code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ =get_logger(__name__) class A__: lowerCAmelCase = '''dummy_data''' lowerCAmelCase = '''datasets''' lowerCAmelCase = False def __init__( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[Version, str] , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[List[Callable]] = None , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = dataset_name __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = use_local_dummy_data __SCREAMING_SNAKE_CASE = config # download_callbacks take a single url as input __SCREAMING_SNAKE_CASE = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __SCREAMING_SNAKE_CASE = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __SCREAMING_SNAKE_CASE = str(__SCREAMING_SNAKE_CASE ) # to be downloaded __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None @property def _a ( self : int ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __SCREAMING_SNAKE_CASE = self.download_dummy_data() return self._dummy_file @property def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __SCREAMING_SNAKE_CASE = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def _a ( self : str ) -> Any: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _a ( self : int ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __SCREAMING_SNAKE_CASE = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def _a ( self : List[Any] ) -> Dict: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __SCREAMING_SNAKE_CASE = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __SCREAMING_SNAKE_CASE = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" return path def _a ( self : List[str] ) -> int: """simple docstring""" return {} def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: __SCREAMING_SNAKE_CASE = single_urls __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) __SCREAMING_SNAKE_CASE = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __SCREAMING_SNAKE_CASE = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __SCREAMING_SNAKE_CASE = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) __SCREAMING_SNAKE_CASE = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __SCREAMING_SNAKE_CASE = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _a ( self : Any ) -> int: """simple docstring""" pass def _a ( self : List[str] ) -> str: """simple docstring""" pass def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" def _iter_archive_members(__SCREAMING_SNAKE_CASE : Tuple ): # this preserves the order of the members inside the ZIP archive __SCREAMING_SNAKE_CASE = Path(self.dummy_file ).parent __SCREAMING_SNAKE_CASE = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __SCREAMING_SNAKE_CASE = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open('''rb''' ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
690
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
1
"""simple docstring""" from __future__ import annotations from math import pi def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase__ ={ "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } lowerCAmelCase__ ={ "RUCAIBox/mvp": 1_024, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = MvpTokenizer def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Tuple="replace" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : str="<pad>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : Any , ) -> int: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = pre_tok_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __SCREAMING_SNAKE_CASE = '''post_processor''' __SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: __SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __SCREAMING_SNAKE_CASE = tuple(state['''sep'''] ) if "cls" in state: __SCREAMING_SNAKE_CASE = tuple(state['''cls'''] ) __SCREAMING_SNAKE_CASE = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __SCREAMING_SNAKE_CASE = add_prefix_space __SCREAMING_SNAKE_CASE = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: __SCREAMING_SNAKE_CASE = trim_offsets __SCREAMING_SNAKE_CASE = True if changes_to_apply: __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def _a ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value __SCREAMING_SNAKE_CASE = value def _a ( self : str , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str ) -> BatchEncoding: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> BatchEncoding: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> int: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __SCREAMING_SNAKE_CASE = f"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = sylvester(number - 1 ) __SCREAMING_SNAKE_CASE = num - 1 __SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
690
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
1
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> bool: if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import math lowerCAmelCase__ =10 lowerCAmelCase__ =7 lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS def _a ( UpperCAmelCase__ = 20 ) -> str: __SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
690
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = old_name if "patch_embed" in old_name: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = old_name.split('''.''' ) if layer == "0": __SCREAMING_SNAKE_CASE = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": __SCREAMING_SNAKE_CASE = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": __SCREAMING_SNAKE_CASE = old_name.replace('''3''' , '''convolution2''' ) else: __SCREAMING_SNAKE_CASE = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = r'''\b\d{2}\b''' if bool(re.search(UpperCAmelCase__ , UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = re.search(r'''\d\.\d\d.''' , UpperCAmelCase__ ).group() else: __SCREAMING_SNAKE_CASE = re.search(r'''\d\.\d.''' , UpperCAmelCase__ ).group() if int(match[0] ) < 6: __SCREAMING_SNAKE_CASE = old_name.replace(UpperCAmelCase__ , '''''' ) __SCREAMING_SNAKE_CASE = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) __SCREAMING_SNAKE_CASE = '''intermediate_stages.''' + trimmed_name else: __SCREAMING_SNAKE_CASE = old_name.replace(UpperCAmelCase__ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: __SCREAMING_SNAKE_CASE = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: __SCREAMING_SNAKE_CASE = str(int(match[2] ) - num_meta4D_last_stage ) __SCREAMING_SNAKE_CASE = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: __SCREAMING_SNAKE_CASE = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: __SCREAMING_SNAKE_CASE = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: __SCREAMING_SNAKE_CASE = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: __SCREAMING_SNAKE_CASE = trimmed_name.replace('''fc2''' , '''linear_out''' ) __SCREAMING_SNAKE_CASE = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: __SCREAMING_SNAKE_CASE = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __SCREAMING_SNAKE_CASE = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __SCREAMING_SNAKE_CASE = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: __SCREAMING_SNAKE_CASE = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: __SCREAMING_SNAKE_CASE = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: __SCREAMING_SNAKE_CASE = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: __SCREAMING_SNAKE_CASE = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __SCREAMING_SNAKE_CASE = new_name.replace('''norm''' , '''layernorm''' ) __SCREAMING_SNAKE_CASE = '''efficientformer.''' + new_name else: __SCREAMING_SNAKE_CASE = '''efficientformer.encoder.''' + new_name return new_name def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for key in checkpoint.copy().keys(): __SCREAMING_SNAKE_CASE = checkpoint.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val return checkpoint def _a ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] __SCREAMING_SNAKE_CASE = EfficientFormerConfig.from_json_file(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = EfficientFormerForImageClassificationWithTeacher(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) __SCREAMING_SNAKE_CASE = config.depths[-1] - config.num_metaad_blocks + 1 __SCREAMING_SNAKE_CASE = convert_torch_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = 2_56 __SCREAMING_SNAKE_CASE = 2_24 __SCREAMING_SNAKE_CASE = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) __SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values # original processing pipeline __SCREAMING_SNAKE_CASE = Compose( [ Resize(UpperCAmelCase__ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCAmelCase__ ), ToTensor(), Normalize(UpperCAmelCase__ , UpperCAmelCase__ ), ] ) __SCREAMING_SNAKE_CASE = image_transforms(UpperCAmelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = (1, 10_00) if "l1" in model_name: __SCREAMING_SNAKE_CASE = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __SCREAMING_SNAKE_CASE = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __SCREAMING_SNAKE_CASE = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(UpperCAmelCase__ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase__ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase__ , ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCAmelCase__ =parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class A__( __magic_name__ ): lowerCAmelCase = '''mra''' def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=5_02_65 , __SCREAMING_SNAKE_CASE : Union[str, Any]=7_68 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Any=30_72 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=5_12 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : int="full" , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Tuple=2 , **__SCREAMING_SNAKE_CASE : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = block_per_row __SCREAMING_SNAKE_CASE = approx_mode __SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
690
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ =list[list[float | int]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase__ ): for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ ) ] def _a ( UpperCAmelCase__ ) -> Callable[[int], int]: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ ) def interpolated_func(UpperCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase__ ) ) return interpolated_func def _a ( UpperCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int: __SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ): x_val += 1 ret += poly(UpperCAmelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class A__( __magic_name__ ): lowerCAmelCase = '''data2vec-text''' def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_05_22 , __SCREAMING_SNAKE_CASE : int=7_68 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Any=30_72 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : str=5_12 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-1_2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class A__( __magic_name__ ): @property def _a ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
690
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: __SCREAMING_SNAKE_CASE = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the reference grid __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the action grid __SCREAMING_SNAKE_CASE = init[0] __SCREAMING_SNAKE_CASE = init[1] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = g + heuristic[x][y] # cost from starting cell to destination cell __SCREAMING_SNAKE_CASE = [[f, g, x, y]] __SCREAMING_SNAKE_CASE = False # flag that is set when search is complete __SCREAMING_SNAKE_CASE = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase__ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __SCREAMING_SNAKE_CASE = cell.pop() __SCREAMING_SNAKE_CASE = next_cell[2] __SCREAMING_SNAKE_CASE = next_cell[3] __SCREAMING_SNAKE_CASE = next_cell[1] if x == goal[0] and y == goal[1]: __SCREAMING_SNAKE_CASE = True else: for i in range(len(UpperCAmelCase__ ) ): # to try out different valid actions __SCREAMING_SNAKE_CASE = x + DIRECTIONS[i][0] __SCREAMING_SNAKE_CASE = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __SCREAMING_SNAKE_CASE = g + cost __SCREAMING_SNAKE_CASE = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = goal[0] __SCREAMING_SNAKE_CASE = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __SCREAMING_SNAKE_CASE = x - DIRECTIONS[action[x][y]][0] __SCREAMING_SNAKE_CASE = y - DIRECTIONS[action[x][y]][1] __SCREAMING_SNAKE_CASE = xa __SCREAMING_SNAKE_CASE = ya invpath.append([x, y] ) __SCREAMING_SNAKE_CASE = [] for i in range(len(UpperCAmelCase__ ) ): path.append(invpath[len(UpperCAmelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCAmelCase__ =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCAmelCase__ =[0, 0] # all coordinates are given in format [y,x] lowerCAmelCase__ =[len(grid) - 1, len(grid[0]) - 1] lowerCAmelCase__ =1 # the cost map which pushes the path closer to the goal lowerCAmelCase__ =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCAmelCase__ =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCAmelCase__ =99 lowerCAmelCase__ , lowerCAmelCase__ =search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A__: def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Tuple=64 , __SCREAMING_SNAKE_CASE : str=None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = np.random.default_rng(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = length __SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.length def __getitem__( self : int , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class A__( torch.nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[str]=False ) -> List[Any]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __SCREAMING_SNAKE_CASE = True def _a ( self : int , __SCREAMING_SNAKE_CASE : int=None ) -> List[str]: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __SCREAMING_SNAKE_CASE = False return x * self.a[0] + self.b[0] class A__( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : int=False ) -> Optional[int]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__SCREAMING_SNAKE_CASE ).float() ) __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__SCREAMING_SNAKE_CASE ).float() ) __SCREAMING_SNAKE_CASE = True def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[Any]: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __SCREAMING_SNAKE_CASE = False return x * self.a + self.b def _a ( UpperCAmelCase__ , UpperCAmelCase__ = 16 ) -> int: from datasets import load_dataset from transformers import AutoTokenizer __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __SCREAMING_SNAKE_CASE = load_dataset('''csv''' , data_files=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = datasets['''train'''].unique('''label''' ) __SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(UpperCAmelCase__ )} def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) if "label" in examples: __SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __SCREAMING_SNAKE_CASE = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['''train'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=2 ) __SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" import math from datetime import datetime, timedelta def _a ( UpperCAmelCase__ ) -> datetime: __SCREAMING_SNAKE_CASE = year % 19 __SCREAMING_SNAKE_CASE = year % 4 __SCREAMING_SNAKE_CASE = year % 7 __SCREAMING_SNAKE_CASE = math.floor(year / 1_00 ) __SCREAMING_SNAKE_CASE = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __SCREAMING_SNAKE_CASE = leap_day_inhibits / 4 __SCREAMING_SNAKE_CASE = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __SCREAMING_SNAKE_CASE = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __SCREAMING_SNAKE_CASE = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __SCREAMING_SNAKE_CASE = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__ , 4 , 18 ) else: return datetime(UpperCAmelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): lowerCAmelCase__ ="will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def _a ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , '''words.txt''' ) __SCREAMING_SNAKE_CASE = '''''' with open(UpperCAmelCase__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(UpperCAmelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCAmelCase__ ) if __name__ == "__main__": print(solution())
