Tuple = tuple(itertools.islice(__A , __A ) ) if not chunk: return yield chunk def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[str] = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case: Optional[int] = '' if len(__A ) < 2: return dirty for i in range(len(__A ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__A ) & 1: clean += "X" return clean def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Union[str, Any] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case: int = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__A ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__A ) return table def lowerCAmelCase_ ( __A : str , __A : str ): '''simple docstring''' snake_case: int = generate_table(__A ) snake_case: List[Any] = prepare_input(__A ) snake_case: int = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__A , 2 ): snake_case , snake_case: str = divmod(table.index(__A ) , 5 ) snake_case , snake_case: Optional[int] = divmod(table.index(__A ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase_ ( __A : str , __A : str ): '''simple docstring''' snake_case: int = generate_table(__A ) snake_case: int = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__A , 2 ): snake_case , snake_case: Union[str, Any] = divmod(table.index(__A ) , 5 ) snake_case , snake_case: Dict = divmod(table.index(__A ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCAmelCase = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: Any = psutil.Process() snake_case: Any = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = -1 while True: snake_case: str = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = True snake_case: Union[str, Any] = threading.Thread(target=self.peak_monitor ) snake_case: List[Any] = True self.thread.start() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = False self.thread.join() return self.cpu_memory_peak __UpperCAmelCase = PeakCPUMemory() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case: Dict = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): snake_case: Union[str, Any] = torch.cuda.memory_allocated(__A ) torch.cuda.reset_peak_memory_stats() return measures def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' snake_case: str = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case: Optional[Any] = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 snake_case: int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): snake_case: List[Any] = (torch.cuda.memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 snake_case: str = (torch.cuda.max_memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 return measures def lowerCAmelCase_ ( __A : Optional[Any] , __A : Dict ): '''simple docstring''' print(f"""{description}:""" ) print(f"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__A )]:.2f}MiB""" ) snake_case: Optional[Any] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def lowerCAmelCase_ ( __A : str ): '''simple docstring''' for char in word: snake_case: Any = ord(__A ) if not _is_chinese_char(__A ): return 0 return 1 def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: int = set() for token in tokens: snake_case: Union[str, Any] = len(__A ) > 1 and is_chinese(__A ) if chinese_word: word_set.add(__A ) snake_case: Optional[Any] = list(__A ) return word_list def lowerCAmelCase_ ( __A : List[str] , __A : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case: Dict = max([len(__A ) for w in chinese_word_set] ) snake_case: List[Any] = bert_tokens snake_case , snake_case: Union[str, Any] = 0, len(__A ) while start < end: snake_case: str = True if is_chinese(bert_word[start] ): snake_case: Tuple = min(end - start , __A ) for i in range(__A , 1 , -1 ): snake_case: str = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case: List[str] = '##' + bert_word[j] snake_case: List[str] = start + i snake_case: Optional[int] = False break if single_word: start += 1 return bert_word def lowerCAmelCase_ ( __A : List[str] , __A : LTP , __A : BertTokenizer ): '''simple docstring''' snake_case: str = [] for i in range(0 , len(__A ) , 1_00 ): snake_case: Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] snake_case: Tuple = [get_chinese_word(__A ) for r in res] ltp_res.extend(__A ) assert len(__A ) == len(__A ) snake_case: Tuple = [] for i in range(0 , len(__A ) , 1_00 ): snake_case: Optional[int] = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__A , truncation=__A , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__A ) == len(__A ) snake_case: Dict = [] for input_ids, chinese_word in zip(__A , __A ): snake_case: Union[str, Any] = [] for id in input_ids: snake_case: List[Any] = bert_tokenizer._convert_id_to_token(__A ) input_tokens.append(__A ) snake_case: str = add_sub_symbol(__A , __A ) snake_case: Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__A ): if token[:2] == "##": snake_case: List[str] = token[2:] # save chinese tokens' pos if len(__A ) == 1 and _is_chinese_char(ord(__A ) ): ref_id.append(__A ) ref_ids.append(__A ) assert len(__A ) == len(__A ) return ref_ids def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: snake_case: Union[str, Any] = f.readlines() snake_case: List[Any] = [line.strip() for line in data if len(__A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case: str = LTP(args.ltp ) # faster in GPU device snake_case: str = BertTokenizer.from_pretrained(args.bert ) snake_case: str = prepare_ref(__A , __A , __A ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: snake_case: Dict = [json.dumps(__A ) + '\n' for ref in ref_ids] f.writelines(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") __UpperCAmelCase = parser.parse_args() main(args)
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCamelCase = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) # test with a raw waveform snake_case: List[Any] = np.zeros((3_40_00,) ) snake_case: List[Any] = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = examples snake_case: List[Any] = audio_classifier(SCREAMING_SNAKE_CASE__ ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ )}, {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) snake_case: Tuple = audio_classifier(SCREAMING_SNAKE_CASE__ , top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) self.run_torchaudio(SCREAMING_SNAKE_CASE__ ) @require_torchaudio def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' import datasets # test with a local file snake_case: Any = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) snake_case: Tuple = dataset[0]['audio']['array'] snake_case: Optional[int] = audio_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ )}, {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = 'anton-l/wav2vec2-random-tiny-classifier' snake_case: List[Any] = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = np.ones((80_00,) ) snake_case: Dict = audio_classifier(SCREAMING_SNAKE_CASE__ , top_k=4 ) snake_case: Any = [ {'score': 0.08_42, 'label': 'no'}, {'score': 0.08_38, 'label': 'up'}, {'score': 0.08_37, 'label': 'go'}, {'score': 0.08_34, 'label': 'right'}, ] snake_case: Dict = [ {'score': 0.08_45, 'label': 'stop'}, {'score': 0.08_44, 'label': 'on'}, {'score': 0.08_41, 'label': 'right'}, {'score': 0.08_34, 'label': 'left'}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case: Union[str, Any] = {'array': np.ones((80_00,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} snake_case: str = audio_classifier(SCREAMING_SNAKE_CASE__ , top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCamelCase ( self ): '''simple docstring''' import datasets snake_case: Any = 'superb/wav2vec2-base-superb-ks' snake_case: Any = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) snake_case: int = np.array(dataset[3]['speech'] , dtype=np.floataa ) snake_case: Any = audio_classifier(SCREAMING_SNAKE_CASE__ , top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=3 ) , [ {'score': 0.9_81, 'label': 'go'}, {'score': 0.0_07, 'label': 'up'}, {'score': 0.0_06, 'label': '_unknown_'}, {'score': 0.0_01, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 10_00 ): '''simple docstring''' snake_case , snake_case: Dict = 1, 1 snake_case: Optional[int] = 2 while True: snake_case: Dict = 0 snake_case: List[Any] = fa + fa snake_case , snake_case: Optional[int] = fa, f index += 1 for _ in str(__A ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' from math import factorial def lowerCAmelCase_ ( __A : int , __A : int , __A : float ): '''simple docstring''' if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__A , __A ) or not isinstance(__A , __A ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) snake_case: str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! snake_case: List[str] = float(factorial(__A ) ) coefficient /= factorial(__A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if n == 1 or not isinstance(__A , __A ): return 0 elif n == 2: return 1 else: snake_case: str = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: str = 0 snake_case: Any = 2 while digits < n: index += 1 snake_case: Any = len(str(fibonacci(__A ) ) ) return index def lowerCAmelCase_ ( __A : int = 10_00 ): '''simple docstring''' return fibonacci_digits_index(__A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import numpy # List of input, output pairs __UpperCAmelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCAmelCase = (((515, 22, 13), 555), ((61, 35, 49), 150)) __UpperCAmelCase = [2, 4, 1, 5] __UpperCAmelCase = len(train_data) __UpperCAmelCase = 0.009 def lowerCAmelCase_ ( __A : Union[str, Any] , __A : str="train" ): '''simple docstring''' return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' snake_case: Dict = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase_ ( __A : str , __A : Dict ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase_ ( __A : Tuple , __A : Optional[int] ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase_ ( __A : Tuple , __A : Union[str, Any]=m ): '''simple docstring''' snake_case: Optional[int] = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case: List[str] = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def lowerCAmelCase_ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case: Optional[int] = 0.00_00_02 snake_case: List[str] = 0 snake_case: Dict = 0 while True: j += 1 snake_case: List[Any] = [0, 0, 0, 0] for i in range(0 , len(__A ) ): snake_case: Optional[Any] = get_cost_derivative(i - 1 ) snake_case: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break snake_case: List[str] = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCAmelCase_ ( ): '''simple docstring''' for i in range(len(__A ) ): print(('Actual output value:', output(__A , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(__A , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 1 __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = None def _UpperCamelCase ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(SCREAMING_SNAKE_CASE__ ) for k, v in self.__dict__.items()} )
