code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = [0 for i in range(r + 1 )]
# nc0 = 1
__SCREAMING_SNAKE_CASE = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , UpperCAmelCase__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 690 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 1 |
"""simple docstring"""
import os
import sys
lowerCAmelCase__ =os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase__ =[
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> Dict:
return AutoConfig.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> Dict:
return AutoTokenizer.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoModel.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> Optional[Any]:
return AutoModel.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> str:
return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> List[str]:
return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def _a ( *UpperCAmelCase__ , **UpperCAmelCase__ ) -> int:
return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
| 690 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A__( unittest.TestCase ):
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict()
config_dict.pop('''image_processor_type''' )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def _a ( self : int ) -> Any:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
class A__( __magic_name__ ):
lowerCAmelCase = True
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 690 | 1 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class A__( unittest.TestCase ):
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=30 , __SCREAMING_SNAKE_CASE : int=4_00 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Dict=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=1 / 2_55 , __SCREAMING_SNAKE_CASE : Optional[int]=True , ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_pad
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=False ) -> int:
"""simple docstring"""
if not batched:
__SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * h / w )
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
elif w > h:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * w / h )
else:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
else:
__SCREAMING_SNAKE_CASE = []
for image in image_inputs:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0]
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = YolosImageProcessor if is_vision_available() else None
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = YolosImageProcessingTester(self )
@property
def _a ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) )
def _a ( self : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : Dict ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
__SCREAMING_SNAKE_CASE = self.image_processing_class(do_resize=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , do_rescale=__SCREAMING_SNAKE_CASE )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
__SCREAMING_SNAKE_CASE = image_processing_a.pad(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE = image_processing_a(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
self.assertTrue(
torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) )
@slow
def _a ( self : List[str] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''image_id''': 3_97_69, '''annotations''': target}
# encode them
__SCREAMING_SNAKE_CASE = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' )
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Dict ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target}
__SCREAMING_SNAKE_CASE = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
__SCREAMING_SNAKE_CASE = YolosImageProcessor(format='''coco_panoptic''' )
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify masks
__SCREAMING_SNAKE_CASE = 82_28_73
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __SCREAMING_SNAKE_CASE )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
| 690 |
"""simple docstring"""
import math
lowerCAmelCase__ =10
lowerCAmelCase__ =7
lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS
def _a ( UpperCAmelCase__ = 20 ) -> str:
__SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 690 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase__ =logging.getLogger(__name__)
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
return (preds == labels).mean()
@dataclass
class A__:
lowerCAmelCase = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowerCAmelCase = field(
default=__magic_name__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowerCAmelCase = field(
default=__magic_name__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowerCAmelCase = field(
default=__magic_name__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class A__:
lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} )
lowerCAmelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} )
lowerCAmelCase = field(
default=1_28 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowerCAmelCase = field(
default=__magic_name__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def _a ( ) -> Tuple:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase__ )
# Set seed
set_seed(training_args.seed )
try:
__SCREAMING_SNAKE_CASE = processors[data_args.task_name]()
__SCREAMING_SNAKE_CASE = processor.get_labels()
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__SCREAMING_SNAKE_CASE = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , )
# Get datasets
__SCREAMING_SNAKE_CASE = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__SCREAMING_SNAKE_CASE = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCAmelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(UpperCAmelCase__ ) -> Dict:
__SCREAMING_SNAKE_CASE = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(UpperCAmelCase__ , p.label_ids )}
# Data collator
__SCREAMING_SNAKE_CASE = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__SCREAMING_SNAKE_CASE = Trainer(
model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__SCREAMING_SNAKE_CASE = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__SCREAMING_SNAKE_CASE = trainer.evaluate()
__SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_master():
with open(UpperCAmelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , UpperCAmelCase__ , UpperCAmelCase__ )
writer.write('''%s = %s\n''' % (key, value) )
results.update(UpperCAmelCase__ )
return results
def _a ( UpperCAmelCase__ ) -> Optional[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 690 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class A__( __magic_name__ ):
def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 690 | 1 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ =list[list[float | int]]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase__ ):
for row in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ )
]
def _a ( UpperCAmelCase__ ) -> Callable[[int], int]:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ )
def interpolated_func(UpperCAmelCase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase__ ) )
return interpolated_func
def _a ( UpperCAmelCase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int:
__SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ):
x_val += 1
ret += poly(UpperCAmelCase__ )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 1 |
"""simple docstring"""
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def _a ( UpperCAmelCase__ ) -> Any:
if hor == 1_28:
__SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''')
__SCREAMING_SNAKE_CASE = (32, 1_28, 2_56)
__SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''')
elif hor == 32:
__SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''')
__SCREAMING_SNAKE_CASE = (32, 64, 1_28, 2_56)
__SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''')
__SCREAMING_SNAKE_CASE = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" )
__SCREAMING_SNAKE_CASE = model.state_dict()
__SCREAMING_SNAKE_CASE = {
'''down_block_types''': down_block_types,
'''block_out_channels''': block_out_channels,
'''up_block_types''': up_block_types,
'''layers_per_block''': 1,
'''use_timestep_embedding''': True,
'''out_block_type''': '''OutConv1DBlock''',
'''norm_num_groups''': 8,
'''downsample_each_block''': False,
'''in_channels''': 14,
'''out_channels''': 14,
'''extra_in_channels''': 0,
'''time_embedding_type''': '''positional''',
'''flip_sin_to_cos''': False,
'''freq_shift''': 1,
'''sample_size''': 6_55_36,
'''mid_block_type''': '''MidResTemporalBlock1D''',
'''act_fn''': '''mish''',
}
__SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCAmelCase__ )
print(f"""length of state dict: {len(state_dict.keys() )}""" )
print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" )
__SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ )
hf_value_function.load_state_dict(UpperCAmelCase__ )
torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" )
with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
def _a ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = {
'''in_channels''': 14,