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase__ =logging.get_logger(__name__) @dataclass class A__( __magic_name__ ): lowerCAmelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : int , **__SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __SCREAMING_SNAKE_CASE = deprecated_arg[3:] setattr(self , __SCREAMING_SNAKE_CASE , not kwargs.pop(__SCREAMING_SNAKE_CASE ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __SCREAMING_SNAKE_CASE = kwargs.pop('''torchscript''' , self.torchscript ) __SCREAMING_SNAKE_CASE = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __SCREAMING_SNAKE_CASE = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = field(default=__magic_name__ , metadata={'''help''': '''Trace the models using torchscript'''} ) lowerCAmelCase = field(default=__magic_name__ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) lowerCAmelCase = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def _a ( self : int ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __SCREAMING_SNAKE_CASE = torch.device('''cpu''' ) __SCREAMING_SNAKE_CASE = 0 elif is_torch_tpu_available(): __SCREAMING_SNAKE_CASE = xm.xla_device() __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __SCREAMING_SNAKE_CASE = torch.cuda.device_count() return device, n_gpu @property def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def _a ( self : Any ) -> int: """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _a ( self : Optional[int] ) -> "torch.device": """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _a ( self : Any ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.n_gpu > 0
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCAmelCase__ =logging.getLogger(__name__) class A__: def __init__( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = False def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" if not self.initialized: __SCREAMING_SNAKE_CASE = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = True def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.retriever.index.init_index() def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return doc_ids, retrieved_doc_embeds class A__( __magic_name__ ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str=None ) -> Optional[Any]: """simple docstring""" if index is not None and index.is_initialized() and len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for worker in self.retrieval_workers ] ) def _a ( self : Any ) -> Dict: """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE ) @classmethod def _a ( cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" return super(__SCREAMING_SNAKE_CASE , cls ).get_tokenizers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @classmethod def _a ( cls : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE ) or RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder __SCREAMING_SNAKE_CASE = rag_tokenizer.generator if indexed_dataset is not None: __SCREAMING_SNAKE_CASE = '''custom''' __SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = cls._build_index(__SCREAMING_SNAKE_CASE ) return cls( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , retrieval_workers=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , )
690
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ =logging.get_logger(__name__) if is_vision_available(): import PIL class A__( __magic_name__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : int , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 2_24} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE = do_convert_rgb def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Dict: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : str , ) -> PIL.Image.Image: """simple docstring""" __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
"""simple docstring""" def _a ( ) -> Tuple: for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _a ( UpperCAmelCase__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 while i * i <= n: __SCREAMING_SNAKE_CASE = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _a ( ) -> Any: return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase__ ) > 5_00 ) if __name__ == "__main__": print(solution())
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} lowerCAmelCase__ ={ "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } lowerCAmelCase__ ={ "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE = bs[:] __SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char return pairs class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="replace" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : Dict="</s>" , __SCREAMING_SNAKE_CASE : Dict="</s>" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="<pad>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=False , **__SCREAMING_SNAKE_CASE : int , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else sep_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE = bytes_to_unicode() __SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _a ( self : List[Any] ) -> Any: """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: __SCREAMING_SNAKE_CASE = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ''' '''.join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = word return word def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) return bpe_tokens def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" return self.decoder.get(__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = ''''''.join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + '''\n''' ) __SCREAMING_SNAKE_CASE = 0 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE = token_index writer.write(''' '''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 return vocab_file, merge_file def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , **__SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE = ''' ''' + text return (text, kwargs)
690
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" from math import factorial def _a ( UpperCAmelCase__ = 1_00 ) -> int: return sum(int(UpperCAmelCase__ ) for x in str(factorial(UpperCAmelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE : Tuple=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]="relu" , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[Any]=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[2, 3, 4] , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = num_groups def _a ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Tuple ) -> int: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : int ) -> List[Any]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : Any ) -> str: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _a ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : int ) -> List[Any]: """simple docstring""" pass def _a ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : int ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> List[str]: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : str ) -> Tuple: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_torch class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitBackbone,) if is_torch_available() else () lowerCAmelCase = BitConfig lowerCAmelCase = False def _a ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self )
690
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__: lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class A__( unittest.TestCase ): lowerCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
690
1
"""simple docstring""" from collections.abc import Sequence def _a ( UpperCAmelCase__ = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = nums[i] __SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , ans + num , UpperCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ =int(input("Enter number of elements : ").strip()) lowerCAmelCase__ =list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
690
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowerCAmelCase__ =parser.parse_args() lowerCAmelCase__ =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ =CLIPImageProcessor() lowerCAmelCase__ =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowerCAmelCase__ =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from __future__ import annotations from typing import Any def _a ( UpperCAmelCase__ ) -> int: if not postfix_notation: return 0 __SCREAMING_SNAKE_CASE = {'''+''', '''-''', '''*''', '''/'''} __SCREAMING_SNAKE_CASE = [] for token in postfix_notation: if token in operations: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from __future__ import annotations def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> tuple[int, int]: if b == 0: return (1, 0) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = extended_euclid(UpperCAmelCase__ , a % b ) __SCREAMING_SNAKE_CASE = a // b return (y, x - k * y) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = extended_euclid(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = na * na __SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = extended_euclid(UpperCAmelCase__ , UpperCAmelCase__ ) if b < 0: __SCREAMING_SNAKE_CASE = (b % n + n) % n return b def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = invert_modulo(UpperCAmelCase__ , UpperCAmelCase__ ), invert_modulo(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = na * na __SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
690
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import math lowerCAmelCase__ =10 lowerCAmelCase__ =7 lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS def _a ( UpperCAmelCase__ = 20 ) -> str: __SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
690
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__( enum.Enum ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 2 @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): lowerCAmelCase = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __SCREAMING_SNAKE_CASE = None if self.model.config.prefix is not None: __SCREAMING_SNAKE_CASE = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __SCREAMING_SNAKE_CASE = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._sanitize_parameters(prefix=__SCREAMING_SNAKE_CASE , **self._forward_params ) __SCREAMING_SNAKE_CASE = {**self._preprocess_params, **preprocess_params} __SCREAMING_SNAKE_CASE = {**self._forward_params, **forward_params} def _a ( self : Any , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if prefix is not None: __SCREAMING_SNAKE_CASE = prefix if prefix: __SCREAMING_SNAKE_CASE = self.tokenizer( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) __SCREAMING_SNAKE_CASE = handle_long_generation preprocess_params.update(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generate_kwargs __SCREAMING_SNAKE_CASE = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_type is not None: __SCREAMING_SNAKE_CASE = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __SCREAMING_SNAKE_CASE = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]="" , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer( prefix + prompt_text , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = prompt_text if handle_long_generation == "hole": __SCREAMING_SNAKE_CASE = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __SCREAMING_SNAKE_CASE = generate_kwargs['''max_new_tokens'''] else: __SCREAMING_SNAKE_CASE = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __SCREAMING_SNAKE_CASE = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __SCREAMING_SNAKE_CASE = inputs['''attention_mask'''][:, -keep_length:] return inputs def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs['''input_ids'''] __SCREAMING_SNAKE_CASE = model_inputs.get('''attention_mask''' , __SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 else: __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __SCREAMING_SNAKE_CASE = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __SCREAMING_SNAKE_CASE = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __SCREAMING_SNAKE_CASE = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __SCREAMING_SNAKE_CASE = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __SCREAMING_SNAKE_CASE = self.model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generated_sequence.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = generated_sequence.reshape(__SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.reshape(__SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=ReturnType.FULL_TEXT , __SCREAMING_SNAKE_CASE : List[str]=True ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs['''generated_sequence'''][0] __SCREAMING_SNAKE_CASE = model_outputs['''input_ids'''] __SCREAMING_SNAKE_CASE = model_outputs['''prompt_text'''] __SCREAMING_SNAKE_CASE = generated_sequence.numpy().tolist() __SCREAMING_SNAKE_CASE = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __SCREAMING_SNAKE_CASE = self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __SCREAMING_SNAKE_CASE = prompt_text + text[prompt_length:] else: __SCREAMING_SNAKE_CASE = text[prompt_length:] __SCREAMING_SNAKE_CASE = {'''generated_text''': all_text} records.append(__SCREAMING_SNAKE_CASE ) return records
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" from __future__ import annotations def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> list[list[int]]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = sum(UpperCAmelCase__ ) create_state_space_tree(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return result def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: if sum(UpperCAmelCase__ ) > max_sum or (remaining_nums_sum + sum(UpperCAmelCase__ )) < max_sum: return if sum(UpperCAmelCase__ ) == max_sum: result.append(UpperCAmelCase__ ) return for index in range(UpperCAmelCase__ , len(UpperCAmelCase__ ) ): create_state_space_tree( UpperCAmelCase__ , UpperCAmelCase__ , index + 1 , [*path, nums[index]] , UpperCAmelCase__ , remaining_nums_sum - nums[index] , ) lowerCAmelCase__ =[3, 34, 4, 12, 5, 2] lowerCAmelCase__ =9 lowerCAmelCase__ =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
690