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' __UpperCAmelCase = range(2, 20 + 1) __UpperCAmelCase = [10**k for k in range(ks[-1] + 1)] __UpperCAmelCase = {} def lowerCAmelCase_ ( __A : Tuple , __A : Tuple , __A : Optional[Any] , __A : str ): '''simple docstring''' snake_case: List[str] = sum(a_i[j] for j in range(__A , len(__A ) ) ) snake_case: int = sum(a_i[j] * base[j] for j in range(min(len(__A ) , __A ) ) ) snake_case , snake_case: Any = 0, 0 snake_case: Any = n - i snake_case: Dict = memo.get(__A ) if sub_memo is not None: snake_case: str = sub_memo.get(__A ) if jumps is not None and len(__A ) > 0: # find and make the largest jump without going over snake_case: Dict = -1 for _k in range(len(__A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case: Optional[int] = _k break if max_jump >= 0: snake_case , snake_case , snake_case: List[str] = jumps[max_jump] # since the difference between jumps is cached, add c snake_case: Optional[int] = diff + c for j in range(min(__A , len(__A ) ) ): snake_case , snake_case: List[str] = divmod(__A , 10 ) if new_c > 0: add(__A , __A , __A ) else: snake_case: Optional[int] = [] else: snake_case: Dict = {c: []} snake_case: str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case , snake_case: Any = next_term(__A , k - 1 , i + dn , __A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case , snake_case: List[Any] = compute(__A , __A , i + dn , __A ) diff += _diff dn += terms_jumped snake_case: Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case: str = 0 while j < len(__A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__A , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( __A : Optional[int] , __A : Optional[int] , __A : Optional[int] , __A : Dict ): '''simple docstring''' if i >= n: return 0, i if k > len(__A ): a_i.extend([0 for _ in range(k - len(__A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case: str = i snake_case , snake_case , snake_case: Union[str, Any] = 0, 0, 0 for j in range(len(__A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case: Optional[int] = ds_c + ds_b diff += addend snake_case: Tuple = 0 for j in range(__A ): snake_case: Optional[Any] = a_i[j] + addend snake_case , snake_case: str = divmod(__A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__A , __A , __A ) return diff, i - start_i def lowerCAmelCase_ ( __A : List[Any] , __A : Union[str, Any] , __A : Any ): '''simple docstring''' for j in range(__A , len(__A ) ): snake_case: int = digits[j] + addend if s >= 10: snake_case , snake_case: Optional[int] = divmod(__A , 10 ) snake_case: Optional[Any] = addend // 10 + quotient else: snake_case: Dict = s snake_case: str = addend // 10 if addend == 0: break while addend > 0: snake_case , snake_case: Dict = divmod(__A , 10 ) digits.append(__A ) def lowerCAmelCase_ ( __A : int = 10**15 ): '''simple docstring''' snake_case: List[str] = [1] snake_case: List[str] = 1 snake_case: int = 0 while True: snake_case , snake_case: Tuple = next_term(__A , 20 , i + dn , __A ) dn += terms_jumped if dn == n - i: break snake_case: Tuple = 0 for j in range(len(__A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Tuple , __A : List[Any] ): '''simple docstring''' snake_case: Dict = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def lowerCAmelCase_ ( __A : str , __A : Dict ): '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) snake_case: Tuple = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) snake_case: Optional[int] = in_proj_weight[ : encoder_config.hidden_size, : ] snake_case: Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] snake_case: Union[str, Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[Any] , __A : str ): '''simple docstring''' snake_case: Dict = dct.pop(__A ) snake_case: int = val def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' if "handwritten" in checkpoint_url: snake_case: Union[str, Any] = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: snake_case: Any = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' snake_case: Any = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) return im @torch.no_grad() def lowerCAmelCase_ ( __A : List[Any] , __A : Any ): '''simple docstring''' snake_case: str = ViTConfig(image_size=3_84 , qkv_bias=__A ) snake_case: str = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: snake_case: Dict = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder snake_case: Dict = 10_24 snake_case: Optional[Any] = 40_96 snake_case: Dict = 24 snake_case: str = 16 snake_case: List[Any] = 10_24 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: snake_case: Optional[Any] = False snake_case: Optional[Any] = 'relu' snake_case: int = 10_24 snake_case: List[str] = True snake_case: Optional[int] = False snake_case: str = False # load HuggingFace model snake_case: List[str] = ViTModel(__A , add_pooling_layer=__A ) snake_case: int = TrOCRForCausalLM(__A ) snake_case: str = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys snake_case: Optional[int] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' , check_hash=__A )['model'] snake_case: Dict = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): snake_case: Optional[int] = state_dict.pop(__A ) if key.startswith('decoder' ) and "output_projection" not in key: snake_case: List[str] = val else: snake_case: Union[str, Any] = val # load state dict model.load_state_dict(__A ) # Check outputs on an image snake_case: Dict = ViTImageProcessor(size=encoder_config.image_size ) snake_case: Optional[Any] = RobertaTokenizer.from_pretrained('roberta-large' ) snake_case: Union[str, Any] = TrOCRProcessor(__A , __A ) snake_case: Dict = processor(images=prepare_img(__A ) , return_tensors='pt' ).pixel_values # verify logits snake_case: Optional[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) snake_case: List[Any] = model(pixel_values=__A , decoder_input_ids=__A ) snake_case: List[str] = outputs.logits snake_case: Any = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: snake_case: Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: snake_case: Union[str, Any] = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: snake_case: Union[str, Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: snake_case: List[Any] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __A , atol=1E-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=SCREAMING_SNAKE_CASE__ , help='Name of the model to download' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = model snake_case: Dict = cache snake_case: Any = force snake_case: Optional[Any] = trust_remote_code def _UpperCamelCase ( self ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' from math import loga def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__A , __A ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 / 2_55 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = size if size is not None else {'height': 2_56, 'width': 2_56} snake_case: Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) snake_case: int = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case: Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) snake_case: Dict = do_resize snake_case: Any = size snake_case: List[Any] = resample snake_case: Optional[Any] = do_center_crop snake_case: Union[str, Any] = crop_size snake_case: Union[str, Any] = do_rescale snake_case: int = rescale_factor snake_case: int = do_normalize snake_case: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case: Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Any = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: List[str] = do_resize if do_resize is not None else self.do_resize snake_case: Union[str, Any] = resample if resample is not None else self.resample snake_case: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case: Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case: int = do_normalize if do_normalize is not None else self.do_normalize snake_case: List[Any] = image_mean if image_mean is not None else self.image_mean snake_case: Optional[Any] = image_std if image_std is not None else self.image_std snake_case: int = size if size is not None else self.size snake_case: List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = crop_size if crop_size is not None else self.crop_size snake_case: Tuple = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) snake_case: int = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case: List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: snake_case: List[str] = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: snake_case: Any = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: snake_case: Tuple = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: snake_case: int = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] snake_case: Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] snake_case: Union[str, Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def lowerCAmelCase_ ( __A : Callable[[int | float], int | float] , __A : int | float , __A : int | float , __A : int = 1_00 , ): '''simple docstring''' snake_case: Optional[int] = x_start snake_case: str = fnc(__A ) snake_case: Optional[int] = 0.0 for _ in range(__A ): # Approximates curve as a sequence of linear lines and sums their length snake_case: str = (x_end - x_start) / steps + xa snake_case: Optional[Any] = fnc(__A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case: Union[str, Any] = xa snake_case: Union[str, Any] = fxa return length if __name__ == "__main__": def lowerCAmelCase_ ( __A : int ): '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __UpperCAmelCase = 10 while i <= 100_000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["GLPNFeatureExtractor"] __UpperCAmelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 2, 1] , SCREAMING_SNAKE_CASE__=[2, 2, 4] , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE__=[1, 2, 3] , ): '''simple docstring''' snake_case: Optional[Any] = parent snake_case: Tuple = batch_size snake_case: Dict = image_size snake_case: Union[str, Any] = patch_size snake_case: Union[str, Any] = num_channels snake_case: Any = embed_dim snake_case: List[Any] = depths snake_case: Any = num_heads snake_case: Tuple = window_size snake_case: str = mlp_ratio snake_case: Optional[Any] = qkv_bias snake_case: List[str] = hidden_dropout_prob snake_case: Dict = attention_probs_dropout_prob snake_case: str = drop_path_rate snake_case: Tuple = hidden_act snake_case: str = use_absolute_embeddings snake_case: str = patch_norm snake_case: Optional[Any] = layer_norm_eps snake_case: Dict = initializer_range snake_case: Any = is_training snake_case: List[Any] = scope snake_case: str = use_labels snake_case: Optional[Any] = type_sequence_label_size snake_case: Tuple = encoder_stride snake_case: Optional[Any] = out_features snake_case: int = out_indices def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: Any = None if self.use_labels: snake_case: Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: List[Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Any = model(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case: Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE__ ): snake_case: List[str] = ['stem'] snake_case: Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.prepare_config_and_inputs() snake_case , snake_case , snake_case: Dict = config_and_inputs snake_case: List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCamelCase = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = MaskFormerSwinModelTester(self ) snake_case: Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ): '''simple docstring''' return def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Tuple = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Any = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: int = [*signature.parameters.keys()] snake_case: Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): snake_case: Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = outputs.hidden_states snake_case: Optional[int] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # Swin has a different seq_length snake_case: List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case: List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case: str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Optional[Any] = 3 snake_case: List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case: int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case: Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case: Any = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: int = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__={} ): with torch.no_grad(): snake_case: Tuple = model(**SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = model(**SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): recursive_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE__ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE__ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(SCREAMING_SNAKE_CASE__ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE__ )}. Dict has""" F""" `nan`: {torch.isnan(SCREAMING_SNAKE_CASE__ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE__ )}.""" ) , ) recursive_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: snake_case: int = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Any = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) check_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {'output_hidden_states': True} ) snake_case: Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) snake_case: str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) check_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {'output_hidden_states': True} ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , snake_case ): '''simple docstring''' __UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCamelCase = MaskFormerSwinConfig def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = MaskFormerSwinModelTester(self ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Tuple = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: snake_case: Tuple = backbone_class(SCREAMING_SNAKE_CASE__ ) backbone.to(SCREAMING_SNAKE_CASE__ ) backbone.eval() snake_case: str = backbone(**SCREAMING_SNAKE_CASE__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case: int = backbone(**SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case , snake_case , snake_case: Any = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case: List[str] = backbone(**SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(outputs.attentions )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) snake_case: Dict = torch.manual_seed(0 ) snake_case: List[str] = pipe.dual_guided( prompt='first prompt' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = generator.manual_seed(0 ) snake_case: int = pipe.dual_guided( prompt='first prompt' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: str = 'cyberpunk 2077' snake_case: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) snake_case: Optional[int] = torch.manual_seed(0 ) snake_case: int = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images snake_case: Any = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Optional[int] = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 snake_case: Union[str, Any] = 'A painting of a squirrel eating a burger ' snake_case: Any = torch.manual_seed(0 ) snake_case: Union[str, Any] = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images snake_case: List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Union[str, Any] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 snake_case: List[Any] = pipe.image_variation(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images snake_case: int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: List[str] = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCAmelCase_ ( __A : int , __A : List[str] , __A : Dict , __A : Optional[Any] , __A : Optional[int] , __A : int , __A : Any , __A : List[str] , __A : Union[str, Any] , __A : List[Any] , __A : Union[str, Any] , __A : List[Any] , ): '''simple docstring''' snake_case: Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } snake_case , snake_case: List[str] = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case: str = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) snake_case: str = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case: Optional[int] = file_path.read_text(encoding='utf-8' ) else: snake_case: Union[str, Any] = output_path.read_text(encoding='utf-8' ) snake_case: Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCAmelCase_ ( __A : List[str] , __A : Optional[Any] , __A : int , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : str , __A : Tuple , __A : str , __A : Union[str, Any] , __A : str , __A : Optional[int] , ): '''simple docstring''' snake_case: List[Any] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } snake_case: Dict = input_paths[compression_format] if input_path is None: snake_case: Any = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[Any] = Extractor.infer_extractor_format(__A ) assert extractor_format is not None snake_case: Tuple = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__A , __A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case: str = file_path.read_text(encoding='utf-8' ) else: snake_case: Any = output_path.read_text(encoding='utf-8' ) snake_case: Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A : List[str] , __A : Dict ): '''simple docstring''' import tarfile snake_case: List[str] = tmp_path / 'data_dot_dot' directory.mkdir() snake_case: Optional[int] = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__A , 'w' ) as f: f.add(__A , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' import tarfile snake_case: List[str] = tmp_path / 'data_sym_link' directory.mkdir() snake_case: Optional[int] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__A ) with tarfile.TarFile(__A , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def lowerCAmelCase_ ( __A : str , __A : List[Any] , __A : Optional[Any] , __A : int , __A : Dict , __A : Any ): '''simple docstring''' snake_case: Tuple = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } snake_case: str = insecure_tar_files[insecure_tar_file] snake_case: str = tmp_path / 'extracted' TarExtractor.extract(__A , __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' snake_case: Optional[int] = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 snake_case: Dict = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase_ ( __A : Tuple , __A : int , __A : Tuple ): '''simple docstring''' snake_case: List[Any] = AlbertConfig.from_json_file(__A ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case: Union[str, Any] = AlbertForPreTraining(__A ) # Load weights from tf checkpoint load_tf_weights_in_albert(__A , __A , __A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort __UpperCAmelCase = "1" __UpperCAmelCase = "0" __UpperCAmelCase = "1" __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") __UpperCAmelCase = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] __UpperCAmelCase = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) __UpperCAmelCase = ort.RunOptions() __UpperCAmelCase = 128 __UpperCAmelCase = 1 __UpperCAmelCase = np.ones((batch, sequence), dtype=np.intaa) __UpperCAmelCase = np.ones((batch, sequence), dtype=np.intaa) __UpperCAmelCase = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") __UpperCAmelCase = time.time() __UpperCAmelCase = 2_000 __UpperCAmelCase = {} for iter in range(max_iters): __UpperCAmelCase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1_000 / max_iters))
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "LayoutLMv3ImageProcessor" __UpperCamelCase = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = kwargs.pop('feature_extractor' ) snake_case: List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor snake_case: Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Dict = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case: List[Any] = features['words'] snake_case: List[str] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # add pixel values snake_case: Any = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case: Union[str, Any] = self.get_overflowing_images(SCREAMING_SNAKE_CASE__ , encoded_inputs['overflow_to_sample_mapping'] ) snake_case: Any = images return encoded_inputs def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}""" ) return images_with_overflow def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "camembert" def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = vocab_size snake_case: List[Any] = hidden_size snake_case: str = num_hidden_layers snake_case: Tuple = num_attention_heads snake_case: int = hidden_act snake_case: Optional[int] = intermediate_size snake_case: Any = hidden_dropout_prob snake_case: int = attention_probs_dropout_prob snake_case: Tuple = max_position_embeddings snake_case: List[Any] = type_vocab_size snake_case: Tuple = initializer_range snake_case: List[Any] = layer_norm_eps snake_case: Union[str, Any] = position_embedding_type snake_case: int = use_cache snake_case: Dict = classifier_dropout class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case: str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case: List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : str ): '''simple docstring''' return "".join(chr(ord(__A ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) snake_case: str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) snake_case: Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) snake_case: Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case: int = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case: Tuple = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): snake_case: Any = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: snake_case: Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 2 snake_case: Tuple = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ) snake_case: int = floats_tensor(control_image.shape , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case: Any = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((64, 64) ) snake_case: Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _UpperCamelCase ( self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) snake_case: Optional[int] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(0 ) snake_case: List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(0 ) snake_case: List[Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) snake_case: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case: Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case: Optional[Any] = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case: Union[str, Any] = MultiControlNetModel([controlneta, controlneta] ) snake_case: Union[str, Any] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): snake_case: Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: snake_case: Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: int = 2 snake_case: int = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE__ , device=torch.device(SCREAMING_SNAKE_CASE__ ) , ), ] snake_case: int = floats_tensor(control_image[0].shape , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case: Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((64, 64) ) snake_case: int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_dummy_components() snake_case: int = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = 10.0 snake_case: List[str] = 4 snake_case: Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = steps snake_case: List[Any] = scale snake_case: List[str] = pipe(**SCREAMING_SNAKE_CASE__ )[0] snake_case: List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: Any = steps snake_case: Optional[Any] = scale snake_case: str = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] snake_case: Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = steps snake_case: Any = scale snake_case: Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] snake_case: Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = steps snake_case: Any = scale snake_case: Tuple = pipe(**SCREAMING_SNAKE_CASE__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_dummy_components() snake_case: str = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) except NotImplementedError: pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) snake_case: List[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=SCREAMING_SNAKE_CASE__ , controlnet=SCREAMING_SNAKE_CASE__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: Union[str, Any] = 'evil space-punk bird' snake_case: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) ) snake_case: Union[str, Any] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) ) snake_case: int = pipe( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , control_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) snake_case: Optional[int] = output.images[0] assert image.shape == (5_12, 5_12, 3) snake_case: int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = tempfile.mkdtemp() snake_case: List[str] = 5 # Realm tok snake_case: Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case: Optional[int] = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Any = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: List[str] = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = RealmConfig(num_block_records=self.num_block_records ) return config def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=SCREAMING_SNAKE_CASE__ , ) return block_records def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_config() snake_case: List[str] = self.get_dummy_retriever() snake_case: Dict = retriever.tokenizer snake_case: Optional[int] = np.array([0, 3] , dtype='long' ) snake_case: Dict = tokenizer(['Test question'] ).input_ids snake_case: Tuple = tokenizer( ['the fourth'] , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ).input_ids snake_case: Optional[int] = config.reader_seq_len snake_case , snake_case , snake_case , snake_case: List[str] = retriever( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , answer_ids=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.get_config() snake_case: Dict = self.get_dummy_retriever() snake_case: str = retriever.tokenizer snake_case: List[Any] = np.array([0, 3, 5] , dtype='long' ) snake_case: List[Any] = tokenizer(['Test question'] ).input_ids snake_case: List[str] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ).input_ids snake_case: Any = config.reader_seq_len snake_case , snake_case , snake_case , snake_case: Any = retriever( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , answer_ids=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path snake_case: Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: snake_case: Dict = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case: int = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = (DDIMParallelScheduler,) __UpperCamelCase = (("eta", 0.0), ("num_inference_steps", 50)) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = self.scheduler_classes[0] snake_case: List[str] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case , snake_case: str = 10, 0.0 snake_case: str = self.dummy_model() snake_case: Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def _UpperCamelCase ( self ): '''simple docstring''' for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.scheduler_classes[0] snake_case: str = self.get_scheduler_config(steps_offset=1 ) snake_case: List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def _UpperCamelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.scheduler_classes[0] snake_case: int = self.get_scheduler_config() snake_case: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.scheduler_classes[0] snake_case: Any = self.get_scheduler_config() snake_case: Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case , snake_case: str = 10, 0.0 scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.dummy_model() snake_case: Optional[int] = self.dummy_sample_deter snake_case: Any = self.dummy_sample_deter + 0.1 snake_case: Tuple = self.dummy_sample_deter - 0.1 snake_case: List[str] = samplea.shape[0] snake_case: Any = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case: Dict = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case: List[Any] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.full_loop() snake_case: Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.full_loop(prediction_type='v_prediction' ) snake_case: Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) snake_case: Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) snake_case: List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' __UpperCAmelCase = [0, 2, 4, 6, 8] __UpperCAmelCase = [1, 3, 5, 7, 9] def lowerCAmelCase_ ( __A : int , __A : int , __A : list[int] , __A : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case: Optional[int] = 0 for digit in range(10 ): snake_case: str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __A , __A ) return result snake_case: Optional[Any] = 0 for digita in range(10 ): snake_case: List[str] = digita if (remainder + digita) % 2 == 0: snake_case: List[Any] = ODD_DIGITS else: snake_case: Any = EVEN_DIGITS for digita in other_parity_digits: snake_case: Any = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __A , __A , ) return result def lowerCAmelCase_ ( __A : int = 9 ): '''simple docstring''' snake_case: Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__A , 0 , [0] * length , __A ) return result if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase = 500_000 __UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__) __UpperCAmelCase = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCAmelCase_ ( __A : datasets.Dataset , **__A : int ): '''simple docstring''' snake_case: Dict = dataset.map(**__A ) @get_duration def lowerCAmelCase_ ( __A : datasets.Dataset , **__A : Tuple ): '''simple docstring''' snake_case: int = dataset.filter(**__A ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: str = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case: str = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case: int = generate_example_dataset( os.path.join(__A , 'dataset.arrow' ) , __A , num_examples=__A ) snake_case: int = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__A ) def tokenize(__A : Union[str, Any] ): return tokenizer(examples['text'] ) snake_case: Dict = map(__A ) snake_case: str = map(__A , batched=__A ) snake_case: Any = map(__A , function=lambda __A : None , batched=__A ) with dataset.formatted_as(type='numpy' ): snake_case: Dict = map(__A , function=lambda __A : None , batched=__A ) with dataset.formatted_as(type='pandas' ): snake_case: Union[str, Any] = map(__A , function=lambda __A : None , batched=__A ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case: int = map(__A , function=lambda __A : None , batched=__A ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case: List[str] = map(__A , function=lambda __A : None , batched=__A ) snake_case: Optional[Any] = map(__A , function=__A , batched=__A ) snake_case: str = filter(__A ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__A , 'wb' ) as f: f.write(json.dumps(__A ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' import os from distutils.util import strtobool def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for e in env_keys: snake_case: Optional[int] = int(os.environ.get(__A , -1 ) ) if val >= 0: return val return default def lowerCAmelCase_ ( __A : Optional[int] , __A : str=False ): '''simple docstring''' snake_case: Optional[int] = os.environ.get(__A , str(__A ) ) return strtobool(__A ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Dict="no" ): '''simple docstring''' snake_case: Union[str, Any] = os.environ.get(__A , str(__A ) ) return value
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __UpperCAmelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __UpperCAmelCase = get_tests_dir("fixtures/vocab.json") __UpperCAmelCase = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = 0 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Optional[int] = WavaVecaConfig() snake_case: List[str] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) copyfile(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.json' ) ) snake_case: List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Optional[int] = WavaVecaFeatureExtractor() snake_case: int = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case: int = WavaVecaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # drop `processor_class` in tokenizer with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'r' ) as f: snake_case: List[str] = json.load(SCREAMING_SNAKE_CASE__ ) config_dict.pop('processor_class' ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Union[str, Any] = WavaVecaFeatureExtractor() snake_case: Optional[Any] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case: List[Any] = WavaVecaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # drop `processor_class` in feature extractor with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'r' ) as f: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) config_dict.pop('processor_class' ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Optional[int] = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # copy relevant files copyfile(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' ) as f: f.write('{}' ) snake_case: Tuple = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): snake_case: List[str] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) snake_case: List[str] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) snake_case: int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version snake_case: Dict = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def _UpperCamelCase ( self ): '''simple docstring''' try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case: str = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case: str = os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case: Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = CustomProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self ): '''simple docstring''' class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = False class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = False class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "AutoFeatureExtractor" __UpperCamelCase = "AutoTokenizer" __UpperCamelCase = False try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local classes. snake_case: Optional[Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case: Any = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case: Dict = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' snake_case: List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE__ , 'test-processor' ) , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token ) snake_case: Optional[Any] = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE__ , 'test-processor-org' ) , push_to_hub=SCREAMING_SNAKE_CASE__ , use_auth_token=self._token , organization='valid_org' , ) snake_case: Optional[int] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE__ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCamelCase ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case: Optional[int] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case: Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case: List[Any] = CustomTokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Any = CustomProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) snake_case: Optional[int] = Repository(SCREAMING_SNAKE_CASE__ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) ) as f: snake_case: List[Any] = json.load(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , 'custom_processing.py' ) ) ) repo.push_to_hub() snake_case: Dict = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCAmelCase = False __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "ybelkada/fonts" def lowerCAmelCase_ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ 'Pix2StructImageProcessor. Please upgrade torch.' ) def lowerCAmelCase_ ( __A : List[Any] , __A : str , __A : int ): '''simple docstring''' requires_backends(__A , ['torch'] ) _check_torch_version() snake_case: str = image_tensor.unsqueeze(0 ) snake_case: Optional[int] = torch.nn.functional.unfold(__A , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case: List[Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __A , __A , -1 ) snake_case: List[Any] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( __A : str , __A : int = 36 , __A : str = "black" , __A : str = "white" , __A : int = 5 , __A : int = 5 , __A : int = 5 , __A : int = 5 , __A : Optional[bytes] = None , __A : Optional[str] = None , ): '''simple docstring''' requires_backends(__A , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case: List[str] = textwrap.TextWrapper(width=80 ) snake_case: Dict = wrapper.wrap(text=__A ) snake_case: List[Any] = '\n'.join(__A ) if font_bytes is not None and font_path is None: snake_case: Optional[Any] = io.BytesIO(__A ) elif font_path is not None: snake_case: Union[str, Any] = font_path else: snake_case: List[Any] = hf_hub_download(__A , 'Arial.TTF' ) snake_case: Dict = ImageFont.truetype(__A , encoding='UTF-8' , size=__A ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case: int = ImageDraw.Draw(Image.new('RGB' , (1, 1) , __A ) ) snake_case , snake_case , snake_case , snake_case: List[str] = temp_draw.textbbox((0, 0) , __A , __A ) # Create the actual image with a bit of padding around the text. snake_case: str = text_width + left_padding + right_padding snake_case: Union[str, Any] = text_height + top_padding + bottom_padding snake_case: Any = Image.new('RGB' , (image_width, image_height) , __A ) snake_case: Tuple = ImageDraw.Draw(__A ) draw.text(xy=(left_padding, top_padding) , text=__A , fill=__A , font=__A ) return image def lowerCAmelCase_ ( __A : np.ndarray , __A : str , **__A : int ): '''simple docstring''' requires_backends(__A , 'vision' ) # Convert to PIL image if necessary snake_case: Optional[Any] = to_pil_image(__A ) snake_case: Tuple = render_text(__A , **__A ) snake_case: int = max(header_image.width , image.width ) snake_case: Optional[int] = int(image.height * (new_width / image.width) ) snake_case: List[Any] = int(header_image.height * (new_width / header_image.width) ) snake_case: Optional[int] = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case: str = to_numpy_array(__A ) if infer_channel_dimension_format(__A ) == ChannelDimension.LAST: snake_case: List[Any] = to_channel_dimension_format(__A , ChannelDimension.LAST ) return new_image class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = ["flattened_patches"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 20_48 , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case: Dict = do_normalize snake_case: int = do_convert_rgb snake_case: str = max_patches snake_case: Dict = is_vqa def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch snake_case: Optional[Any] = to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , ChannelDimension.FIRST ) snake_case: int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case: str = patch_size['height'], patch_size['width'] snake_case , snake_case: Union[str, Any] = get_image_size(SCREAMING_SNAKE_CASE__ ) # maximize scale s.t. snake_case: List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) snake_case: Tuple = max(min(math.floor(scale * image_height / patch_height ) , SCREAMING_SNAKE_CASE__ ) , 1 ) snake_case: Optional[int] = max(min(math.floor(scale * image_width / patch_width ) , SCREAMING_SNAKE_CASE__ ) , 1 ) snake_case: str = max(num_feasible_rows * patch_height , 1 ) snake_case: Union[str, Any] = max(num_feasible_cols * patch_width , 1 ) snake_case: Optional[int] = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ , antialias=SCREAMING_SNAKE_CASE__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case: Optional[int] = torch_extract_patches(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = patches.shape snake_case: Optional[int] = patches_shape[1] snake_case: List[Any] = patches_shape[2] snake_case: List[str] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case: int = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] snake_case: List[Any] = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([rows, 1] ).repeat(1 , SCREAMING_SNAKE_CASE__ ).reshape([rows * columns, 1] ) snake_case: List[Any] = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([1, columns] ).repeat(SCREAMING_SNAKE_CASE__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case: Dict = row_ids.to(torch.floataa ) snake_case: List[str] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case: Any = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case: Tuple = torch.nn.functional.pad(SCREAMING_SNAKE_CASE__ , [0, 0, 0, max_patches - (rows * columns)] ).float() snake_case: Optional[int] = to_numpy_array(SCREAMING_SNAKE_CASE__ ) return result def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if image.dtype == np.uinta: snake_case: Union[str, Any] = image.astype(np.floataa ) # take mean across the whole `image` snake_case: Any = np.mean(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = np.std(SCREAMING_SNAKE_CASE__ ) snake_case: int = max(SCREAMING_SNAKE_CASE__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: str = do_normalize if do_normalize is not None else self.do_normalize snake_case: Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case: str = patch_size if patch_size is not None else self.patch_size snake_case: Any = max_patches if max_patches is not None else self.max_patches snake_case: Optional[Any] = self.is_vqa if kwargs.get('data_format' , SCREAMING_SNAKE_CASE__ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) snake_case: int = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case: str = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. snake_case: str = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) snake_case: Optional[Any] = kwargs.pop('font_bytes' , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = kwargs.pop('font_path' , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: str = [header_text] * len(SCREAMING_SNAKE_CASE__ ) snake_case: int = [ render_header(SCREAMING_SNAKE_CASE__ , header_text[i] , font_bytes=SCREAMING_SNAKE_CASE__ , font_path=SCREAMING_SNAKE_CASE__ ) for i, image in enumerate(SCREAMING_SNAKE_CASE__ ) ] if do_normalize: snake_case: Optional[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ) for image in images] # convert to torch tensor and permute snake_case: List[Any] = [ self.extract_flattened_patches(image=SCREAMING_SNAKE_CASE__ , max_patches=SCREAMING_SNAKE_CASE__ , patch_size=SCREAMING_SNAKE_CASE__ ) for image in images ] # create attention mask in numpy snake_case: Any = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] snake_case: List[str] = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_outputs
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __UpperCAmelCase = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } __UpperCAmelCase = { "facebook/blenderbot_small-90M": 512, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BlenderbotSmallTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ , merges=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , ) , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = add_prefix_space def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: Any = [self.sep_token_id] snake_case: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = data snake_case: Node | None = None snake_case: Node | None = None def lowerCAmelCase_ ( __A : Node | None ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase_ ( __A : Node | None ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase_ ( __A : Node ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase_ ( ): # Main function for testing. '''simple docstring''' snake_case: Tuple = Node(1 ) snake_case: Optional[int] = Node(2 ) snake_case: Optional[Any] = Node(3 ) snake_case: Optional[Any] = Node(4 ) snake_case: Tuple = Node(5 ) snake_case: int = Node(6 ) snake_case: Optional[int] = Node(7 ) snake_case: Optional[int] = Node(8 ) snake_case: str = Node(9 ) print(is_full_binary_tree(__A ) ) print(depth_of_tree(__A ) ) print('Tree is: ' ) display(__A ) if __name__ == "__main__": main()