'''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''),
'''up_block_types''': (),
'''out_block_type''': '''ValueFunction''',
'''mid_block_type''': '''ValueFunctionMidBlock1D''',
'''block_out_channels''': (32, 64, 1_28, 2_56),
'''layers_per_block''': 1,
'''downsample_each_block''': True,
'''sample_size''': 6_55_36,
'''out_channels''': 14,
'''extra_in_channels''': 0,
'''time_embedding_type''': '''positional''',
'''use_timestep_embedding''': True,
'''flip_sin_to_cos''': False,
'''freq_shift''': 1,
'''norm_num_groups''': 8,
'''act_fn''': '''mish''',
}
__SCREAMING_SNAKE_CASE = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' )
__SCREAMING_SNAKE_CASE = model
__SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCAmelCase__ )
print(f"""length of state dict: {len(state_dict.keys() )}""" )
print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" )
__SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ )
hf_value_function.load_state_dict(UpperCAmelCase__ )
torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' )
with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 690 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase__ ={
"configuration_rag": ["RagConfig"],
"retrieval_rag": ["RagRetriever"],
"tokenization_rag": ["RagTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"RagModel",
"RagPreTrainedModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"TFRagModel",
"TFRagPreTrainedModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __magic_name__ ):
lowerCAmelCase = ['''audio_values''', '''audio_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = spectrogram_length
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE = n_fft
__SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = padding_value
__SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE = log_spec - 20.0
__SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE = audio_features[i]
__SCREAMING_SNAKE_CASE = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 690 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ ={
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["MobileViTFeatureExtractor"]
lowerCAmelCase__ =["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _a ( UpperCAmelCase__ ) -> dict[str, str]:
__SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
# First fill cipher with key characters
__SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(UpperCAmelCase__ ) , 26 ):
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
__SCREAMING_SNAKE_CASE = char
return cipher_alphabet
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ )
print(func(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 690 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( _snake_case ):
lowerCAmelCase = ['''pixel_values''']
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Any , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE = size if size is not None else {'''height''': 3_84, '''width''': 3_84}
__SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = resample
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
__SCREAMING_SNAKE_CASE = do_convert_rgb
def _a ( self : int , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__SCREAMING_SNAKE_CASE = (size['''height'''], size['''width'''])
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Optional[Any]:
"""simple docstring"""
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : int , ) -> PIL.Image.Image:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
__SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
__SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
__SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
__SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
__SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
__SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__SCREAMING_SNAKE_CASE = size if size is not None else self.size
__SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__SCREAMING_SNAKE_CASE = [convert_to_rgb(lowerCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
__SCREAMING_SNAKE_CASE = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
__SCREAMING_SNAKE_CASE = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_rescale:
__SCREAMING_SNAKE_CASE = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
__SCREAMING_SNAKE_CASE = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
__SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
__SCREAMING_SNAKE_CASE = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCAmelCase__ )
return encoded_outputs
| 701 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__:
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ):
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 690 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowerCAmelCase__ =TypeVar("T")
class A__( Generic[T] ):
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = data
__SCREAMING_SNAKE_CASE = None
def __str__( self : Any ) -> str:
"""simple docstring"""
return f"""{self.data}"""
class A__( Generic[T] ):
def __init__( self : str ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = None
def __iter__( self : Union[str, Any] ) -> Iterator[T]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.top
while node:
yield node.data
__SCREAMING_SNAKE_CASE = node.next
def __str__( self : List[str] ) -> str:
"""simple docstring"""
return "->".join([str(UpperCAmelCase_ ) for item in self] )
def __len__( self : str ) -> int:
"""simple docstring"""
return len(tuple(iter(self ) ) )
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.top is None
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Node(UpperCAmelCase_ )
if not self.is_empty():
__SCREAMING_SNAKE_CASE = self.top
__SCREAMING_SNAKE_CASE = node
def _a ( self : Dict ) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError('''pop from empty stack''' )
assert isinstance(self.top , UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = self.top
__SCREAMING_SNAKE_CASE = self.top.next
return pop_node.data
def _a ( self : Optional[int] ) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError('''peek from empty stack''' )
assert self.top is not None
return self.top.data
def _a ( self : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 702 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = XLMRobertaTokenizer
lowerCAmelCase = XLMRobertaTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<pad>'''
__SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@cached_property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name )
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE )
pickle.loads(__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.'''
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''Hello World!'''
__SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__SCREAMING_SNAKE_CASE = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 690 | 0 |
"""simple docstring"""
from math import isqrt
def _a ( UpperCAmelCase__ ) -> list[int]:
__SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , UpperCAmelCase__ ) if is_prime[i]]
def _a ( UpperCAmelCase__ = 10**8 ) -> int:
__SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2 )
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 703 |
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]:
__SCREAMING_SNAKE_CASE = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 690 | 0 |
"""simple docstring"""
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = None
lowerCAmelCase = BloomTokenizerFast
lowerCAmelCase = BloomTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = '''tokenizer_file'''
lowerCAmelCase = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''}
def _a ( self : int ) -> int:
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def _a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
__SCREAMING_SNAKE_CASE = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
__SCREAMING_SNAKE_CASE = tokenizer.batch_encode_plus(UpperCamelCase_ )['input_ids']
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=6 ) -> List[str]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__SCREAMING_SNAKE_CASE = 'This is a simple input'
__SCREAMING_SNAKE_CASE = ['This is a simple input 1', 'This is a simple input 2']
__SCREAMING_SNAKE_CASE = ('This is a simple input', 'This is a pair')
__SCREAMING_SNAKE_CASE = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ )
tokenizer_r.encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ )
tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ )
tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ )
tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ )
except ValueError:
self.fail('''Bloom Tokenizer should be able to deal with padding''' )
__SCREAMING_SNAKE_CASE = None # Hotfixing padding = None
self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' )
# Simple input
self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' )
# Simple input
self.assertRaises(
UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' , )
# Pair input
self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' )