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ =list[list[float | int]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase__ ): for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ ) ] def _a ( UpperCAmelCase__ ) -> Callable[[int], int]: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ ) def interpolated_func(UpperCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase__ ) ) return interpolated_func def _a ( UpperCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int: __SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ): x_val += 1 ret += poly(UpperCAmelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase__ =logging.get_logger(__name__) # General docstring lowerCAmelCase__ ="RegNetConfig" # Base docstring lowerCAmelCase__ ="facebook/regnet-y-040" lowerCAmelCase__ =[1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase__ ="facebook/regnet-y-040" lowerCAmelCase__ ="tabby, tabby cat" lowerCAmelCase__ =[ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__( tf.keras.layers.Layer ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : Optional[str] = "relu" , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __SCREAMING_SNAKE_CASE = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , strides=__SCREAMING_SNAKE_CASE , padding='''VALID''' , groups=__SCREAMING_SNAKE_CASE , use_bias=__SCREAMING_SNAKE_CASE , name='''convolution''' , ) __SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else tf.identity def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.convolution(self.padding(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = self.normalization(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : RegNetConfig , **__SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = config.num_channels __SCREAMING_SNAKE_CASE = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = shape_list(__SCREAMING_SNAKE_CASE )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __SCREAMING_SNAKE_CASE = tf.transpose(__SCREAMING_SNAKE_CASE , perm=(0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.embedder(__SCREAMING_SNAKE_CASE ) return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 2 , **__SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.keras.layers.ConvaD( filters=__SCREAMING_SNAKE_CASE , kernel_size=1 , strides=__SCREAMING_SNAKE_CASE , use_bias=__SCREAMING_SNAKE_CASE , name='''convolution''' ) __SCREAMING_SNAKE_CASE = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : tf.Tensor , __SCREAMING_SNAKE_CASE : bool = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(__SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) class A__( tf.keras.layers.Layer ): def __init__( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__SCREAMING_SNAKE_CASE , name='''pooler''' ) __SCREAMING_SNAKE_CASE = [ tf.keras.layers.ConvaD(filters=__SCREAMING_SNAKE_CASE , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__SCREAMING_SNAKE_CASE , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pooler(__SCREAMING_SNAKE_CASE ) for layer_module in self.attention: __SCREAMING_SNAKE_CASE = layer_module(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = hidden_state * pooled return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : RegNetConfig , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 1 , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 __SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) __SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(__SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(__SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE , name='''layer.2''' ), ] __SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: __SCREAMING_SNAKE_CASE = layer_module(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual __SCREAMING_SNAKE_CASE = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : RegNetConfig , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 1 , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 __SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width ) __SCREAMING_SNAKE_CASE = ( TFRegNetShortCut(__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __SCREAMING_SNAKE_CASE = [ TFRegNetConvLayer(__SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , groups=__SCREAMING_SNAKE_CASE , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(__SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(__SCREAMING_SNAKE_CASE , kernel_size=1 , activation=__SCREAMING_SNAKE_CASE , name='''layer.3''' ), ] __SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = hidden_state for layer_module in self.layers: __SCREAMING_SNAKE_CASE = layer_module(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.shortcut(__SCREAMING_SNAKE_CASE ) hidden_state += residual __SCREAMING_SNAKE_CASE = self.activation(__SCREAMING_SNAKE_CASE ) return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : RegNetConfig , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __SCREAMING_SNAKE_CASE = [ # downsampling is done in the first layer with stride of 2 layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , name='''layers.0''' ), *[layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" for layer_module in self.layers: __SCREAMING_SNAKE_CASE = layer_module(__SCREAMING_SNAKE_CASE ) return hidden_state class A__( tf.keras.layers.Layer ): def __init__( self : int , __SCREAMING_SNAKE_CASE : RegNetConfig , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__SCREAMING_SNAKE_CASE , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , depth=__SCREAMING_SNAKE_CASE , name=f"""stages.{i+1}""" ) ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : tf.Tensor , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" __SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) __SCREAMING_SNAKE_CASE = stage_module(__SCREAMING_SNAKE_CASE ) if output_hidden_states: __SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__SCREAMING_SNAKE_CASE , hidden_states=__SCREAMING_SNAKE_CASE ) @keras_serializable class A__( tf.keras.layers.Layer ): lowerCAmelCase = RegNetConfig def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = TFRegNetEmbeddings(__SCREAMING_SNAKE_CASE , name='''embedder''' ) __SCREAMING_SNAKE_CASE = TFRegNetEncoder(__SCREAMING_SNAKE_CASE , name='''encoder''' ) __SCREAMING_SNAKE_CASE = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__SCREAMING_SNAKE_CASE , name='''pooler''' ) @unpack_inputs def _a ( self : str , __SCREAMING_SNAKE_CASE : tf.Tensor , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE = self.embedder(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.encoder( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = encoder_outputs[0] __SCREAMING_SNAKE_CASE = self.pooler(__SCREAMING_SNAKE_CASE ) # Change to NCHW output format have uniformity in the modules __SCREAMING_SNAKE_CASE = tf.transpose(__SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) __SCREAMING_SNAKE_CASE = tf.transpose(__SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __SCREAMING_SNAKE_CASE = tuple([tf.transpose(__SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__SCREAMING_SNAKE_CASE , pooler_output=__SCREAMING_SNAKE_CASE , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A__( __magic_name__ ): lowerCAmelCase = RegNetConfig lowerCAmelCase = '''regnet''' lowerCAmelCase = '''pixel_values''' @property def _a ( self : List[Any] ) -> str: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCAmelCase__ =r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" lowerCAmelCase__ =r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __magic_name__ , ) class A__( __magic_name__ ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : RegNetConfig , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = TFRegNetMainLayer(__SCREAMING_SNAKE_CASE , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : tf.Tensor , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Any=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE = self.regnet( pixel_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __magic_name__ , ) class A__( __magic_name__ , __magic_name__ ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : RegNetConfig , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = config.num_labels __SCREAMING_SNAKE_CASE = TFRegNetMainLayer(__SCREAMING_SNAKE_CASE , name='''regnet''' ) # classification head __SCREAMING_SNAKE_CASE = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : tf.Tensor = None , __SCREAMING_SNAKE_CASE : tf.Tensor = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : str=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE = self.regnet( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] __SCREAMING_SNAKE_CASE = self.classifier[0](__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.classifier[1](__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = None if labels is None else self.hf_compute_loss(labels=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE ) if not return_dict: __SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
690
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
1
"""simple docstring""" class A__: def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = arr.split(''',''' ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) __SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __SCREAMING_SNAKE_CASE = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __SCREAMING_SNAKE_CASE = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase__ =input("please input some numbers:") lowerCAmelCase__ =SubArray(whole_array) lowerCAmelCase__ =array.solve_sub_array() print(("the results is:", re))
690
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
1
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A__( __magic_name__ ): lowerCAmelCase = '''perceiver''' def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=2_56 , __SCREAMING_SNAKE_CASE : List[Any]=12_80 , __SCREAMING_SNAKE_CASE : Optional[Any]=7_68 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : str=26 , __SCREAMING_SNAKE_CASE : List[Any]=8 , __SCREAMING_SNAKE_CASE : Dict=8 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[int]="kv" , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Any=1E-1_2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=2_62 , __SCREAMING_SNAKE_CASE : List[str]=20_48 , __SCREAMING_SNAKE_CASE : Union[str, Any]=56 , __SCREAMING_SNAKE_CASE : Optional[Any]=[3_68, 4_96] , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Dict=19_20 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=[1, 16, 2_24, 2_24] , **__SCREAMING_SNAKE_CASE : Any , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_latents __SCREAMING_SNAKE_CASE = d_latents __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = num_blocks __SCREAMING_SNAKE_CASE = num_self_attends_per_block __SCREAMING_SNAKE_CASE = num_self_attention_heads __SCREAMING_SNAKE_CASE = num_cross_attention_heads __SCREAMING_SNAKE_CASE = qk_channels __SCREAMING_SNAKE_CASE = v_channels __SCREAMING_SNAKE_CASE = cross_attention_shape_for_attention __SCREAMING_SNAKE_CASE = self_attention_widening_factor __SCREAMING_SNAKE_CASE = cross_attention_widening_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = use_query_residual # masked language modeling attributes __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings # image classification attributes __SCREAMING_SNAKE_CASE = image_size # flow attributes __SCREAMING_SNAKE_CASE = train_size # multimodal autoencoding attributes __SCREAMING_SNAKE_CASE = num_frames __SCREAMING_SNAKE_CASE = audio_samples_per_frame __SCREAMING_SNAKE_CASE = samples_per_patch __SCREAMING_SNAKE_CASE = output_shape class A__( __magic_name__ ): @property def _a ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _a ( self : str ) -> float: """simple docstring""" return 1E-4 def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 40 , __SCREAMING_SNAKE_CASE : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = preprocessor.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE = [''' '''.join(['''a'''] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE = dict(preprocessor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = inputs.pop('''input_ids''' ) return inputs elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension(__SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) __SCREAMING_SNAKE_CASE = self._generate_dummy_images(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = dict(preprocessor(images=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ ={"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["GLPNFeatureExtractor"] lowerCAmelCase__ =["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__( unittest.TestCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=32 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : Any=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Tuple=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : int=None , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def _a ( self : int ) -> Union[str, Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Tuple ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return def _a ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : List[Any] ) -> int: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Dict ): return model(pixel_values=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE = model_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( ) -> List[str]: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class A__( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = (1, 10_00) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCAmelCase__ =logging.getLogger(__name__) @dataclass class A__: lowerCAmelCase = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class A__: lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) datasets.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __SCREAMING_SNAKE_CASE = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __SCREAMING_SNAKE_CASE = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = train_dataset.features['''label'''].names if training_args.do_eval: __SCREAMING_SNAKE_CASE = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = eval_dataset.features['''label'''].names if training_args.do_predict: __SCREAMING_SNAKE_CASE = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = predict_dataset.features['''label'''].names # Labels __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , idalabel={str(UpperCAmelCase__ ): label for i, label in enumerate(UpperCAmelCase__ )} , labelaid={label: i for i, label in enumerate(UpperCAmelCase__ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False def preprocess_function(UpperCAmelCase__ ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=UpperCAmelCase__ , max_length=data_args.max_seq_length , truncation=UpperCAmelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = min(len(UpperCAmelCase__ ) , data_args.max_train_samples ) __SCREAMING_SNAKE_CASE = train_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): __SCREAMING_SNAKE_CASE = train_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCAmelCase__ ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = min(len(UpperCAmelCase__ ) , data_args.max_eval_samples ) __SCREAMING_SNAKE_CASE = eval_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): __SCREAMING_SNAKE_CASE = eval_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = min(len(UpperCAmelCase__ ) , data_args.max_predict_samples ) __SCREAMING_SNAKE_CASE = predict_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): __SCREAMING_SNAKE_CASE = predict_dataset.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function __SCREAMING_SNAKE_CASE = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , UpperCAmelCase__ ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase__ , axis=1 ) return metric.compute(predictions=UpperCAmelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , UpperCAmelCase__ ) trainer.save_metrics('''train''' , UpperCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics('''eval''' , UpperCAmelCase__ ) trainer.save_metrics('''eval''' , UpperCAmelCase__ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = trainer.predict(UpperCAmelCase__ , metric_key_prefix='''predict''' ) __SCREAMING_SNAKE_CASE = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics('''predict''' , UpperCAmelCase__ ) trainer.save_metrics('''predict''' , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase__ , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