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __UpperCAmelCase = object() # For specifying empty leaf dict `{}` __UpperCAmelCase = object() def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Dict = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): snake_case: List[Any] = [x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def lowerCAmelCase_ ( __A : str ): '''simple docstring''' def replace(__A : Optional[int] , __A : Optional[int] ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def lowerCAmelCase_ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __A )), (("transformer", "wte", "embedding"), P('mp' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: str = _get_partition_rules() snake_case: str = _replacement_rules(__A ) snake_case: int = {k: _unmatched for k in flatten_dict(__A )} snake_case: List[Any] = {k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : str , __A : List[Any] ): '''simple docstring''' snake_case: Union[str, Any] = b.T snake_case: Optional[Any] = np.sum(np.square(__A ) , axis=1 ) snake_case: Dict = np.sum(np.square(__A ) , axis=0 ) snake_case: List[str] = np.matmul(__A , __A ) snake_case: int = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCAmelCase_ ( __A : Tuple , __A : Tuple ): '''simple docstring''' snake_case: List[Any] = x.reshape(-1 , 3 ) snake_case: Union[str, Any] = squared_euclidean_distance(__A , __A ) return np.argmin(__A , axis=1 ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = size if size is not None else {'height': 2_56, 'width': 2_56} snake_case: Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ) if clusters is not None else None snake_case: List[Any] = do_resize snake_case: Tuple = size snake_case: Tuple = resample snake_case: str = do_normalize snake_case: Union[str, Any] = do_color_quantize def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: int = rescale(image=SCREAMING_SNAKE_CASE__ , scale=1 / 1_27.5 , data_format=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = image - 1 return image def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: List[str] = do_resize if do_resize is not None else self.do_resize snake_case: Tuple = size if size is not None else self.size snake_case: List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = resample if resample is not None else self.resample snake_case: List[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case: List[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case: Union[str, Any] = clusters if clusters is not None else self.clusters snake_case: int = np.array(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. snake_case: Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: snake_case: Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: snake_case: List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ) for image in images] if do_color_quantize: snake_case: Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case: List[str] = np.array(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = color_quantize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case: Union[str, Any] = images.shape[0] snake_case: Optional[int] = images.reshape(SCREAMING_SNAKE_CASE__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case: str = list(SCREAMING_SNAKE_CASE__ ) else: snake_case: Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] snake_case: Optional[int] = {'input_ids': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: str = eval_examples snake_case: str = post_process_function def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = "eval" ): '''simple docstring''' snake_case: int = self.eval_dataset if eval_dataset is None else eval_dataset snake_case: Optional[int] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case: Union[str, Any] = self.compute_metrics snake_case: str = None snake_case: List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case: Optional[int] = time.time() try: snake_case: Tuple = eval_loop( SCREAMING_SNAKE_CASE__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE__ , metric_key_prefix=SCREAMING_SNAKE_CASE__ , ) finally: snake_case: List[str] = compute_metrics snake_case: Optional[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case: List[str] = self.post_process_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , output.predictions ) snake_case: Dict = self.compute_metrics(SCREAMING_SNAKE_CASE__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case: Dict = metrics.pop(SCREAMING_SNAKE_CASE__ ) metrics.update(output.metrics ) else: snake_case: Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(SCREAMING_SNAKE_CASE__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case: List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE__ ) return metrics def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = "test" ): '''simple docstring''' snake_case: Dict = self.get_test_dataloader(SCREAMING_SNAKE_CASE__ ) # Temporarily disable metric computation, we will do it in the loop here. snake_case: Tuple = self.compute_metrics snake_case: Optional[Any] = None snake_case: Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case: List[str] = time.time() try: snake_case: Dict = eval_loop( SCREAMING_SNAKE_CASE__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE__ , metric_key_prefix=SCREAMING_SNAKE_CASE__ , ) finally: snake_case: Union[str, Any] = compute_metrics snake_case: List[str] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case: Optional[int] = self.post_process_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , output.predictions , 'predict' ) snake_case: int = self.compute_metrics(SCREAMING_SNAKE_CASE__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case: Tuple = metrics.pop(SCREAMING_SNAKE_CASE__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) __UpperCamelCase = ["accelerate", "launch"] __UpperCamelCase = Path.home() / ".cache/huggingface/accelerate" __UpperCamelCase = "default_config.yaml" __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / "_default_config.yaml" __UpperCamelCase = Path("tests/test_configs" ) @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _UpperCamelCase ( self ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=SCREAMING_SNAKE_CASE__ ): execute_subprocess_async( self.base_cmd + ['--config_file', str(SCREAMING_SNAKE_CASE__ ), self.test_file_path] , env=os.environ.copy() ) def _UpperCamelCase ( self ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "test-tpu" __UpperCamelCase = "us-central1-a" __UpperCamelCase = "ls" __UpperCamelCase = ["accelerate", "tpu-config"] __UpperCamelCase = "cd /usr/share" __UpperCamelCase = "tests/test_samples/test_command_file.sh" __UpperCamelCase = "Running gcloud compute tpus tpu-vm ssh" def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=SCREAMING_SNAKE_CASE__ ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=SCREAMING_SNAKE_CASE__ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , SCREAMING_SNAKE_CASE__ , )
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCAmelCase = Mapping[str, np.ndarray] __UpperCAmelCase = Mapping[str, Any] # Is a nested dict. __UpperCAmelCase = 0.01 @dataclasses.dataclass(frozen=snake_case ) class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __UpperCamelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __UpperCamelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __UpperCamelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __UpperCamelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __UpperCamelCase = None # Optional remark about the protein. Included as a comment in output PDB # files __UpperCamelCase = None # Templates used to generate this protein (prediction-only) __UpperCamelCase = None # Chain corresponding to each parent __UpperCamelCase = None def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Tuple = r'(\[[A-Z]+\]\n)' snake_case: List[str] = [tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] snake_case: Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) snake_case: List[str] = ["N", "CA", "C"] snake_case: Optional[int] = None snake_case: int = None snake_case: Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: snake_case: Optional[int] = g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: snake_case: Tuple = 'X' # FIXME: strings are immutable snake_case: Optional[Any] = np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case: List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) snake_case: Tuple = np.array(__A ) snake_case: Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): snake_case: Optional[Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case: Tuple = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) snake_case: Optional[int] = np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): snake_case: Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def lowerCAmelCase_ ( __A : Protein , __A : int = 0 ): '''simple docstring''' snake_case: List[str] = [] snake_case: List[str] = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case: Optional[Any] = prot.parents snake_case: str = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case: List[Any] = [p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: snake_case: List[Any] = ['N/A'] pdb_headers.append(f"""PARENT {' '.join(__A )}""" ) return pdb_headers def lowerCAmelCase_ ( __A : Protein , __A : str ): '''simple docstring''' snake_case: List[str] = [] snake_case: str = pdb_str.split('\n' ) snake_case: Any = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case: List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case: Optional[Any] = [] if prot.parents_chain_index is not None: snake_case: Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) snake_case: Union[str, Any] = max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case: Any = parent_dict.get(str(__A ) , ['N/A'] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case: List[str] = [['N/A']] def make_parent_line(__A : Sequence[str] ) -> str: return f"""PARENT {' '.join(__A )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case: Optional[int] = 0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): snake_case: Dict = parents_per_chain[chain_counter] else: snake_case: List[str] = ['N/A'] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def lowerCAmelCase_ ( __A : Protein ): '''simple docstring''' snake_case: List[Any] = residue_constants.restypes + ['X'] def res_atoa(__A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) snake_case: Any = residue_constants.atom_types snake_case: List[str] = [] snake_case: Optional[Any] = prot.atom_mask snake_case: List[Any] = prot.aatype snake_case: Tuple = prot.atom_positions snake_case: Any = prot.residue_index.astype(np.intaa ) snake_case: Any = prot.b_factors snake_case: Optional[int] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) snake_case: Optional[int] = get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) snake_case: List[Any] = aatype.shape[0] snake_case: List[Any] = 1 snake_case: str = 0 snake_case: int = string.ascii_uppercase snake_case: List[str] = None # Add all atom sites. for i in range(__A ): snake_case: Union[str, Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case: List[Any] = 'ATOM' snake_case: Any = atom_name if len(__A ) == 4 else f""" {atom_name}""" snake_case: List[str] = '' snake_case: List[str] = '' snake_case: List[Any] = 1.00 snake_case: Union[str, Any] = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case: Optional[int] = '' snake_case: Optional[int] = 'A' if chain_index is not None: snake_case: Any = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case: List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__A ) atom_index += 1 snake_case: str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case: List[Any] = True snake_case: int = chain_index[i + 1] if should_terminate: # Close the chain. snake_case: Tuple = 'TER' snake_case: Optional[Any] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__A ) def lowerCAmelCase_ ( __A : Protein ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCAmelCase_ ( __A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ): '''simple docstring''' return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __UpperCAmelCase = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCAmelCase_ ( __A : Optional[int] , __A : int=None ): '''simple docstring''' require_version(deps[pkg] , __A )