# Pair input
self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' )
# Pair input
self.assertRaises(
UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' , )
def _a ( self : int ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = next(iter(UpperCamelCase_ ) )['premise'] # pick up one data
__SCREAMING_SNAKE_CASE = list(sample_data.values() )
__SCREAMING_SNAKE_CASE = list(map(tokenizer.encode , UpperCamelCase_ ) )
__SCREAMING_SNAKE_CASE = [tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for x in output_tokens]
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _a ( self : str ) -> Optional[Any]:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 704 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE = q
__SCREAMING_SNAKE_CASE = k
__SCREAMING_SNAKE_CASE = v
del sd[key]
return sd
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ )
if config is not None:
__SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = OPTConfig()
__SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval()
model.load_state_dict(UpperCAmelCase__ )
# Check results
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
lowerCAmelCase__ =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 690 | 0 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = '''gelu'''
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=13 , __SCREAMING_SNAKE_CASE : Tuple=7 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : List[Any]=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=20 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Dict=0 , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return config, inputs_dict
def _a ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=__lowerCamelCase ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict["input_ids"]
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict["head_mask"]
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase )
__SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Union[str, Any]:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( lowercase__ , lowercase__ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase )
def _a ( self : List[str] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**__lowerCamelCase )
self.assertListEqual(self.expected_text , __lowerCamelCase )
def _a ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__lowerCamelCase , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
return generated_words
@slow
def _a ( self : Optional[int] ) -> int:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 705 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__( __magic_name__ ):
lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa'''
lowerCAmelCase = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
lowerCAmelCase = '''document_qa'''
lowerCAmelCase = AutoProcessor
lowerCAmelCase = VisionEncoderDecoderModel
lowerCAmelCase = ['''image''', '''text''']
lowerCAmelCase = ['''text''']
def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids
__SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE )
return sequence["answer"]
| 690 | 0 |
"""simple docstring"""
import functools
from typing import Any
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ ) -> bool:
# Validation
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or len(lowerCamelCase_ ) == 0:
raise ValueError('''the string should be not empty string''' )
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not all(
isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0 for item in words ):
raise ValueError('''the words should be a list of non-empty strings''' )
# Build trie
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = 'WORD_KEEPER'
for word in words:
__SCREAMING_SNAKE_CASE = trie
for c in word:
if c not in trie_node:
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = trie_node[c]
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = len(lowerCamelCase_ )
# Dynamic programming method
@functools.cache
def is_breakable(UpperCAmelCase__ ) -> bool:
if index == len_string:
return True
__SCREAMING_SNAKE_CASE = trie
for i in range(lowerCamelCase_ , lowerCamelCase_ ):
__SCREAMING_SNAKE_CASE = trie_node.get(string[i] , lowerCamelCase_ )
if trie_node is None:
return False
if trie_node.get(lowerCamelCase_ , lowerCamelCase_ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A__( unittest.TestCase ):
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def _a ( self : str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_uncond_unet
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A__( unittest.TestCase ):
def _a ( self : Any ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256'''
__SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 690 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class A__( UpperCAmelCase_ ):
lowerCAmelCase = 'speech_to_text'
lowerCAmelCase = ['past_key_values']
lowerCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[int]=1_00_00 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : List[Any]=20_48 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Tuple=6 , __SCREAMING_SNAKE_CASE : List[Any]=20_48 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : List[Any]=2_56 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=60_00 , __SCREAMING_SNAKE_CASE : Optional[int]=10_24 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Any=(5, 5) , __SCREAMING_SNAKE_CASE : List[str]=10_24 , __SCREAMING_SNAKE_CASE : str=80 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = d_model
__SCREAMING_SNAKE_CASE = encoder_ffn_dim
__SCREAMING_SNAKE_CASE = encoder_layers
__SCREAMING_SNAKE_CASE = encoder_attention_heads
__SCREAMING_SNAKE_CASE = decoder_ffn_dim
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = decoder_attention_heads
__SCREAMING_SNAKE_CASE = dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = init_std
__SCREAMING_SNAKE_CASE = encoder_layerdrop
__SCREAMING_SNAKE_CASE = decoder_layerdrop
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = encoder_layers
__SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True
__SCREAMING_SNAKE_CASE = max_source_positions
__SCREAMING_SNAKE_CASE = max_target_positions
__SCREAMING_SNAKE_CASE = num_conv_layers
__SCREAMING_SNAKE_CASE = list(_lowercase )
__SCREAMING_SNAKE_CASE = conv_channels
__SCREAMING_SNAKE_CASE = input_feat_per_channel
__SCREAMING_SNAKE_CASE = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '''
f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """
f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
super().__init__(
pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
| 707 |
"""simple docstring"""
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={"vocab_file": "spiece.model"}
lowerCAmelCase__ ={
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
lowerCAmelCase__ ={
"AI-Sweden/gpt-sw3-126m": 2_048,
"AI-Sweden/gpt-sw3-350m": 2_048,
"AI-Sweden/gpt-sw3-1.6b": 2_048,
"AI-Sweden/gpt-sw3-6.7b": 2_048,
"AI-Sweden/gpt-sw3-20b": 2_048,
}
class A__( __magic_name__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
__SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__SCREAMING_SNAKE_CASE = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token
__SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token
else:
__SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = do_lower_case
__SCREAMING_SNAKE_CASE = remove_space
__SCREAMING_SNAKE_CASE = keep_accents
__SCREAMING_SNAKE_CASE = vocab_file
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# Used for whitespace normalization in input texts
# fmt : off
__SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__SCREAMING_SNAKE_CASE = re.compile(
f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE )
# Normalize whitespaces
__SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE )
return text
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
return out_string
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string
def _a ( self : Union[str, Any] ) -> Dict[str, int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__SCREAMING_SNAKE_CASE = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
else:
__SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text]
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
if return_tensors is True or return_tensors == "pt":
__SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE )
return token_ids
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str:
"""simple docstring"""
return self.sp_model.decode(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__SCREAMING_SNAKE_CASE = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=__SCREAMING_SNAKE_CASE )
| 690 | 0 |
from PIL import Image
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Image:
def brightness(UpperCAmelCase__ ) -> float:
return 1_28 + level + (c - 1_28)
if not -255.0 <= level <= 255.0:
raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' )
return img.point(__A )
if __name__ == "__main__":
# Load image
with Image.open("image_data/lena.jpg") as img:
# Change brightness to 100
lowerCAmelCase__ =change_brightness(img, 100)