690
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class A__( nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "geglu" , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : str = "layer_norm" , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = only_cross_attention __SCREAMING_SNAKE_CASE = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __SCREAMING_SNAKE_CASE = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE = AdaLayerNorm(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE = AdaLayerNormZero(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = Attention( query_dim=__SCREAMING_SNAKE_CASE , heads=__SCREAMING_SNAKE_CASE , dim_head=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__SCREAMING_SNAKE_CASE , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __SCREAMING_SNAKE_CASE = ( AdaLayerNorm(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = Attention( query_dim=__SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__SCREAMING_SNAKE_CASE , dim_head=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , upcast_attention=__SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # 3. Feed-forward __SCREAMING_SNAKE_CASE = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FeedForward(__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , final_dropout=__SCREAMING_SNAKE_CASE ) # let chunk size default to None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0 def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = chunk_size __SCREAMING_SNAKE_CASE = dim def _a ( self : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.LongTensor] = None , __SCREAMING_SNAKE_CASE : Dict[str, Any] = None , __SCREAMING_SNAKE_CASE : Optional[torch.LongTensor] = None , ) -> Tuple: """simple docstring""" if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE = self.norma(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.norma( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype ) else: __SCREAMING_SNAKE_CASE = self.norma(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = cross_attention_kwargs if cross_attention_kwargs is not None else {} __SCREAMING_SNAKE_CASE = self.attna( __SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE = gate_msa.unsqueeze(1 ) * attn_output __SCREAMING_SNAKE_CASE = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __SCREAMING_SNAKE_CASE = ( self.norma(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = self.attna( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = attn_output + hidden_states # 3. Feed-forward __SCREAMING_SNAKE_CASE = self.norma(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __SCREAMING_SNAKE_CASE = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __SCREAMING_SNAKE_CASE = torch.cat( [self.ff(__SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(__SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __SCREAMING_SNAKE_CASE = self.ff(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE = gate_mlp.unsqueeze(1 ) * ff_output __SCREAMING_SNAKE_CASE = ff_output + hidden_states return hidden_states class A__( nn.Module ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 4 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : str = "geglu" , __SCREAMING_SNAKE_CASE : bool = False , ) -> int: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = int(dim * mult ) __SCREAMING_SNAKE_CASE = dim_out if dim_out is not None else dim if activation_fn == "gelu": __SCREAMING_SNAKE_CASE = GELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": __SCREAMING_SNAKE_CASE = GELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , approximate='''tanh''' ) elif activation_fn == "geglu": __SCREAMING_SNAKE_CASE = GEGLU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": __SCREAMING_SNAKE_CASE = ApproximateGELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # project in self.net.append(__SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" for module in self.net: __SCREAMING_SNAKE_CASE = module(__SCREAMING_SNAKE_CASE ) return hidden_states class A__( nn.Module ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str = "none" ) -> str: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = approximate def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.proj(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.gelu(__SCREAMING_SNAKE_CASE ) return hidden_states class A__( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , dim_out * 2 ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.proj(__SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__SCREAMING_SNAKE_CASE ) class A__( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.proj(__SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.7_02 * x ) class A__( nn.Module ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.SiLU() __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , embedding_dim * 2 ) __SCREAMING_SNAKE_CASE = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.chunk(__SCREAMING_SNAKE_CASE , 2 ) __SCREAMING_SNAKE_CASE = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class A__( nn.Module ): def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = CombinedTimestepLabelEmbeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.SiLU() __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE , eps=1E-6 ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hidden_dtype=__SCREAMING_SNAKE_CASE ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.chunk(6 , dim=1 ) __SCREAMING_SNAKE_CASE = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class A__( nn.Module ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : float = 1E-5 ) -> List[Any]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = num_groups __SCREAMING_SNAKE_CASE = eps if act_fn is None: __SCREAMING_SNAKE_CASE = None else: __SCREAMING_SNAKE_CASE = get_activation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.Linear(__SCREAMING_SNAKE_CASE , out_dim * 2 ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" if self.act: __SCREAMING_SNAKE_CASE = self.act(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.linear(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = emb[:, :, None, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.chunk(2 , dim=1 ) __SCREAMING_SNAKE_CASE = F.group_norm(__SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps ) __SCREAMING_SNAKE_CASE = x * (1 + scale) + shift return x
690
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): def __init__( self : int , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> None: """simple docstring""" warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = StableUnCLIPPipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase = False def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = embedder_hidden_size # prior components torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__SCREAMING_SNAKE_CASE , num_layers=1 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL() __SCREAMING_SNAKE_CASE = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _a ( self : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class A__( unittest.TestCase ): def _a ( self : int ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe('''anime turle''' , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "sentencepiece.model"} lowerCAmelCase__ ={ "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } lowerCAmelCase__ ={ "google/rembert": 256, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" , __SCREAMING_SNAKE_CASE : List[str]="[SEP]" , __SCREAMING_SNAKE_CASE : Tuple="[UNK]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : Optional[int]="[PAD]" , __SCREAMING_SNAKE_CASE : List[Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Tuple="[MASK]" , **__SCREAMING_SNAKE_CASE : Any , ) -> Any: """simple docstring""" super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = d __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) return pieces def _a ( self : str , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.sp_model.decode_pieces(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__SCREAMING_SNAKE_CASE ) ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
690
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
1
"""simple docstring""" import numpy as np lowerCAmelCase__ =[ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class A__: def __init__( self : Tuple ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.where(letter == self.SQUARE ) __SCREAMING_SNAKE_CASE = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.SQUARE[indexa - 1, indexa - 1] return letter def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = message.lower() __SCREAMING_SNAKE_CASE = message.replace(''' ''' , '''''' ) __SCREAMING_SNAKE_CASE = message.replace('''j''' , '''i''' ) __SCREAMING_SNAKE_CASE = np.empty((2, len(__SCREAMING_SNAKE_CASE )) ) for letter_index in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = self.letter_to_numbers(message[letter_index] ) __SCREAMING_SNAKE_CASE = numbers[0] __SCREAMING_SNAKE_CASE = numbers[1] __SCREAMING_SNAKE_CASE = first_step.reshape(2 * len(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = '''''' for numbers_index in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = int(second_step[numbers_index * 2] ) __SCREAMING_SNAKE_CASE = int(second_step[(numbers_index * 2) + 1] ) __SCREAMING_SNAKE_CASE = self.numbers_to_letter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = encoded_message + letter return encoded_message def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = message.lower() message.replace(''' ''' , '''''' ) __SCREAMING_SNAKE_CASE = np.empty(2 * len(__SCREAMING_SNAKE_CASE ) ) for letter_index in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = self.letter_to_numbers(message[letter_index] ) __SCREAMING_SNAKE_CASE = numbers[0] __SCREAMING_SNAKE_CASE = numbers[1] __SCREAMING_SNAKE_CASE = first_step.reshape((2, len(__SCREAMING_SNAKE_CASE )) ) __SCREAMING_SNAKE_CASE = '''''' for numbers_index in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = int(second_step[0, numbers_index] ) __SCREAMING_SNAKE_CASE = int(second_step[1, numbers_index] ) __SCREAMING_SNAKE_CASE = self.numbers_to_letter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = decoded_message + letter return decoded_message
690
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" class A__: def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : list ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = set_counts __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [1] * num_sets __SCREAMING_SNAKE_CASE = list(range(__SCREAMING_SNAKE_CASE ) ) def _a ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __SCREAMING_SNAKE_CASE = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = src_parent __SCREAMING_SNAKE_CASE = self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = max(self.max_set , __SCREAMING_SNAKE_CASE ) return True def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __SCREAMING_SNAKE_CASE = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 2_56} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> np.ndarray: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__: lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class A__( unittest.TestCase ): lowerCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
690
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : List[str] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Tuple , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> List[str]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : int , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : List[str] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : int , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Tuple , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Tuple , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Optional[int] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Optional[int] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__( metaclass=__magic_name__ ): lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : List[str] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _a ( cls : Dict , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
690
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__( unittest.TestCase ): def _a ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=__SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 2_53:2_56, 2_53:2_56, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _a ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''stabilityai/stable-diffusion-2''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxDPMSolverMultistepScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder='''scheduler''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( __SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , revision='''bf16''' , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = scheduler_params __SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=__SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 2_53:2_56, 2_53:2_56, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> list[float]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = coefficient_matrix.shape __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = constant_matrix.shape if rowsa != colsa: __SCREAMING_SNAKE_CASE = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase__ ) if colsa != 1: __SCREAMING_SNAKE_CASE = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase__ ) if rowsa != rowsa: __SCREAMING_SNAKE_CASE = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != rowsa: __SCREAMING_SNAKE_CASE = ( '''Number of initial values must be equal to number of rows in coefficient ''' f"""matrix but received {len(UpperCAmelCase__ )} and {rowsa}""" ) raise ValueError(UpperCAmelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __SCREAMING_SNAKE_CASE = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape strictly_diagonally_dominant(UpperCAmelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [] for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 0 for col in range(UpperCAmelCase__ ): if col == row: __SCREAMING_SNAKE_CASE = table[row][col] elif col == cols - 1: __SCREAMING_SNAKE_CASE = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __SCREAMING_SNAKE_CASE = (temp + val) / denom new_val.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = new_val return [float(UpperCAmelCase__ ) for i in new_val] def _a ( UpperCAmelCase__ ) -> bool: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape __SCREAMING_SNAKE_CASE = True for i in range(0 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: __SCREAMING_SNAKE_CASE = 14 __SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 16 else: raise ValueError('''Model not supported''' ) __SCREAMING_SNAKE_CASE = '''huggingface/label-files''' if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 35 __SCREAMING_SNAKE_CASE = '''speech-commands-v2-id2label.json''' else: __SCREAMING_SNAKE_CASE = 5_27 __SCREAMING_SNAKE_CASE = '''audioset-id2label.json''' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def _a ( UpperCAmelCase__ ) -> int: if "module.v" in name: __SCREAMING_SNAKE_CASE = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: __SCREAMING_SNAKE_CASE = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __SCREAMING_SNAKE_CASE = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: __SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: __SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(UpperCAmelCase__ ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split('''.''' ) __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def _a ( UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location='''cpu''' ) # remove some keys remove_keys(UpperCAmelCase__ ) # rename some keys __SCREAMING_SNAKE_CASE = convert_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE = ASTForAudioClassification(UpperCAmelCase__ ) model.eval() model.load_state_dict(UpperCAmelCase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __SCREAMING_SNAKE_CASE = -4.2677393 if '''speech-commands''' not in model_name else -6.845978 __SCREAMING_SNAKE_CASE = 4.5689974 if '''speech-commands''' not in model_name else 5.5654526 __SCREAMING_SNAKE_CASE = 10_24 if '''speech-commands''' not in model_name else 1_28 __SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=UpperCAmelCase__ , std=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) __SCREAMING_SNAKE_CASE = dataset[0]['''audio''']['''array'''] else: __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torchaudio.load(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() __SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase__ , sampling_rate=1_60_00 , return_tensors='''pt''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __SCREAMING_SNAKE_CASE = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __SCREAMING_SNAKE_CASE = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __SCREAMING_SNAKE_CASE = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __SCREAMING_SNAKE_CASE = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __SCREAMING_SNAKE_CASE = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __SCREAMING_SNAKE_CASE = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __SCREAMING_SNAKE_CASE = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __SCREAMING_SNAKE_CASE = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase__ ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase__ =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