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: list[list[Edge]] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case: List[Any] = size def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return self._size def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = deque([start_vertex] ) snake_case: list[int | None] = [None] * self.size snake_case: int = 0 while queue: snake_case: Optional[int] = queue.popleft() snake_case: Dict = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case: str = current_distance + edge.weight snake_case: List[Any] = distances[edge.destination_vertex] if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and new_distance >= dest_vertex_distance ): continue snake_case: Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None __UpperCAmelCase = namedtuple("CoinsDistribResult", "moves excess") def lowerCAmelCase_ ( __A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__A ) != count_coins(__A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(__A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case , snake_case: List[Any] = get_distrib(node.left ) snake_case , snake_case: Any = get_distrib(node.right ) snake_case: Dict = 1 - left_distrib_excess snake_case: Any = 1 - right_distrib_excess snake_case: List[Any] = ( left_distrib_moves + right_distrib_moves + abs(__A ) + abs(__A ) ) snake_case: List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__A , __A ) return get_distrib(__A )[0] if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __UpperCAmelCase = 0b101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: List[Any] = WATERMARK_BITS snake_case: Any = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if images.shape[-1] < 2_56: return images snake_case: str = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case: str = [self.encoder.encode(SCREAMING_SNAKE_CASE__ , 'dwtDct' ) for image in images] snake_case: List[Any] = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE__ ) ).permute(0 , 3 , 1 , 2 ) snake_case: Union[str, Any] = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int ): '''simple docstring''' assert ( isinstance(__A , __A ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 snake_case , snake_case: Tuple = 1, 1 for _ in range(number_of_steps - 1 ): snake_case , snake_case: List[str] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="last" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' snake_case: List[Any] = parent snake_case: List[str] = batch_size snake_case: List[str] = seq_length snake_case: List[Any] = is_training snake_case: Optional[Any] = use_input_lengths snake_case: Union[str, Any] = use_token_type_ids snake_case: List[Any] = use_labels snake_case: Union[str, Any] = gelu_activation snake_case: List[str] = sinusoidal_embeddings snake_case: Optional[int] = causal snake_case: Optional[int] = asm snake_case: List[str] = n_langs snake_case: Union[str, Any] = vocab_size snake_case: Dict = n_special snake_case: int = hidden_size snake_case: int = num_hidden_layers snake_case: str = num_attention_heads snake_case: int = hidden_dropout_prob snake_case: Tuple = attention_probs_dropout_prob snake_case: Optional[Any] = max_position_embeddings snake_case: Dict = type_vocab_size snake_case: List[Any] = type_sequence_label_size snake_case: str = initializer_range snake_case: List[str] = num_labels snake_case: Optional[int] = num_choices snake_case: List[str] = summary_type snake_case: Optional[int] = use_proj snake_case: int = scope def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case: Union[str, Any] = None if self.use_input_lengths: snake_case: int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case: List[Any] = None if self.use_token_type_ids: snake_case: Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case: str = None snake_case: Any = None snake_case: str = None if self.use_labels: snake_case: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() snake_case: Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case: Optional[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCamelCase ( self ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: str = FlaubertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Dict = model(SCREAMING_SNAKE_CASE__ , lengths=SCREAMING_SNAKE_CASE__ , langs=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ , langs=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Dict = FlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Tuple = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: List[str] = FlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: str = model(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = model(SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = FlaubertForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = model( SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , cls_index=SCREAMING_SNAKE_CASE__ , is_impossible=SCREAMING_SNAKE_CASE__ , p_mask=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = model( SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , cls_index=SCREAMING_SNAKE_CASE__ , is_impossible=SCREAMING_SNAKE_CASE__ , ) ((snake_case) , ): Optional[int] = result_with_labels.to_tuple() snake_case: Any = model(SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) ((snake_case) , ): Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Union[str, Any] = FlaubertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Dict = model(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Any = self.num_labels snake_case: Optional[int] = FlaubertForTokenClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Tuple = self.num_choices snake_case: str = FlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: Tuple = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ): List[str] = config_and_inputs snake_case: Dict = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case: int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = FlaubertModelTester(self ) snake_case: List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , emb_dim=37 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: int = FlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case: Optional[Any] = True snake_case: Optional[int] = model_class(config=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.jit.trace( SCREAMING_SNAKE_CASE__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'traced_model.pt' ) ) snake_case: Any = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE__ , 'traced_model.pt' ) , map_location=SCREAMING_SNAKE_CASE__ ) loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE__ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE__ ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) snake_case: Optional[int] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): snake_case: Any = model(SCREAMING_SNAKE_CASE__ )[0] snake_case: Any = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.values[key] def _UpperCamelCase ( self ): '''simple docstring''' return ( sum(self.charge_factor - len(SCREAMING_SNAKE_CASE__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(SCREAMING_SNAKE_CASE__ ) == 0 ): return key return super()._collision_resolution(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' import itertools import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[str] = 2 while True: if is_prime(__A ): yield num num += 1 def lowerCAmelCase_ ( __A : int = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , __A ) ) if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): '''simple docstring''' __UpperCamelCase = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 0.02 , SCREAMING_SNAKE_CASE__ = 1_00 , SCREAMING_SNAKE_CASE__ = 1.0_07 , SCREAMING_SNAKE_CASE__ = 80 , SCREAMING_SNAKE_CASE__ = 0.05 , SCREAMING_SNAKE_CASE__ = 50 , ): '''simple docstring''' snake_case: Dict = sigma_max # setable values snake_case: int = None snake_case: np.IntTensor = None snake_case: torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' return sample def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: List[str] = num_inference_steps snake_case: str = np.arange(0 , self.num_inference_steps )[::-1].copy() snake_case: List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: snake_case: Any = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: snake_case: Dict = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case: int = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) snake_case: Optional[int] = sigma + gamma * sigma snake_case: Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ): '''simple docstring''' snake_case: Optional[int] = sample_hat + sigma_hat * model_output snake_case: Any = (sample_hat - pred_original_sample) / sigma_hat snake_case: str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ): '''simple docstring''' snake_case: str = sample_prev + sigma_prev * model_output snake_case: List[str] = (sample_prev - pred_original_sample) / sigma_prev snake_case: List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise NotImplementedError()
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = field(default_factory=snake_case ) __UpperCamelCase = field(default_factory=snake_case ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE__ ) [x.remove() for x in self.handles] return self @property def _UpperCamelCase ( self ): '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 1 __UpperCamelCase = field(default_factory=snake_case ) __UpperCamelCase = field(default_factory=snake_case ) __UpperCamelCase = True def __call__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = Tracker(self.dest )(SCREAMING_SNAKE_CASE__ ).parametrized snake_case: List[str] = Tracker(self.src )(SCREAMING_SNAKE_CASE__ ).parametrized snake_case: Tuple = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.src_skip , SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.dest_skip , SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE__ )} operations while""" F""" destination module has {len(SCREAMING_SNAKE_CASE__ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F"""Unexpected layer name {k}""" snake_case: Optional[int] = len(SCREAMING_SNAKE_CASE__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) snake_case: Optional[int] = nn.ModuleDict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return get_trunk_forward_outputs( SCREAMING_SNAKE_CASE__ , out_feat_keys=SCREAMING_SNAKE_CASE__ , feature_blocks=self._feature_blocks , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if x not in self: snake_case: str = self.convert_name_to_timm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ).eval(), None) ) else: snake_case: str = super().