brigt_img.save("image_data/lena_brightness.png", format="png")
| 708 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ ={"UserAgent": UserAgent().random}
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = script.contents[0]
__SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class A__:
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/"""
__SCREAMING_SNAKE_CASE = self.get_json()
def _a ( self : List[Any] ) -> dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text
__SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return f"""{self.__class__.__name__}('{self.username}')"""
def __str__( self : Optional[int] ) -> str:
"""simple docstring"""
return f"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def _a ( self : Tuple ) -> str:
"""simple docstring"""
return self.user_data["username"]
@property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return self.user_data["full_name"]
@property
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.user_data["biography"]
@property
def _a ( self : List[str] ) -> str:
"""simple docstring"""
return self.user_data["business_email"]
@property
def _a ( self : Any ) -> str:
"""simple docstring"""
return self.user_data["external_url"]
@property
def _a ( self : Any ) -> int:
"""simple docstring"""
return self.user_data["edge_followed_by"]["count"]
@property
def _a ( self : Dict ) -> int:
"""simple docstring"""
return self.user_data["edge_follow"]["count"]
@property
def _a ( self : str ) -> int:
"""simple docstring"""
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.user_data["profile_pic_url_hd"]
@property
def _a ( self : Tuple ) -> bool:
"""simple docstring"""
return self.user_data["is_verified"]
@property
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.user_data["is_private"]
def _a ( UpperCAmelCase__ = "github" ) -> None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
__SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , UpperCAmelCase__ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ =InstagramUser("github")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 690 | 0 |
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
lowerCAmelCase__ =logging.getLogger(__name__)
class A__:
'''simple docstring'''
def __init__( self : Optional[int] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = False
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
"""simple docstring"""
if not self.initialized:
__SCREAMING_SNAKE_CASE = RagRetriever(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , )
__SCREAMING_SNAKE_CASE = True
def _a ( self : int ) -> List[str]:
"""simple docstring"""
self.retriever.index.init_index()
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(_lowerCAmelCase , _lowerCAmelCase )
return doc_ids, retrieved_doc_embeds
class A__( __magic_name__ ):
'''simple docstring'''
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=None ) -> Dict:
"""simple docstring"""
if index is not None and index.is_initialized() and len(_lowerCAmelCase ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , )
__SCREAMING_SNAKE_CASE = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for worker in self.retrieval_workers
] )
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def _a ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(_lowerCAmelCase , _lowerCAmelCase ) )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase )
@classmethod
def _a ( cls : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
"""simple docstring"""
return super(_lowerCAmelCase , cls ).get_tokenizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
@classmethod
def _a ( cls : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.pop('''config''' , _lowerCAmelCase ) or RagConfig.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder
__SCREAMING_SNAKE_CASE = rag_tokenizer.generator
if indexed_dataset is not None:
__SCREAMING_SNAKE_CASE = '''custom'''
__SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size , _lowerCAmelCase )
else:
__SCREAMING_SNAKE_CASE = cls._build_index(_lowerCAmelCase )
return cls(
_lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , retrieval_workers=_lowerCAmelCase , index=_lowerCAmelCase , )
| 709 |
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__( datasets.Metric ):
def _a ( self : Any ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = recall_score(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , )
return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
| 690 | 0 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A__:
def __init__( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : str=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Dict=37 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=None , ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Tuple ) -> List[str]:
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFViTModel(config=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
__SCREAMING_SNAKE_CASE = self.image_size // 2
__SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size]
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = TFViTForImageClassification(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
__SCREAMING_SNAKE_CASE = self.image_size // 2
__SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size]
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = TFViTForImageClassification(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 )
def _a ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
pass
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(UpperCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def _a ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(UpperCamelCase_ )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : str ) -> List[str]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**UpperCamelCase_ )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
| 710 |
"""simple docstring"""
def _a ( UpperCAmelCase__ = 10**9 ) -> int:
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowerCAmelCase__ =1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s
lowerCAmelCase__ =3E8 # unit of c : m * s^-1
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
if (force, area, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if force < 0:
raise ValueError('''Magnitude of force can not be negative''' )
if distance < 0:
raise ValueError('''Distance can not be negative''' )
if area < 0:
raise ValueError('''Area can not be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__SCREAMING_SNAKE_CASE = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('''One and only one argument must be 0''' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase__ =pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase__ =dataset.iloc[:, 1:2].values
lowerCAmelCase__ =dataset.iloc[:, 2].values
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase__ =PolynomialFeatures(degree=4)
lowerCAmelCase__ =poly_reg.fit_transform(X)
lowerCAmelCase__ =LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> List[Any]:
plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' )
plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 690 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = """gelu"""
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : int=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=37 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=20 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_a , _a , _a )
return config, inputs_dict
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=_a ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""]
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""]
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
__SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Any:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
"""conversational""": TFMBartForConditionalGeneration,
"""feature-extraction""": TFMBartModel,
"""summarization""": TFMBartForConditionalGeneration,
"""text2text-generation""": TFMBartForConditionalGeneration,
"""translation""": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : Any ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_a )
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : List[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
""" UN Chief Says There Is No Military Solution in Syria""",
]
lowerCAmelCase = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
]
lowerCAmelCase = """facebook/mbart-large-en-ro"""
@cached_property
def _a ( self : int ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Dict , **__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**_a )
self.assertListEqual(self.expected_text , _a )
def _a ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_a , skip_special_tokens=_a )
return generated_words
@slow
def _a ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 712 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = '''gelu'''
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict['''input_ids''']
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''head_mask''']
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE )
self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE )
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
return generated_words
@slow
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 690 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict['''projector.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''projector.bias''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.post_net.linear.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.post_net.linear.bias''']
return model
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
__SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict['''model.linear.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.linear.bias''']
return model
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
__SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict['''connector.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__SCREAMING_SNAKE_CASE = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
__SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
__SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
__SCREAMING_SNAKE_CASE = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
__SCREAMING_SNAKE_CASE = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
__SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location='''cpu''' )
__SCREAMING_SNAKE_CASE = checkpoint['''Downstream''']
__SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(
__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , do_normalize=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
__SCREAMING_SNAKE_CASE = convert_classification(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
elif arch.endswith('''ForAudioFrameClassification''' ):
__SCREAMING_SNAKE_CASE = convert_diarization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
elif arch.endswith('''ForXVector''' ):
__SCREAMING_SNAKE_CASE = convert_xvector(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
__SCREAMING_SNAKE_CASE = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(__UpperCAmelCase )
hf_model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
lowerCAmelCase__ =parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 713 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class A__( __magic_name__ ):
lowerCAmelCase = '''van'''
def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_sizes
__SCREAMING_SNAKE_CASE = strides
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = mlp_ratios
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = layer_scale_init_value
__SCREAMING_SNAKE_CASE = drop_path_rate
__SCREAMING_SNAKE_CASE = dropout_rate
| 690 | 0 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ =TypeVar("KEY")
lowerCAmelCase__ =TypeVar("VAL")
@dataclass(frozen=__magic_name__ , slots=__magic_name__ )
class A__( Generic[KEY, VAL] ):
lowerCAmelCase = 42
lowerCAmelCase = 42
class A__( _Item ):
def __init__( self : Tuple ) -> None:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __bool__( self : List[Any] ) -> bool:
"""simple docstring"""
return False
lowerCAmelCase__ =_DeletedItem()
class A__( MutableMapping[KEY, VAL] ):
def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : float = 0.75 ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = initial_block_size
__SCREAMING_SNAKE_CASE = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__SCREAMING_SNAKE_CASE = capacity_factor
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : KEY ) -> int:
"""simple docstring"""
return hash(_UpperCAmelCase ) % len(self._buckets )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
return (ind + 1) % len(self._buckets )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL ) -> bool:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._buckets[ind]
if not stored:
__SCREAMING_SNAKE_CASE = _Item(_UpperCAmelCase , _UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
__SCREAMING_SNAKE_CASE = _Item(_UpperCAmelCase , _UpperCAmelCase )
return True
else:
return False
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(_UpperCAmelCase )
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
if len(self._buckets ) <= self._initial_block_size:
return False
__SCREAMING_SNAKE_CASE = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._buckets
__SCREAMING_SNAKE_CASE = [None] * new_size
__SCREAMING_SNAKE_CASE = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def _a ( self : Optional[int] ) -> None:
"""simple docstring"""
self._resize(len(self._buckets ) * 2 )
def _a ( self : str ) -> None:
"""simple docstring"""
self._resize(len(self._buckets ) // 2 )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : KEY ) -> Iterator[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._get_bucket_index(_UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
__SCREAMING_SNAKE_CASE = self._get_next_ind(_UpperCAmelCase )
def _a ( self : int , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL ) -> None:
"""simple docstring"""
for ind in self._iterate_buckets(_UpperCAmelCase ):
if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
break
def __setitem__( self : List[str] , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL ) -> None:
"""simple docstring"""
if self._is_full():
self._size_up()
self._add_item(_UpperCAmelCase , _UpperCAmelCase )
def __delitem__( self : Any , __SCREAMING_SNAKE_CASE : KEY ) -> None:
"""simple docstring"""
for ind in self._iterate_buckets(_UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = self._buckets[ind]
if item is None:
raise KeyError(_UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
__SCREAMING_SNAKE_CASE = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : int , __SCREAMING_SNAKE_CASE : KEY ) -> VAL:
"""simple docstring"""
for ind in self._iterate_buckets(_UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(_UpperCAmelCase )
def __len__( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self._len
def __iter__( self : Optional[Any] ) -> Iterator[KEY]:
"""simple docstring"""
yield from (item.key for item in self._buckets if item)
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ''' ,'''.join(
f"""{item.key}: {item.val}""" for item in self._buckets if item )
return f"""HashMap({val_string})"""
| 714 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _a ( UpperCAmelCase__ ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = tokenizer(example['''content'''] , truncation=__A )["""input_ids"""]
__SCREAMING_SNAKE_CASE = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
lowerCAmelCase__ =HfArgumentParser(PretokenizationArguments)
lowerCAmelCase__ =parser.parse_args()
if args.num_workers is None:
lowerCAmelCase__ =multiprocessing.cpu_count()
lowerCAmelCase__ =AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase__ =time.time()
lowerCAmelCase__ =load_dataset(args.dataset_name, split="train")
print(F'''Dataset loaded in {time.time()-t_start:.2f}s''')
lowerCAmelCase__ =time.time()
lowerCAmelCase__ =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''')
lowerCAmelCase__ =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A__( a__ , unittest.TestCase ):
lowerCAmelCase = KandinskyVaaControlnetPipeline
lowerCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''hint''']
lowerCAmelCase = ['''image_embeds''', '''negative_image_embeds''', '''hint''']
lowerCAmelCase = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowerCAmelCase = False
@property
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
return 32
@property
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return 32
@property
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def _a ( self : Tuple ) -> List[str]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _a ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return 1_00
@property
def _a ( self : int ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(**_A )
return model
@property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs )
return model
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_unet
__SCREAMING_SNAKE_CASE = self.dummy_movq
__SCREAMING_SNAKE_CASE = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_A , )
__SCREAMING_SNAKE_CASE = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=0 ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A )
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_A )
# create hint
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(_A )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=_A ).manual_seed(_A )
__SCREAMING_SNAKE_CASE = {
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 'cpu'
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**_A )
__SCREAMING_SNAKE_CASE = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
__SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(_A ) )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = pipe(
**self.get_dummy_inputs(_A ) , return_dict=_A , )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' )
__SCREAMING_SNAKE_CASE = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''' )
__SCREAMING_SNAKE_CASE = torch.from_numpy(np.array(_A ) ).float() / 2_55.0
__SCREAMING_SNAKE_CASE = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(_A )
__SCREAMING_SNAKE_CASE = KandinskyVaaControlnetPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = pipeline.to(_A )
pipeline.set_progress_bar_config(disable=_A )