690
"""simple docstring""" import math lowerCAmelCase__ =10 lowerCAmelCase__ =7 lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS def _a ( UpperCAmelCase__ = 20 ) -> str: __SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
690
1
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _a ( UpperCAmelCase__ ) -> Dict: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _a ( ) -> List[str]: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _a ( ) -> Any: __SCREAMING_SNAKE_CASE = '''mock-s3-bucket''' __SCREAMING_SNAKE_CASE = f"""s3://{mock_bucket}""" __SCREAMING_SNAKE_CASE = extract_path_from_uri(UpperCAmelCase__ ) assert dataset_path.startswith('''s3://''' ) is False __SCREAMING_SNAKE_CASE = '''./local/path''' __SCREAMING_SNAKE_CASE = extract_path_from_uri(UpperCAmelCase__ ) assert dataset_path == new_dataset_path def _a ( UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = is_remote_filesystem(UpperCAmelCase__ ) assert is_remote is True __SCREAMING_SNAKE_CASE = fsspec.filesystem('''file''' ) __SCREAMING_SNAKE_CASE = is_remote_filesystem(UpperCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} __SCREAMING_SNAKE_CASE = input_paths[compression_fs_class.protocol] if input_path is None: __SCREAMING_SNAKE_CASE = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = fsspec.filesystem(compression_fs_class.protocol , fo=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = os.path.basename(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f, open(UpperCAmelCase__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} __SCREAMING_SNAKE_CASE = compressed_file_paths[protocol] __SCREAMING_SNAKE_CASE = '''dataset.jsonl''' __SCREAMING_SNAKE_CASE = f"""{protocol}://{member_file_path}::{compressed_file_path}""" __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE = fsspec.get_fs_token_paths(UpperCAmelCase__ ) assert fs.isfile(UpperCAmelCase__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = hf_api.dataset_info(UpperCAmelCase__ , token=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = HfFileSystem(repo_info=UpperCAmelCase__ , token=UpperCAmelCase__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(UpperCAmelCase__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def _a ( ) -> int: __SCREAMING_SNAKE_CASE = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(UpperCAmelCase__ , UpperCAmelCase__ , clobber=UpperCAmelCase__ ) with pytest.warns(UpperCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(UpperCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__( unittest.TestCase ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Any=18 , __SCREAMING_SNAKE_CASE : str=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4_00 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=True , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = size if size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = apply_ocr def _a ( self : Union[str, Any] ) -> int: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessingTester(self ) @property def _a ( self : str ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _a ( self : Dict ) -> Any: """simple docstring""" pass def _a ( self : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor() from datasets import load_dataset __SCREAMING_SNAKE_CASE = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __SCREAMING_SNAKE_CASE = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __SCREAMING_SNAKE_CASE = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __SCREAMING_SNAKE_CASE = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
690
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ =list[list[float | int]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase__ ): for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ ) ] def _a ( UpperCAmelCase__ ) -> Callable[[int], int]: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ ) def interpolated_func(UpperCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase__ ) ) return interpolated_func def _a ( UpperCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int: __SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ): x_val += 1 ret += poly(UpperCAmelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" from __future__ import annotations def _a ( UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None ) -> None: if start is None: __SCREAMING_SNAKE_CASE = 0 if end is None: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) - 1 if start >= end: return __SCREAMING_SNAKE_CASE = (start + end) // 2 slowsort(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) slowsort(UpperCAmelCase__ , mid + 1 , UpperCAmelCase__ ) if sequence[end] < sequence[mid]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sequence[mid], sequence[end] slowsort(UpperCAmelCase__ , UpperCAmelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
690
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__( __magic_name__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''BlipImageProcessor''' lowerCAmelCase = '''AutoTokenizer''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = False super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : ImageInput = None , __SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __SCREAMING_SNAKE_CASE = self.tokenizer __SCREAMING_SNAKE_CASE = self.tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(__SCREAMING_SNAKE_CASE ) return encoding_image_processor def _a ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : str , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
690
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={ "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ , UpperCAmelCase__=False ) -> int: __SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE = '''''' else: __SCREAMING_SNAKE_CASE = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val def _a ( ) -> str: __SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: __SCREAMING_SNAKE_CASE = DeiTConfig() # all deit models have fine-tuned heads __SCREAMING_SNAKE_CASE = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = int(deit_name[-6:-4] ) __SCREAMING_SNAKE_CASE = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __SCREAMING_SNAKE_CASE = 1_92 __SCREAMING_SNAKE_CASE = 7_68 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 elif deit_name[9:].startswith('''small''' ): __SCREAMING_SNAKE_CASE = 3_84 __SCREAMING_SNAKE_CASE = 15_36 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __SCREAMING_SNAKE_CASE = 10_24 __SCREAMING_SNAKE_CASE = 40_96 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 # load original model from timm __SCREAMING_SNAKE_CASE = timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE = timm_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ , UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # load HuggingFace model __SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor __SCREAMING_SNAKE_CASE = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=UpperCAmelCase__ , crop_size=config.image_size ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__ , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase__ =parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class A__( __magic_name__ ): lowerCAmelCase = '''xglm''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict=25_60_08 , __SCREAMING_SNAKE_CASE : List[str]=20_48 , __SCREAMING_SNAKE_CASE : List[str]=10_24 , __SCREAMING_SNAKE_CASE : Dict=40_96 , __SCREAMING_SNAKE_CASE : List[str]=24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : int=1 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = ffn_dim __SCREAMING_SNAKE_CASE = num_layers __SCREAMING_SNAKE_CASE = attention_heads __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = use_cache super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCAmelCase__ =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: for attribute in key.split('''.''' ): __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: __SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __SCREAMING_SNAKE_CASE = None for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __SCREAMING_SNAKE_CASE = True elif name.split('''.''' )[0] == "proj": __SCREAMING_SNAKE_CASE = fairseq_model.proj __SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(UpperCAmelCase__ )[0].split('''.''' )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace('''*''' , UpperCAmelCase__ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = '''weight_g''' elif "weight_v" in name: __SCREAMING_SNAKE_CASE = '''weight_v''' elif "bias" in name: __SCREAMING_SNAKE_CASE = '''bias''' elif "weight" in name: __SCREAMING_SNAKE_CASE = '''weight''' else: __SCREAMING_SNAKE_CASE = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = full_name.split('''conv_layers.''' )[-1] __SCREAMING_SNAKE_CASE = name.split('''.''' ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase__ ) def _a ( UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def _a ( UpperCAmelCase__ ) -> int: with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [line.split(''' ''' )[0] for line in lines] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(UpperCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> int: __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = SpeechaTextaConfig.from_pretrained( UpperCAmelCase__ , vocab_size=UpperCAmelCase__ , decoder_layers=UpperCAmelCase__ , do_stable_layer_norm=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __SCREAMING_SNAKE_CASE = model[0].eval() # set weights for wav2vec2 encoder __SCREAMING_SNAKE_CASE = WavaVecaModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = SpeechaTextaForCausalLM(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __SCREAMING_SNAKE_CASE = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __SCREAMING_SNAKE_CASE = SpeechEncoderDecoderModel(encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = False # add projection layer __SCREAMING_SNAKE_CASE = nn.Parameter(projection_layer.weight ) __SCREAMING_SNAKE_CASE = nn.Parameter(projection_layer.bias ) __SCREAMING_SNAKE_CASE = create_vocab_dict(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase__ , '''vocab.json''' ) ) tokenizer.save_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hf_wavavec.config.to_dict() __SCREAMING_SNAKE_CASE = tokenizer.pad_token_id __SCREAMING_SNAKE_CASE = tokenizer.bos_token_id __SCREAMING_SNAKE_CASE = tokenizer.eos_token_id __SCREAMING_SNAKE_CASE = '''speech_to_text_2''' __SCREAMING_SNAKE_CASE = '''wav2vec2''' __SCREAMING_SNAKE_CASE = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) feature_extractor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowerCAmelCase__ =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
690
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import functools def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) @functools.cache def min_distance(UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __SCREAMING_SNAKE_CASE = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCAmelCase__ ) , 1 + min_distance(UpperCAmelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A__( __magic_name__ ): lowerCAmelCase = '''convbert''' def __init__( self : int , __SCREAMING_SNAKE_CASE : List[str]=3_05_22 , __SCREAMING_SNAKE_CASE : Dict=7_68 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Dict=30_72 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=5_12 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : str=1E-1_2 , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : List[Any]=9 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : int , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = embedding_size __SCREAMING_SNAKE_CASE = head_ratio __SCREAMING_SNAKE_CASE = conv_kernel_size __SCREAMING_SNAKE_CASE = num_groups __SCREAMING_SNAKE_CASE = classifier_dropout class A__( __magic_name__ ): @property def _a ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
690
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.txt"} lowerCAmelCase__ ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } lowerCAmelCase__ ={ "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def _a ( UpperCAmelCase__ ) -> Optional[Any]: with open(UpperCAmelCase__ , '''r''' ) as f: __SCREAMING_SNAKE_CASE = f.read().splitlines() return [l.strip() for l in lines] class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<mask>" , __SCREAMING_SNAKE_CASE : Optional[int]="<eos>" , **__SCREAMING_SNAKE_CASE : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = load_vocab_file(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = dict(enumerate(self.all_tokens ) ) __SCREAMING_SNAKE_CASE = {tok: ind for ind, tok in enumerate(self.all_tokens )} __SCREAMING_SNAKE_CASE = unk_token __SCREAMING_SNAKE_CASE = cls_token __SCREAMING_SNAKE_CASE = pad_token __SCREAMING_SNAKE_CASE = mask_token __SCREAMING_SNAKE_CASE = eos_token __SCREAMING_SNAKE_CASE = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self._id_to_token.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self._token_to_id.get(__SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: """simple docstring""" return text.split() def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=False ) -> List[Any]: """simple docstring""" return len(self._id_to_token ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self._token_to_id.get(__SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self._id_to_token.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _a ( self : int , __SCREAMING_SNAKE_CASE : List , __SCREAMING_SNAKE_CASE : Optional[List] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __SCREAMING_SNAKE_CASE = [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(__SCREAMING_SNAKE_CASE ) + [1] return mask def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def _a ( self : Union[str, Any] ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Union[List[str], List[AddedToken]] , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" return super()._add_tokens(__SCREAMING_SNAKE_CASE , special_tokens=__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=UpperCAmelCase__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=UpperCAmelCase__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=UpperCAmelCase__ ) return parser.parse_args() def _a ( ) -> int: __SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. __SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __SCREAMING_SNAKE_CASE = script_fpath.stem __SCREAMING_SNAKE_CASE = importlib.import_module(UpperCAmelCase__ ) # Patch sys.argv __SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ ={ "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A__( unittest.TestCase ): @slow def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) __SCREAMING_SNAKE_CASE = '''The dog is cute and lives in the garden house''' __SCREAMING_SNAKE_CASE = jnp.array([tokenizer.encode(__SCREAMING_SNAKE_CASE )] ) __SCREAMING_SNAKE_CASE = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __SCREAMING_SNAKE_CASE = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