__getitem__(SCREAMING_SNAKE_CASE__ ) return val class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "seer" in x and "in1k" not in x: snake_case: List[Any] = RegNetModel else: snake_case: str = RegNetForImageClassification return val def lowerCAmelCase_ ( __A : List[str] , __A : Tuple , __A : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: snake_case: Tuple = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowerCAmelCase_ ( __A : str , __A : Callable[[], nn.Module] , __A : Callable[[], nn.Module] , __A : RegNetConfig , __A : Path , __A : bool = True , ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): snake_case , snake_case: Optional[int] = from_model_func() snake_case: str = our_model_func(__A ).eval() snake_case: Dict = ModuleTransfer(src=__A , dest=__A , raise_if_mismatch=__A ) snake_case: Tuple = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__A ) if from_state_dict is not None: snake_case: str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case: Optional[int] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] snake_case: int = manually_copy_vissl_head(__A , our_model.state_dict() , __A ) our_model.load_state_dict(__A ) snake_case: Tuple = our_model(__A , output_hidden_states=__A ) snake_case: int = ( our_outputs.logits if isinstance(__A , __A ) else our_outputs.last_hidden_state ) snake_case: Any = from_model(__A ) snake_case: Dict = from_output[-1] if type(__A ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case: Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(__A , __A ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__A , ) snake_case: Union[str, Any] = 2_24 if 'seer' not in name else 3_84 # we can use the convnext one snake_case: Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__A ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__A , ) print(f"""Pushed {name}""" ) def lowerCAmelCase_ ( __A : Path , __A : str = None , __A : bool = True ): '''simple docstring''' snake_case: List[str] = 'imagenet-1k-id2label.json' snake_case: Tuple = 10_00 snake_case: Any = (1, num_labels) snake_case: Optional[Any] = 'huggingface/label-files' snake_case: int = num_labels snake_case: Optional[Any] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='dataset' ) ) , 'r' ) ) snake_case: Any = {int(__A ): v for k, v in idalabel.items()} snake_case: int = idalabel snake_case: str = {v: k for k, v in idalabel.items()} snake_case: Any = partial(__A , num_labels=__A , idalabel=__A , labelaid=__A ) snake_case: List[Any] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } snake_case: List[Any] = NameToOurModelFuncMap() snake_case: Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__A : str , __A : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case: Dict = torch.hub.load_state_dict_from_url(__A , model_dir=str(__A ) , map_location='cpu' ) snake_case: int = model_func() # check if we have a head, if yes add it snake_case: Tuple = files['classy_state_dict']['base_model']['model'] snake_case: str = model_state_dict['trunk'] model.load_state_dict(__A ) return model.eval(), model_state_dict["heads"] # pretrained snake_case: Any = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case: int = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case: int = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case: Union[str, Any] = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case: Any = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case: Tuple = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case: Tuple = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case: Optional[int] = partial( __A , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __A , __A , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __A , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __A , __A , __A , ) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=10_00 , SCREAMING_SNAKE_CASE__=[3, 3, 6, 4] , SCREAMING_SNAKE_CASE__=[48, 56, 1_12, 2_20] , ): '''simple docstring''' snake_case: Optional[Any] = parent snake_case: List[str] = batch_size snake_case: Tuple = num_channels snake_case: int = is_training snake_case: Union[str, Any] = use_labels snake_case: Any = hidden_dropout_prob snake_case: List[Any] = attention_probs_dropout_prob snake_case: Optional[Any] = num_labels snake_case: Optional[Any] = image_size snake_case: List[Any] = layer_depths snake_case: Optional[int] = embed_dims def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: List[str] = None if self.use_labels: snake_case: List[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case: Dict = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=SCREAMING_SNAKE_CASE__ , layer_scale_init_value=1E-5 , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = SwiftFormerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = self.num_labels snake_case: int = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Optional[int] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) snake_case: Any = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ): '''simple docstring''' ((snake_case) , (snake_case) , (snake_case)): Union[str, Any] = self.prepare_config_and_inputs() snake_case: Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = SwiftFormerModelTester(self ) snake_case: Optional[int] = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: Optional[int] = [*signature.parameters.keys()] snake_case: Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: Any = SwiftFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Any = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): snake_case: Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case: int = outputs.hidden_states snake_case: str = 8 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(SCREAMING_SNAKE_CASE__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) snake_case , snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' def _config_zero_init(SCREAMING_SNAKE_CASE__ ): snake_case: Union[str, Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1E-10 ) if isinstance(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = _config_zero_init(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return configs_no_init snake_case , snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case: List[Any] = _config_zero_init(SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: snake_case: Union[str, Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.default_image_processor snake_case: List[str] = prepare_img() snake_case: Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): snake_case: Any = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits snake_case: Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' for i in range(0 , __A ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' for i in range(__A , 0 , -1 ): for _ in range(__A , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__A ) # upper half reverse_floyd(__A ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __UpperCAmelCase = 1 while K: __UpperCAmelCase = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __UpperCAmelCase = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __UpperCAmelCase = spec.loader.load_module() __UpperCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCAmelCase = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __UpperCAmelCase = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: str = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case: str = False # source code of `config_class` snake_case: List[str] = inspect.getsource(__A ) snake_case: Optional[int] = _re_checkpoint.findall(__A ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case , snake_case: Dict = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case: Tuple = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: snake_case: Optional[Any] = True break snake_case: int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__A ) if len(__A ) > 0: snake_case: Tuple = '\n'.join(sorted(__A ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: Dict = torch.load(__A , map_location='cpu' ) if "model" in sd.keys(): snake_case: Optional[Any] = torch.load(__A , map_location='cpu' )['model'] # pop unnecessary weights snake_case: Union[str, Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case: List[Any] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case: List[str] = sd.pop(__A ) snake_case: Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case: List[Any] = sd[key] # We split QKV in separate Q,K,V snake_case: int = key.replace('.qkv_proj.' , '.q_proj.' ) snake_case: int = key.replace('.qkv_proj.' , '.k_proj.' ) snake_case: Dict = key.replace('.qkv_proj.' , '.v_proj.' ) snake_case: int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case: Union[str, Any] = torch.split(__A , depth // 3 , dim=0 ) snake_case: Any = q snake_case: Tuple = k snake_case: Tuple = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase_ ( __A : Dict , __A : Dict , __A : Optional[Any]=None ): '''simple docstring''' snake_case: str = load_checkpoint(__A ) if config is not None: snake_case: Optional[Any] = OPTConfig.from_pretrained(__A ) else: snake_case: Dict = OPTConfig() snake_case: List[Any] = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __UpperCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=4 , ): '''simple docstring''' snake_case: str = parent snake_case: Any = batch_size snake_case: List[str] = seq_length snake_case: Union[str, Any] = is_training snake_case: Any = use_attention_mask snake_case: Union[str, Any] = use_token_type_ids snake_case: Union[str, Any] = use_labels snake_case: Tuple = vocab_size snake_case: Tuple = hidden_size snake_case: Union[str, Any] = num_hidden_layers snake_case: Optional[Any] = num_attention_heads snake_case: int = intermediate_size snake_case: Union[str, Any] = hidden_act snake_case: Any = hidden_dropout_prob snake_case: Optional[int] = attention_probs_dropout_prob snake_case: Optional[int] = max_position_embeddings snake_case: int = type_vocab_size snake_case: Union[str, Any] = type_sequence_label_size snake_case: List[str] = initializer_range snake_case: Dict = num_choices def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: str = None if self.use_attention_mask: snake_case: Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case: Any = None if self.use_token_type_ids: snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case: Any = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case: Optional[Any] = config_and_inputs snake_case: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case: str = config_and_inputs snake_case: int = True snake_case: int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: snake_case: Tuple = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ )[0] snake_case: Tuple = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. snake_case: Optional[Any] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case: Any = model(SCREAMING_SNAKE_CASE__ )[0] # compare the actual values for a slice. snake_case: str = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' import os def lowerCAmelCase_ ( __A : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(__A ) , __A ) ) as input_file: snake_case: str = [ [int(__A ) for element in line.split(',' )] for line in input_file.readlines() ] snake_case: Optional[Any] = len(__A ) snake_case: Optional[Any] = len(matrix[0] ) snake_case: List[str] = [[-1 for _ in range(__A )] for _ in range(__A )] for i in range(__A ): snake_case: Dict = matrix[i][0] for j in range(1 , __A ): for i in range(__A ): snake_case: Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __A ): snake_case: Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case: int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' __UpperCAmelCase = "Alexander Joslin" import operator as op from .stack import Stack def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Any = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} snake_case: Stack[int] = Stack() snake_case: Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 snake_case: Optional[Any] = operator_stack.peek() operator_stack.pop() snake_case: List[Any] = operand_stack.peek() operand_stack.pop() snake_case: str = operand_stack.peek() operand_stack.pop() snake_case: Any = operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __UpperCAmelCase = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1