__SCREAMING_SNAKE_CASE = 'A robot, 4k photo'
__SCREAMING_SNAKE_CASE = torch.Generator(device='''cuda''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe_prior(
_A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__SCREAMING_SNAKE_CASE = torch.Generator(device='''cuda''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipeline(
image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=1_00 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(_A , _A )
| 716 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A__( unittest.TestCase ):
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict()
config_dict.pop('''image_processor_type''' )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def _a ( self : int ) -> Any:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
class A__( __magic_name__ ):
lowerCAmelCase = True
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 690 | 0 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class A__( _A ):
lowerCAmelCase = '''EncodecFeatureExtractor'''
lowerCAmelCase = ('''T5Tokenizer''', '''T5TokenizerFast''')
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().__init__(__lowerCamelCase , __lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.feature_extractor
__SCREAMING_SNAKE_CASE = False
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Dict=True ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=__lowerCamelCase , language=__lowerCamelCase , no_timestamps=__lowerCamelCase )
def __call__( self : Dict , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*__lowerCamelCase , **__lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop('''audio''' , __lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop('''sampling_rate''' , __lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop('''text''' , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = args[0]
__SCREAMING_SNAKE_CASE = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , **__lowerCamelCase )
if audio is not None:
__SCREAMING_SNAKE_CASE = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__SCREAMING_SNAKE_CASE = audio_inputs["input_values"]
if "padding_mask" in audio_inputs:
__SCREAMING_SNAKE_CASE = audio_inputs["padding_mask"]
return inputs
def _a ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.pop('''audio''' , __lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop('''padding_mask''' , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = args[0]
__SCREAMING_SNAKE_CASE = args[1:]
if audio_values is not None:
return self._decode_audio(__lowerCamelCase , padding_mask=__lowerCamelCase )
else:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _a ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional = None ) -> List[np.ndarray]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = to_numpy(__lowerCamelCase )
__SCREAMING_SNAKE_CASE = audio_values.shape
if padding_mask is None:
return list(__lowerCamelCase )
__SCREAMING_SNAKE_CASE = to_numpy(__lowerCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__SCREAMING_SNAKE_CASE = seq_len - padding_mask.shape[-1]
__SCREAMING_SNAKE_CASE = 1 - self.feature_extractor.padding_value
__SCREAMING_SNAKE_CASE = np.pad(__lowerCamelCase , ((0, 0), (0, difference)) , '''constant''' , constant_values=__lowerCamelCase )
__SCREAMING_SNAKE_CASE = audio_values.tolist()
for i in range(__lowerCamelCase ):
__SCREAMING_SNAKE_CASE = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__SCREAMING_SNAKE_CASE = sliced_audio.reshape(__lowerCamelCase , -1 )
return audio_values
| 717 |
"""simple docstring"""
import math
lowerCAmelCase__ =10
lowerCAmelCase__ =7
lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS
def _a ( UpperCAmelCase__ = 20 ) -> str:
__SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 690 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = SwinvaConfig()
__SCREAMING_SNAKE_CASE = swinva_name.split('''_''' )
__SCREAMING_SNAKE_CASE = name_split[1]
if "to" in name_split[3]:
__SCREAMING_SNAKE_CASE = int(name_split[3][-3:] )
else:
__SCREAMING_SNAKE_CASE = int(name_split[3] )
if "to" in name_split[2]:
__SCREAMING_SNAKE_CASE = int(name_split[2][-2:] )
else:
__SCREAMING_SNAKE_CASE = int(name_split[2][6:] )
if model_size == "tiny":
__SCREAMING_SNAKE_CASE = 96
__SCREAMING_SNAKE_CASE = (2, 2, 6, 2)
__SCREAMING_SNAKE_CASE = (3, 6, 12, 24)
elif model_size == "small":
__SCREAMING_SNAKE_CASE = 96
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (3, 6, 12, 24)
elif model_size == "base":
__SCREAMING_SNAKE_CASE = 1_28
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (4, 8, 16, 32)
else:
__SCREAMING_SNAKE_CASE = 1_92
__SCREAMING_SNAKE_CASE = (2, 2, 18, 2)
__SCREAMING_SNAKE_CASE = (6, 12, 24, 48)
if "to" in swinva_name:
__SCREAMING_SNAKE_CASE = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__SCREAMING_SNAKE_CASE = 2_18_41
__SCREAMING_SNAKE_CASE = '''huggingface/label-files'''
__SCREAMING_SNAKE_CASE = '''imagenet-22k-id2label.json'''
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) )
__SCREAMING_SNAKE_CASE = {int(a_ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
else:
__SCREAMING_SNAKE_CASE = 10_00
__SCREAMING_SNAKE_CASE = '''huggingface/label-files'''
__SCREAMING_SNAKE_CASE = '''imagenet-1k-id2label.json'''
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) )
__SCREAMING_SNAKE_CASE = {int(a_ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = img_size
__SCREAMING_SNAKE_CASE = num_classes
__SCREAMING_SNAKE_CASE = embed_dim
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = num_heads
__SCREAMING_SNAKE_CASE = window_size
return config
def _a ( UpperCAmelCase__ ) -> Tuple:
if "patch_embed.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__SCREAMING_SNAKE_CASE = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
__SCREAMING_SNAKE_CASE = '''encoder.''' + name
if "attn.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
__SCREAMING_SNAKE_CASE = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
__SCREAMING_SNAKE_CASE = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if name == "norm.weight":
__SCREAMING_SNAKE_CASE = '''layernorm.weight'''
if name == "norm.bias":
__SCREAMING_SNAKE_CASE = '''layernorm.bias'''
if "head" in name:
__SCREAMING_SNAKE_CASE = name.replace('''head''' , '''classifier''' )
else:
__SCREAMING_SNAKE_CASE = '''swinv2.''' + name
return name
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
for key in orig_state_dict.copy().keys():
__SCREAMING_SNAKE_CASE = orig_state_dict.pop(a_ )
if "mask" in key:
continue
elif "qkv" in key:
__SCREAMING_SNAKE_CASE = key.split('''.''' )
__SCREAMING_SNAKE_CASE = int(key_split[1] )
__SCREAMING_SNAKE_CASE = int(key_split[3] )
__SCREAMING_SNAKE_CASE = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__SCREAMING_SNAKE_CASE = val[:dim, :]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
__SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
__SCREAMING_SNAKE_CASE = val[:dim]
__SCREAMING_SNAKE_CASE = val[
dim : dim * 2
]
__SCREAMING_SNAKE_CASE = val[-dim:]
else:
__SCREAMING_SNAKE_CASE = val
return orig_state_dict
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
__SCREAMING_SNAKE_CASE = timm.create_model(a_ , pretrained=a_ )
timm_model.eval()
__SCREAMING_SNAKE_CASE = get_swinva_config(a_ )
__SCREAMING_SNAKE_CASE = SwinvaForImageClassification(a_ )
model.eval()
__SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , a_ )
model.load_state_dict(a_ )
__SCREAMING_SNAKE_CASE = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) )
__SCREAMING_SNAKE_CASE = Image.open(requests.get(a_ , stream=a_ ).raw )
__SCREAMING_SNAKE_CASE = image_processor(images=a_ , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE = timm_model(inputs['''pixel_values'''] )
__SCREAMING_SNAKE_CASE = model(**a_ ).logits
assert torch.allclose(a_ , a_ , atol=1E-3 )
print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a_ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a_ )
model.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization='''nandwalritik''' , commit_message='''Add model''' , )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swinv2_name",
default="swinv2_tiny_patch4_window8_256",
type=str,
help="Name of the Swinv2 timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase__ =parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 718 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class A__( __magic_name__ ):
def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 690 | 0 |
"""simple docstring"""
lowerCAmelCase__ ={}
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__SCREAMING_SNAKE_CASE = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__SCREAMING_SNAKE_CASE = _calculate(days - 1 , _A , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__SCREAMING_SNAKE_CASE = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__SCREAMING_SNAKE_CASE = _calculate(days - 1 , _A , 0 )