690
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class A__: def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=5_12 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def _a ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[str] ) -> Dict: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__SCREAMING_SNAKE_CASE , ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FalconModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FalconModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = FalconForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FalconForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def _a ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def _a ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = FalconModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _a ( self : Any ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __SCREAMING_SNAKE_CASE = alibi self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = FalconForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = '''single_label_classification''' __SCREAMING_SNAKE_CASE = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = FalconForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = FalconForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = model._convert_to_rw_cache(result.past_key_values ) __SCREAMING_SNAKE_CASE = model._convert_cache_to_standard_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for layer in range(len(__SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = '''multi_label_classification''' __SCREAMING_SNAKE_CASE = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE = FalconForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : int ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__SCREAMING_SNAKE_CASE , '''use_cache''' ): return __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __SCREAMING_SNAKE_CASE = ( getattr(__SCREAMING_SNAKE_CASE , '''decoder_layers''' , __SCREAMING_SNAKE_CASE ) or getattr(__SCREAMING_SNAKE_CASE , '''num_decoder_layers''' , __SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , '''num_kv_heads''' , config.num_attention_heads ) __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , '''d_model''' , config.hidden_size ) __SCREAMING_SNAKE_CASE = embed_dim // num_attention_heads __SCREAMING_SNAKE_CASE = outputs['''past_key_values'''] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = inputs['''input_ids'''].shape for i in range(__SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: __SCREAMING_SNAKE_CASE = config.num_attention_heads elif config.multi_query: __SCREAMING_SNAKE_CASE = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class A__( unittest.TestCase ): @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __SCREAMING_SNAKE_CASE = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=19 ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )[0] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FalconForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) model.eval() model.to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**__SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def _a ( self : Tuple ) -> int: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FalconForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) model.eval() model.to(device=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=__SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
690
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _a ( UpperCAmelCase__ ) -> Dict[str, torch.Tensor]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for rt in rc.restypes: __SCREAMING_SNAKE_CASE = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __SCREAMING_SNAKE_CASE = {name: i for i, name in enumerate(UpperCAmelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __SCREAMING_SNAKE_CASE = torch.tensor( UpperCAmelCase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __SCREAMING_SNAKE_CASE = torch.tensor( UpperCAmelCase__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) __SCREAMING_SNAKE_CASE = torch.tensor( UpperCAmelCase__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) __SCREAMING_SNAKE_CASE = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __SCREAMING_SNAKE_CASE = restype_atomaa_to_atomaa[protein_aatype] __SCREAMING_SNAKE_CASE = restype_atomaa_mask[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_mask __SCREAMING_SNAKE_CASE = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __SCREAMING_SNAKE_CASE = restype_atomaa_to_atomaa[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_to_atomaa.long() # create the corresponding mask __SCREAMING_SNAKE_CASE = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): __SCREAMING_SNAKE_CASE = rc.restype_atoa[restype_letter] __SCREAMING_SNAKE_CASE = rc.residue_atoms[restype_name] for atom_name in atom_names: __SCREAMING_SNAKE_CASE = rc.atom_order[atom_name] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = restype_atomaa_mask[protein_aatype] __SCREAMING_SNAKE_CASE = residx_atomaa_mask return protein def _a ( UpperCAmelCase__ ) -> Dict[str, np.ndarray]: __SCREAMING_SNAKE_CASE = tree_map(lambda UpperCAmelCase__ : torch.tensor(UpperCAmelCase__ , device=batch['''aatype'''].device ) , UpperCAmelCase__ , np.ndarray ) __SCREAMING_SNAKE_CASE = tensor_tree_map(lambda UpperCAmelCase__ : np.array(UpperCAmelCase__ ) , make_atomaa_masks(UpperCAmelCase__ ) ) return out
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self : str , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : str , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 2_56} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any ) -> np.ndarray: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : str , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] __SCREAMING_SNAKE_CASE = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Tuple] = None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__: lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class A__( unittest.TestCase ): lowerCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
690
1
"""simple docstring""" import math def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
690
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = int(UpperCAmelCase__ ) assert noofclusters < len(UpperCAmelCase__ ) # Find out the dimensionality __SCREAMING_SNAKE_CASE = len(vectors[0] ) # Will help select random centroids from among the available vectors __SCREAMING_SNAKE_CASE = list(range(len(UpperCAmelCase__ ) ) ) shuffle(UpperCAmelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __SCREAMING_SNAKE_CASE = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __SCREAMING_SNAKE_CASE = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __SCREAMING_SNAKE_CASE = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __SCREAMING_SNAKE_CASE = tf.placeholder('''float64''' , [dim] ) __SCREAMING_SNAKE_CASE = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __SCREAMING_SNAKE_CASE = [tf.Variable(0 ) for i in range(len(UpperCAmelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __SCREAMING_SNAKE_CASE = tf.placeholder('''int32''' ) __SCREAMING_SNAKE_CASE = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __SCREAMING_SNAKE_CASE = tf.reduce_mean(UpperCAmelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase__ , UpperCAmelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [noofclusters] ) __SCREAMING_SNAKE_CASE = tf.argmin(UpperCAmelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __SCREAMING_SNAKE_CASE = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCAmelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __SCREAMING_SNAKE_CASE = 1_00 for _ in range(UpperCAmelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __SCREAMING_SNAKE_CASE = [ sess.run(UpperCAmelCase__ , feed_dict={va: vect, va: sess.run(UpperCAmelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __SCREAMING_SNAKE_CASE = sess.run( UpperCAmelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCAmelCase__ ): # Collect all the vectors assigned to this cluster __SCREAMING_SNAKE_CASE = [ vectors[i] for i in range(len(UpperCAmelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __SCREAMING_SNAKE_CASE = sess.run( UpperCAmelCase__ , feed_dict={mean_input: array(UpperCAmelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __SCREAMING_SNAKE_CASE = sess.run(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = sess.run(UpperCAmelCase__ ) return centroids, assignments
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> Dict: __SCREAMING_SNAKE_CASE = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = input_paths_and_base_extractors[compression_format] if input_path is None: __SCREAMING_SNAKE_CASE = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) assert base_extractor.is_extractable(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __SCREAMING_SNAKE_CASE = file_path.read_text(encoding='''utf-8''' ) else: __SCREAMING_SNAKE_CASE = output_path.read_text(encoding='''utf-8''' ) __SCREAMING_SNAKE_CASE = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } __SCREAMING_SNAKE_CASE = input_paths[compression_format] if input_path is None: __SCREAMING_SNAKE_CASE = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = Extractor.infer_extractor_format(UpperCAmelCase__ ) assert extractor_format is not None __SCREAMING_SNAKE_CASE = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __SCREAMING_SNAKE_CASE = file_path.read_text(encoding='''utf-8''' ) else: __SCREAMING_SNAKE_CASE = output_path.read_text(encoding='''utf-8''' ) __SCREAMING_SNAKE_CASE = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: import tarfile __SCREAMING_SNAKE_CASE = tmp_path / '''data_dot_dot''' directory.mkdir() __SCREAMING_SNAKE_CASE = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(UpperCAmelCase__ , '''w''' ) as f: f.add(UpperCAmelCase__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _a ( UpperCAmelCase__ ) -> int: import tarfile __SCREAMING_SNAKE_CASE = tmp_path / '''data_sym_link''' directory.mkdir() __SCREAMING_SNAKE_CASE = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=UpperCAmelCase__ ) with tarfile.TarFile(UpperCAmelCase__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } __SCREAMING_SNAKE_CASE = insecure_tar_files[insecure_tar_file] __SCREAMING_SNAKE_CASE = tmp_path / '''extracted''' TarExtractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a ( UpperCAmelCase__ ) -> List[str]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __SCREAMING_SNAKE_CASE = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 __SCREAMING_SNAKE_CASE = ( B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(UpperCAmelCase__ ) assert zipfile.is_zipfile(str(UpperCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCAmelCase__ ) # but we're right
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ="T5Config" class A__( __magic_name__ ): lowerCAmelCase = '''mt5''' lowerCAmelCase = MTaConfig class A__( __magic_name__ ): lowerCAmelCase = '''mt5''' lowerCAmelCase = MTaConfig class A__( __magic_name__ ): lowerCAmelCase = '''mt5''' lowerCAmelCase = MTaConfig
690
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A__( __magic_name__ ): lowerCAmelCase = '''deta''' lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[str]=9_00 , __SCREAMING_SNAKE_CASE : List[Any]=20_48 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Optional[int]=20_48 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : List[str]=6 , __SCREAMING_SNAKE_CASE : List[str]=10_24 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Tuple="relu" , __SCREAMING_SNAKE_CASE : Tuple=2_56 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Dict=1.0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="sine" , __SCREAMING_SNAKE_CASE : str=5 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : str=3_00 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.25 , **__SCREAMING_SNAKE_CASE : int , ) -> Tuple: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = backbone_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _a ( self : Optional[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ) -> int: """simple docstring""" return self.d_model def _a ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
690
"""simple docstring""" import math lowerCAmelCase__ =10 lowerCAmelCase__ =7 lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS def _a ( UpperCAmelCase__ = 20 ) -> str: __SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
690
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A__( unittest.TestCase ): def _a ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class A__( __magic_name__ ): lowerCAmelCase = '''glpn''' def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Any=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE : int=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE : int=[32, 64, 1_60, 2_56] , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : str=1E-6 , __SCREAMING_SNAKE_CASE : List[Any]=64 , __SCREAMING_SNAKE_CASE : Tuple=10 , __SCREAMING_SNAKE_CASE : Dict=-1 , **__SCREAMING_SNAKE_CASE : Any , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_encoder_blocks __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = sr_ratios __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = decoder_hidden_size __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = head_in_index
690