__SCREAMING_SNAKE_CASE = state_late + state_absent + state_ontime
__SCREAMING_SNAKE_CASE = prizestrings
return prizestrings
def _a ( UpperCAmelCase__ = 30 ) -> int:
return _calculate(_A , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 719 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ =list[list[float | int]]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase__ ):
for row in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ )
]
def _a ( UpperCAmelCase__ ) -> Callable[[int], int]:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ )
def interpolated_func(UpperCAmelCase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase__ ) )
return interpolated_func
def _a ( UpperCAmelCase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int:
__SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ):
x_val += 1
ret += poly(UpperCAmelCase__ )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
lowerCAmelCase__ ={
0: """0""",
1: """1""",
2: """2""",
3: """3""",
4: """4""",
5: """5""",
6: """6""",
7: """7""",
8: """8""",
9: """9""",
10: """a""",
11: """b""",
12: """c""",
13: """d""",
14: """e""",
15: """f""",
}
def _a ( UpperCAmelCase__ ) -> str:
assert type(UpperCAmelCase__ ) in (int, float) and decimal == int(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = int(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = False
if decimal < 0:
__SCREAMING_SNAKE_CASE = True
decimal *= -1
while decimal > 0:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(UpperCAmelCase__ , 16 )
__SCREAMING_SNAKE_CASE = values[remainder] + hexadecimal
__SCREAMING_SNAKE_CASE = '''0x''' + hexadecimal
if negative:
__SCREAMING_SNAKE_CASE = '''-''' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 | 0 |
"""simple docstring"""
from __future__ import annotations
def _a ( UpperCAmelCase__ ) -> Union[str, Any]:
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(__UpperCamelCase ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(__UpperCamelCase ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __magic_name__ ):
lowerCAmelCase = ['''audio_values''', '''audio_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = spectrogram_length
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE = n_fft
__SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = padding_value
__SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE = log_spec - 20.0
__SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE = audio_features[i]
__SCREAMING_SNAKE_CASE = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 690 | 0 |
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A__:
@staticmethod
def _a ( *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Tuple ) -> str:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class A__( unittest.TestCase ):
@require_torch
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE = image_classifier(A_ , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(A_ ) , [
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}],
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}],
] , )
__SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A_ ) , [
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
] , )
@require_tf
def _a ( self : Any ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE = image_classifier(A_ , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(A_ ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , )
__SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A_ ) , [
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
{'''score''': 0.3_33, '''label''': ANY(A_ )},
],
] , )
@slow
@require_torch
def _a ( self : Any ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE = image_classifier(A_ , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(A_ ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
__SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A_ ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def _a ( self : Dict ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE = image_classifier(A_ , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(A_ ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
__SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A_ ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
| 700 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _a ( UpperCAmelCase__ ) -> dict[str, str]:
__SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
# First fill cipher with key characters
__SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(UpperCAmelCase__ ) , 26 ):
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
__SCREAMING_SNAKE_CASE = char
return cipher_alphabet
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ )
print(func(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 690 | 0 |
"""simple docstring"""
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class A__( lowercase__ , unittest.TestCase ):
lowerCAmelCase = WavaVecaPhonemeCTCTokenizer
lowerCAmelCase = False
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
__SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
__SCREAMING_SNAKE_CASE = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
def _a ( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : int=20 , __SCREAMING_SNAKE_CASE : int=5 ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )) for i in range(len(__SCREAMING_SNAKE_CASE ) )]
__SCREAMING_SNAKE_CASE = list(filter(lambda __SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) )
if max_length is not None and len(__SCREAMING_SNAKE_CASE ) > max_length:
__SCREAMING_SNAKE_CASE = toks[:max_length]
if min_length is not None and len(__SCREAMING_SNAKE_CASE ) < min_length and len(__SCREAMING_SNAKE_CASE ) > 0:
while len(__SCREAMING_SNAKE_CASE ) < min_length:
__SCREAMING_SNAKE_CASE = toks + toks
# toks_str = [t[1] for t in toks]
__SCREAMING_SNAKE_CASE = [t[0] for t in toks]
# Ensure consistency
__SCREAMING_SNAKE_CASE = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )
if " " not in output_txt and len(__SCREAMING_SNAKE_CASE ) > 1:
__SCREAMING_SNAKE_CASE = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )
)
if with_prefix_space:
__SCREAMING_SNAKE_CASE = ''' ''' + output_txt
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
return output_txt, output_ids
def _a ( self : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _a ( self : Dict ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
__SCREAMING_SNAKE_CASE = tokenizer('''m xxx ɪ''' , do_phonemize=__SCREAMING_SNAKE_CASE ).input_ids
self.assertEqual(__SCREAMING_SNAKE_CASE , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
__SCREAMING_SNAKE_CASE = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__SCREAMING_SNAKE_CASE ).input_ids
self.assertEqual(__SCREAMING_SNAKE_CASE , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
__SCREAMING_SNAKE_CASE = tokenizer('''maɪ c''' , do_phonemize=__SCREAMING_SNAKE_CASE ).input_ids
self.assertEqual(__SCREAMING_SNAKE_CASE , [3, 2_00] ) # mai should be <unk> (=3)
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE ).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE ).input_ids )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
__SCREAMING_SNAKE_CASE = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE ).input_ids )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
__SCREAMING_SNAKE_CASE = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
__SCREAMING_SNAKE_CASE = tokenizer.decode(sample_ids[0] )
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0] )
self.assertEqual(__SCREAMING_SNAKE_CASE , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE ).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE ).input_ids )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
__SCREAMING_SNAKE_CASE = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
__SCREAMING_SNAKE_CASE = tokenizer.decode(sample_ids[0] )
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0] )
self.assertEqual(__SCREAMING_SNAKE_CASE , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
__SCREAMING_SNAKE_CASE = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0] )
self.assertEqual(__SCREAMING_SNAKE_CASE , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _a ( self : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
__SCREAMING_SNAKE_CASE = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE ).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' )
__SCREAMING_SNAKE_CASE = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE ).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = '''Hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang='''en-us''' ).input_ids
__SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.decode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.decode(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , '''ɛ l o h aʊ a ʁ j u''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
__SCREAMING_SNAKE_CASE = '''Hello how Are you'''
__SCREAMING_SNAKE_CASE = '''hello how are you'''
__SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ).input_ids
__SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ).input_ids
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