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ =list[list[float | int]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase__ ): for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ ) ] def _a ( UpperCAmelCase__ ) -> Callable[[int], int]: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ ) def interpolated_func(UpperCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase__ ) ) return interpolated_func def _a ( UpperCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int: __SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ): x_val += 1 ret += poly(UpperCAmelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" import math class A__: def _a ( self : int , __SCREAMING_SNAKE_CASE : list[list[float]] , __SCREAMING_SNAKE_CASE : list[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 0.0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : list[list[int | float]] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float ) -> list[list[int | float]]: """simple docstring""" for i in range(len(__SCREAMING_SNAKE_CASE ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _a ( ) -> None: # Training Examples ( m, n ) __SCREAMING_SNAKE_CASE = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __SCREAMING_SNAKE_CASE = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __SCREAMING_SNAKE_CASE = SelfOrganizingMap() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample __SCREAMING_SNAKE_CASE = training_samples[j] # Compute the winning vector __SCREAMING_SNAKE_CASE = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector __SCREAMING_SNAKE_CASE = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample __SCREAMING_SNAKE_CASE = [0, 0, 0, 1] __SCREAMING_SNAKE_CASE = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
690
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = StableDiffusionPanoramaPipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _a ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : Optional[Any] ) -> Any: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : str ) -> str: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5E-3 ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''french fries''' __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE , view_batch_size=2 ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , skip_prk_steps=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A__( unittest.TestCase ): def _a ( self : Dict ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _a ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = '''stabilityai/stable-diffusion-2-base''' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder='''scheduler''' ) __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __SCREAMING_SNAKE_CASE = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**__SCREAMING_SNAKE_CASE ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __SCREAMING_SNAKE_CASE = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def callback_fn(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = '''stabilityai/stable-diffusion-2-base''' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder='''scheduler''' ) __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() pipe(**__SCREAMING_SNAKE_CASE , callback=__SCREAMING_SNAKE_CASE , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self : Optional[Any] ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = '''stabilityai/stable-diffusion-2-base''' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder='''scheduler''' ) __SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
690
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ ={"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure)
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase__ =False class A__( unittest.TestCase ): pass @nightly @require_torch_gpu class A__( unittest.TestCase ): def _a ( self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger ''' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generator.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger ''' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __SCREAMING_SNAKE_CASE = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __SCREAMING_SNAKE_CASE = DetaConfig( backbone_config=UpperCAmelCase__ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase__ , with_box_refine=UpperCAmelCase__ , two_stage=UpperCAmelCase__ , ) # set labels __SCREAMING_SNAKE_CASE = '''huggingface/label-files''' if "o365" in model_name: __SCREAMING_SNAKE_CASE = 3_66 __SCREAMING_SNAKE_CASE = '''object365-id2label.json''' else: __SCREAMING_SNAKE_CASE = 91 __SCREAMING_SNAKE_CASE = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) __SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def _a ( UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: # transformer decoder self-attention layers __SCREAMING_SNAKE_CASE = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:hidden_size, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ hidden_size : hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size:] def _a ( ) -> List[str]: __SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = get_deta_config(UpperCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase__ , param.shape ) # rename keys __SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val if "input_proj" in key: __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE = DetaForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(UpperCAmelCase__ ) # load image processor __SCREAMING_SNAKE_CASE = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE = model(pixel_values.to(UpperCAmelCase__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase__ ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase__ =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
690
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _a ( UpperCAmelCase__ ) -> Dict: __SCREAMING_SNAKE_CASE = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"""{test_file} instead.""" ) __SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __SCREAMING_SNAKE_CASE = '''.'''.join(UpperCAmelCase__ ) return test_module_path def _a ( UpperCAmelCase__ ) -> Any: __SCREAMING_SNAKE_CASE = get_module_path(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = importlib.import_module(UpperCAmelCase__ ) return test_module def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(UpperCAmelCase__ ) for attr in dir(UpperCAmelCase__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # sort with class names return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x.__name__ ) def _a ( UpperCAmelCase__ ) -> Any: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(UpperCAmelCase__ ) for attr in dir(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase__ , '''all_model_classes''' , [] ) if len(UpperCAmelCase__ ) > 0: test_classes.append(UpperCAmelCase__ ) # sort with class names return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x.__name__ ) def _a ( UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE = get_test_classes(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x.__name__ ) def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = test_class() if hasattr(UpperCAmelCase__ , '''setUp''' ): test.setUp() __SCREAMING_SNAKE_CASE = None if hasattr(UpperCAmelCase__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = get_test_classes(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCAmelCase__ ) # sort with class names return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x.__name__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = get_test_classes_for_model(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: __SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(UpperCAmelCase__ ) if tester_class is not None: tester_classes.append(UpperCAmelCase__ ) # sort with class names return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x.__name__ ) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = get_test_classes(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(UpperCAmelCase__ ) for test_class in test_classes} return test_tester_mapping def _a ( UpperCAmelCase__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = get_model_classes(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(UpperCAmelCase__ , UpperCAmelCase__ ) for model_class in model_classes } return model_test_mapping def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = get_model_classes(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(UpperCAmelCase__ , UpperCAmelCase__ ) for model_class in model_classes } return model_to_tester_mapping def _a ( UpperCAmelCase__ ) -> Union[str, Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return o elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return o.__name__ elif isinstance(UpperCAmelCase__ , (list, tuple) ): return [to_json(UpperCAmelCase__ ) for x in o] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return {to_json(UpperCAmelCase__ ): to_json(UpperCAmelCase__ ) for k, v in o.items()} else: return o
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A__( unittest.TestCase ): def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = jnp.ones((batch_size, length) ) / length return scores def _a ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(batch_size=2 , length=__SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore __SCREAMING_SNAKE_CASE = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __SCREAMING_SNAKE_CASE = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __SCREAMING_SNAKE_CASE = jax.nn.softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = FlaxTemperatureLogitsWarper(temperature=0.5 ) __SCREAMING_SNAKE_CASE = FlaxTemperatureLogitsWarper(temperature=1.3 ) __SCREAMING_SNAKE_CASE = jax.nn.softmax(temp_dist_warper_sharper(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE ) , axis=-1 ) __SCREAMING_SNAKE_CASE = jax.nn.softmax(temp_dist_warper_smoother(__SCREAMING_SNAKE_CASE , scores.copy() , cur_len=__SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 2 # create ramp distribution __SCREAMING_SNAKE_CASE = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() __SCREAMING_SNAKE_CASE = ramp_logits[1:, : vocab_size // 2] + vocab_size __SCREAMING_SNAKE_CASE = FlaxTopKLogitsWarper(3 ) __SCREAMING_SNAKE_CASE = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __SCREAMING_SNAKE_CASE = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() __SCREAMING_SNAKE_CASE = top_k_warp_safety_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __SCREAMING_SNAKE_CASE = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __SCREAMING_SNAKE_CASE = FlaxTopPLogitsWarper(0.8 ) __SCREAMING_SNAKE_CASE = np.exp(top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __SCREAMING_SNAKE_CASE = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # check edge cases with negative and extreme logits __SCREAMING_SNAKE_CASE = np.broadcast_to(np.arange(__SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __SCREAMING_SNAKE_CASE = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __SCREAMING_SNAKE_CASE = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __SCREAMING_SNAKE_CASE = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _a ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 __SCREAMING_SNAKE_CASE = ids_tensor((batch_size, 20) , vocab_size=20 ) __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = min_dist_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def _a ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score __SCREAMING_SNAKE_CASE = ids_tensor((batch_size, 1) , vocab_size=20 ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def _a ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached __SCREAMING_SNAKE_CASE = ids_tensor((batch_size, 4) , vocab_size=20 ) __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = logits_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(__SCREAMING_SNAKE_CASE ).any() ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 15 # dummy input_ids and scores __SCREAMING_SNAKE_CASE = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = input_ids.copy() __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scores.copy() # instantiate all dist processors __SCREAMING_SNAKE_CASE = FlaxTemperatureLogitsWarper(temperature=0.5 ) __SCREAMING_SNAKE_CASE = FlaxTopKLogitsWarper(3 ) __SCREAMING_SNAKE_CASE = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __SCREAMING_SNAKE_CASE = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 10 # no processor list __SCREAMING_SNAKE_CASE = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # with processor list __SCREAMING_SNAKE_CASE = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __SCREAMING_SNAKE_CASE = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _a ( self : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 15 # dummy input_ids and scores __SCREAMING_SNAKE_CASE = ids_tensor((batch_size, sequence_length) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = input_ids.copy() __SCREAMING_SNAKE_CASE = self._get_uniform_logits(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scores.copy() # instantiate all dist processors __SCREAMING_SNAKE_CASE = FlaxTemperatureLogitsWarper(temperature=0.5 ) __SCREAMING_SNAKE_CASE = FlaxTopKLogitsWarper(3 ) __SCREAMING_SNAKE_CASE = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __SCREAMING_SNAKE_CASE = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FlaxForcedEOSTokenLogitsProcessor(max_length=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 10 # no processor list def run_no_processor_list(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ): __SCREAMING_SNAKE_CASE = temp_dist_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = top_k_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = top_p_warp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = min_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = bos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = eos_dist_proc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ): __SCREAMING_SNAKE_CASE = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __SCREAMING_SNAKE_CASE = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cur_len=__SCREAMING_SNAKE_CASE ) return scores __SCREAMING_SNAKE_CASE = jax.jit(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.jit(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jitted_run_no_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jitted_run_processor_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
690
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ ={ "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } lowerCAmelCase__ ={"mobilebert-uncased": 512} lowerCAmelCase__ ={} class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]="[UNK]" , __SCREAMING_SNAKE_CASE : Tuple="[SEP]" , __SCREAMING_SNAKE_CASE : List[str]="[PAD]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Dict="[MASK]" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = do_lower_case def _a ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
"""simple docstring""" import math import sys import cva import numpy as np def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: # For applying gaussian function for each element in matrix. __SCREAMING_SNAKE_CASE = math.sqrt(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: __SCREAMING_SNAKE_CASE = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __SCREAMING_SNAKE_CASE = np.zeros((kernel_size, kernel_size) ) for i in range(0 , UpperCAmelCase__ ): for j in range(0 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(UpperCAmelCase__ , UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = np.zeros(img.shape ) __SCREAMING_SNAKE_CASE = get_gauss_kernel(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __SCREAMING_SNAKE_CASE = get_slice(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = img_s - img_s[kernel_size // 2, kernel_size // 2] __SCREAMING_SNAKE_CASE = vec_gaussian(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.multiply(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.multiply(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.sum(UpperCAmelCase__ ) / np.sum(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = val return imga def _a ( UpperCAmelCase__ ) -> tuple: __SCREAMING_SNAKE_CASE = args[1] if args[1:] else '''../image_data/lena.jpg''' __SCREAMING_SNAKE_CASE = float(args[2] ) if args[2:] else 1.0 __SCREAMING_SNAKE_CASE = float(args[3] ) if args[3:] else 1.0 if args[4:]: __SCREAMING_SNAKE_CASE = int(args[4] ) __SCREAMING_SNAKE_CASE = kernel_size + abs(kernel_size % 2 - 1 ) else: __SCREAMING_SNAKE_CASE = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =parse_args(sys.argv) lowerCAmelCase__ =cva.imread(filename, 0) cva.imshow("input image", img) lowerCAmelCase__ =img / 255 lowerCAmelCase__ =out.astype("float32") lowerCAmelCase__ =bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase__ =out * 255 lowerCAmelCase__ =np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
"""simple docstring""" import argparse from collections import defaultdict import yaml lowerCAmelCase__ ="docs/source/en/_toctree.yml" def _a ( UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = new_doc_list __SCREAMING_SNAKE_CASE = [key for key, value in counts.items() if value > 1] __SCREAMING_SNAKE_CASE = [] for duplicate_key in duplicates: __SCREAMING_SNAKE_CASE = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(UpperCAmelCase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase__ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(UpperCAmelCase__ ) # Sort return overview_doc def _a ( UpperCAmelCase__=False ) -> Dict: with open(UpperCAmelCase__ , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc __SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 __SCREAMING_SNAKE_CASE = content[api_idx]['''sections'''] # Then to the model doc __SCREAMING_SNAKE_CASE = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __SCREAMING_SNAKE_CASE = api_doc[scheduler_idx]['''sections'''] __SCREAMING_SNAKE_CASE = clean_doc_toc(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = False if new_scheduler_doc != scheduler_doc: __SCREAMING_SNAKE_CASE = True if overwrite: __SCREAMING_SNAKE_CASE = new_scheduler_doc if diff: if overwrite: __SCREAMING_SNAKE_CASE = api_doc with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase__ , allow_unicode=UpperCAmelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _a ( UpperCAmelCase__=False ) -> List[str]: with open(UpperCAmelCase__ , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc __SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 __SCREAMING_SNAKE_CASE = content[api_idx]['''sections'''] # Then to the model doc __SCREAMING_SNAKE_CASE = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = api_doc[pipeline_idx]['''sections'''] __SCREAMING_SNAKE_CASE = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __SCREAMING_SNAKE_CASE = pipeline_doc['''section'''] __SCREAMING_SNAKE_CASE = clean_doc_toc(UpperCAmelCase__ ) if overwrite: __SCREAMING_SNAKE_CASE = new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase__ ) # sort overall pipeline doc __SCREAMING_SNAKE_CASE = clean_doc_toc(UpperCAmelCase__ ) if new_pipeline_docs != pipeline_docs: __SCREAMING_SNAKE_CASE = True if overwrite: __SCREAMING_SNAKE_CASE = new_pipeline_docs if diff: if overwrite: __SCREAMING_SNAKE_CASE = api_doc with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase__ , allow_unicode=UpperCAmelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
690
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ ="src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ =importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ =spec.loader.load_module() lowerCAmelCase__ =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ =re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCAmelCase__ ={ "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def _a ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = [] for config_class in list(CONFIG_MAPPING.values() ): __SCREAMING_SNAKE_CASE = False # source code of `config_class` __SCREAMING_SNAKE_CASE = inspect.getsource(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = _re_checkpoint.findall(UpperCAmelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = checkpoint # verify the checkpoint name corresponds to the checkpoint link __SCREAMING_SNAKE_CASE = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __SCREAMING_SNAKE_CASE = True break __SCREAMING_SNAKE_CASE = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = '''\n'''.join(sorted(UpperCAmelCase__ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
690
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } lowerCAmelCase__ ={ "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } lowerCAmelCase__ ={ "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def _a ( UpperCAmelCase__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char __SCREAMING_SNAKE_CASE = set(UpperCAmelCase__ ) return pairs class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , __SCREAMING_SNAKE_CASE : Any="</s>" , __SCREAMING_SNAKE_CASE : Any="</s>" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : List[Any]="<pad>" , __SCREAMING_SNAKE_CASE : Any="<mask>" , **__SCREAMING_SNAKE_CASE : int , ) -> Tuple: """simple docstring""" super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = merges_file __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split('''\n''' )[:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split()[:-1] ) for merge in merges] __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = {} def _a ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: __SCREAMING_SNAKE_CASE = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''@@ '''.join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = word[:-4] __SCREAMING_SNAKE_CASE = word return word def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = re.findall(r'''\S+\n?''' , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) ) return split_tokens def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _a ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ''' '''.join(__SCREAMING_SNAKE_CASE ).replace('''@@ ''' , '''''' ).strip() return out_string def _a ( self : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , __SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return __SCREAMING_SNAKE_CASE = f.readlines() for lineTmp in lines: __SCREAMING_SNAKE_CASE = lineTmp.strip() __SCREAMING_SNAKE_CASE = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) __SCREAMING_SNAKE_CASE = line[:idx] __SCREAMING_SNAKE_CASE = len(self.encoder )
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class A__: def __init__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Tuple=30 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : str=None , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests __SCREAMING_SNAKE_CASE = self.decoder_seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = decoder_seq_length __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 1 def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = TrOCRDecoder(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() __SCREAMING_SNAKE_CASE = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) + 1 ) __SCREAMING_SNAKE_CASE = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) def _a ( self : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class A__( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase = True lowerCAmelCase = False def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TrOCRStandaloneDecoderModelTester(self , is_training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def _a ( self : Optional[Any] ) -> int: """simple docstring""" pass def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass
690
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__: lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class A__( unittest.TestCase ): lowerCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class A__( __magic_name__ ): lowerCAmelCase = '''roformer''' def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int]=5_00_00 , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=7_68 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : int=30_72 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=15_36 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1E-1_2 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[int]=True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size if embedding_size is None else embedding_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = rotary_value __SCREAMING_SNAKE_CASE = use_cache class A__( __magic_name__ ): @property def _a ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
690
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ =logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( UpperCAmelCase__ ) -> Optional[int]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): __SCREAMING_SNAKE_CASE = [image] if isinstance(image[0] , PIL.Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image[0].size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __SCREAMING_SNAKE_CASE = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __SCREAMING_SNAKE_CASE = np.concatenate(UpperCAmelCase__ , axis=0 ) __SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE = image.transpose(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE = 2.0 * image - 1.0 __SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase__ , dim=0 ) return image def _a ( UpperCAmelCase__ ) -> List[str]: if isinstance(UpperCAmelCase__ , torch.Tensor ): return mask elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): __SCREAMING_SNAKE_CASE = [mask] if isinstance(mask[0] , PIL.Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = mask[0].size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __SCREAMING_SNAKE_CASE = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __SCREAMING_SNAKE_CASE = np.concatenate(UpperCAmelCase__ , axis=0 ) __SCREAMING_SNAKE_CASE = mask.astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase__ , dim=0 ) return mask class A__( __magic_name__ ): lowerCAmelCase = 42 lowerCAmelCase = 42 def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] , __SCREAMING_SNAKE_CASE : int = 2_50 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE = image __SCREAMING_SNAKE_CASE = _preprocess_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = original_image.to(device=self.device , dtype=self.unet.dtype ) __SCREAMING_SNAKE_CASE = _preprocess_mask(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = mask_image.to(device=self.device , dtype=self.unet.dtype ) __SCREAMING_SNAKE_CASE = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __SCREAMING_SNAKE_CASE = original_image.shape __SCREAMING_SNAKE_CASE = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device ) __SCREAMING_SNAKE_CASE = eta __SCREAMING_SNAKE_CASE = self.scheduler.timesteps[0] + 1 __SCREAMING_SNAKE_CASE = generator[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t __SCREAMING_SNAKE_CASE = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = t __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
690
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
1
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
"""simple docstring""" import math lowerCAmelCase__ =10 lowerCAmelCase__ =7 lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS def _a ( UpperCAmelCase__ = 20 ) -> str: __SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
690
1
"""simple docstring""" from collections import namedtuple lowerCAmelCase__ =namedtuple("from_to", "from_ to") lowerCAmelCase__ ={ "cubicmeter": from_to(1, 1), "litre": from_to(0.0_01, 1_000), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_04_54, 2_64.1_72), "cubicyard": from_to(0.7_64_55, 1.3_07_95), "cubicfoot": from_to(0.0_28, 35.31_47), "cup": from_to(0.0_00_23_65_88, 42_26.75), } def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _a ( UpperCAmelCase__ ) -> Tuple: def wrapper(*UpperCAmelCase__ , **UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def _a ( UpperCAmelCase__ , UpperCAmelCase__=1_00 , UpperCAmelCase__=None ) -> Dict: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase__ , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase__ , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = '''The small grey turtle was surprisingly fast when challenged.''' else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase__ , datasets.Sequence ): while isinstance(UpperCAmelCase__ , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*UpperCAmelCase__ ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=1_00 , UpperCAmelCase__=None ) -> Tuple: __SCREAMING_SNAKE_CASE = generate_examples(UpperCAmelCase__ , num_examples=UpperCAmelCase__ , seq_shapes=UpperCAmelCase__ ) with ArrowWriter(features=UpperCAmelCase__ , path=UpperCAmelCase__ ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(UpperCAmelCase__ ) writer.write(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=UpperCAmelCase__ , info=datasets.DatasetInfo(features=UpperCAmelCase__ ) ) return dataset
690
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ =list[list[float | int]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase__ ): for row in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ ) ] def _a ( UpperCAmelCase__ ) -> Callable[[int], int]: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(UpperCAmelCase__ ): for col in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ ) def interpolated_func(UpperCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase__ ) ) return interpolated_func def _a ( UpperCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int: __SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ): x_val += 1 ret += poly(UpperCAmelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained('''gpt2''' ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig() __SCREAMING_SNAKE_CASE = { '''max_new_tokens''': 10_24, '''foo''': '''bar''', } __SCREAMING_SNAKE_CASE = copy.deepcopy(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generation_config.update(**__SCREAMING_SNAKE_CASE ) # update_kwargs was not modified (no side effects) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__SCREAMING_SNAKE_CASE , {'''foo''': '''bar'''} ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig() __SCREAMING_SNAKE_CASE = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE ) assert not hasattr(__SCREAMING_SNAKE_CASE , '''foo''' ) # no new kwargs should be initialized if from config def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(default_config.num_beams , 1 ) __SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__( unittest.TestCase ): @classmethod def _a ( cls : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE ) @classmethod def _a ( cls : str ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''test-generation-config''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
690
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ ={ "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["ChineseCLIPFeatureExtractor"] lowerCAmelCase__ =["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =[ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ =logging.get_logger(__name__) class A__( __magic_name__ ): lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
690
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A__( __magic_name__ ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[NestedDataStructureLike[PathLike]] = None , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = path_or_paths __SCREAMING_SNAKE_CASE = split if split or isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else '''train''' __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def _a ( self : Tuple ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class A__( __magic_name__ ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def _a ( self : int ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1