__SCREAMING_SNAKE_CASE = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [d[key] for d in offsets]
return retrieved_list
def _a ( self : str ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
__SCREAMING_SNAKE_CASE = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
__SCREAMING_SNAKE_CASE = tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ):
self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertTrue(isinstance(outputs_list[0] , __SCREAMING_SNAKE_CASE ) )
# transform list to ModelOutput
__SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
[recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for la, la in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
__SCREAMING_SNAKE_CASE = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
__SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE ) for ids in sample_ids]
check_list_tuples_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _a ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__SCREAMING_SNAKE_CASE = tokenizer.vocab_size
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
__SCREAMING_SNAKE_CASE = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
__SCREAMING_SNAKE_CASE = tokenizer.add_tokens(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.vocab_size
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0 )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) )
self.assertEqual(__SCREAMING_SNAKE_CASE , all_size + len(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
__SCREAMING_SNAKE_CASE = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
__SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.vocab_size
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0 )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) )
self.assertEqual(__SCREAMING_SNAKE_CASE , all_size_a + len(__SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__SCREAMING_SNAKE_CASE = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(output['''text'''] , __SCREAMING_SNAKE_CASE )
| 701 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__:
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ):
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 690 | 0 |
"""simple docstring"""
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
lowerCAmelCase__ =NewType("DataClass", Any)
lowerCAmelCase__ =NewType("DataClassType", Any)
def _a ( UpperCAmelCase__ ) -> int:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" )
def _a ( UpperCAmelCase__ ) -> List[Any]:
__SCREAMING_SNAKE_CASE = {str(UpperCAmelCase__ ): choice for choice in choices}
return lambda UpperCAmelCase__ : str_to_choice.get(UpperCAmelCase__ , UpperCAmelCase__ )
def _a ( *,
UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> Tuple:
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__SCREAMING_SNAKE_CASE = {}
if aliases is not None:
__SCREAMING_SNAKE_CASE = aliases
if help is not None:
__SCREAMING_SNAKE_CASE = help
return dataclasses.field(metadata=UpperCAmelCase__ , default=UpperCAmelCase__ , default_factory=UpperCAmelCase__ , **UpperCAmelCase__ )
class A__( __magic_name__ ):
lowerCAmelCase = 42
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
if "formatter_class" not in kwargs:
__SCREAMING_SNAKE_CASE = ArgumentDefaultsHelpFormatter
super().__init__(**__SCREAMING_SNAKE_CASE )
if dataclasses.is_dataclass(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [dataclass_types]
__SCREAMING_SNAKE_CASE = list(__SCREAMING_SNAKE_CASE )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(__SCREAMING_SNAKE_CASE )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = f"""--{field.name}"""
__SCREAMING_SNAKE_CASE = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , __SCREAMING_SNAKE_CASE ):
raise RuntimeError(
'''Unresolved type detected, which should have been done with the help of '''
'''`typing.get_type_hints` method by default''' )
__SCREAMING_SNAKE_CASE = kwargs.pop('''aliases''' , [] )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [aliases]
__SCREAMING_SNAKE_CASE = getattr(field.type , '''__origin__''' , field.type )
if origin_type is Union or (hasattr(__SCREAMING_SNAKE_CASE , '''UnionType''' ) and isinstance(__SCREAMING_SNAKE_CASE , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(__SCREAMING_SNAKE_CASE ) not in field.type.__args__
):
raise ValueError(
'''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because'''
''' the argument parser only supports one type per argument.'''
f""" Problem encountered in field \'{field.name}\'.""" )
if type(__SCREAMING_SNAKE_CASE ) not in field.type.__args__:
# filter `str` in Union
__SCREAMING_SNAKE_CASE = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__SCREAMING_SNAKE_CASE = getattr(field.type , '''__origin__''' , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__SCREAMING_SNAKE_CASE = (
field.type.__args__[0] if isinstance(__SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1]
)
__SCREAMING_SNAKE_CASE = getattr(field.type , '''__origin__''' , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__SCREAMING_SNAKE_CASE = {}
if origin_type is Literal or (isinstance(field.type , __SCREAMING_SNAKE_CASE ) and issubclass(field.type , __SCREAMING_SNAKE_CASE )):
if origin_type is Literal:
__SCREAMING_SNAKE_CASE = field.type.__args__
else:
__SCREAMING_SNAKE_CASE = [x.value for x in field.type]
__SCREAMING_SNAKE_CASE = make_choice_type_function(kwargs['''choices'''] )
if field.default is not dataclasses.MISSING:
__SCREAMING_SNAKE_CASE = field.default
else:
__SCREAMING_SNAKE_CASE = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__SCREAMING_SNAKE_CASE = copy(__SCREAMING_SNAKE_CASE )
# Hack because type=bool in argparse does not behave as we want.
__SCREAMING_SNAKE_CASE = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__SCREAMING_SNAKE_CASE = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__SCREAMING_SNAKE_CASE = default
# This tells argparse we accept 0 or 1 value after --field_name
__SCREAMING_SNAKE_CASE = '''?'''
# This is the value that will get picked if we do --field_name (without value)
__SCREAMING_SNAKE_CASE = True
elif isclass(__SCREAMING_SNAKE_CASE ) and issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = field.type.__args__[0]
__SCREAMING_SNAKE_CASE = '''+'''
if field.default_factory is not dataclasses.MISSING:
__SCREAMING_SNAKE_CASE = field.default_factory()
elif field.default is dataclasses.MISSING:
__SCREAMING_SNAKE_CASE = True
else:
__SCREAMING_SNAKE_CASE = field.type
if field.default is not dataclasses.MISSING:
__SCREAMING_SNAKE_CASE = field.default
elif field.default_factory is not dataclasses.MISSING:
__SCREAMING_SNAKE_CASE = field.default_factory()
else:
__SCREAMING_SNAKE_CASE = True
parser.add_argument(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__SCREAMING_SNAKE_CASE = False
parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__SCREAMING_SNAKE_CASE )
def _a ( self : str , __SCREAMING_SNAKE_CASE : str ) -> Tuple:
"""simple docstring"""
if hasattr(__SCREAMING_SNAKE_CASE , '''_argument_group_name''' ):
__SCREAMING_SNAKE_CASE = self.add_argument_group(dtype._argument_group_name )
else:
__SCREAMING_SNAKE_CASE = self
try:
__SCREAMING_SNAKE_CASE = get_type_hints(__SCREAMING_SNAKE_CASE )
except NameError:
raise RuntimeError(
f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """
'''removing line of `from __future__ import annotations` which opts in Postponed '''
'''Evaluation of Annotations (PEP 563)''' )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = '''.'''.join(map(__SCREAMING_SNAKE_CASE , sys.version_info[:3] ) )
raise RuntimeError(
f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """
'''line of `from __future__ import annotations` which opts in union types as '''
'''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To '''
'''support Python versions that lower than 3.10, you need to use '''
'''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of '''
'''`X | None`.''' ) from ex
raise
for field in dataclasses.fields(__SCREAMING_SNAKE_CASE ):
if not field.init:
continue
__SCREAMING_SNAKE_CASE = type_hints[field.name]
self._parse_dataclass_field(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Any=None , ) -> Tuple[DataClass, ...]:
"""simple docstring"""
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__SCREAMING_SNAKE_CASE = []
if args_filename:
args_files.append(Path(__SCREAMING_SNAKE_CASE ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__SCREAMING_SNAKE_CASE = ArgumentParser()
args_file_parser.add_argument(__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , action='''append''' )
# Use only remaining args for further parsing (remove the args_file_flag)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = args_file_parser.parse_known_args(args=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = vars(__SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip('''-''' ) , __SCREAMING_SNAKE_CASE )
if cmd_args_file_paths:
args_files.extend([Path(__SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] )
__SCREAMING_SNAKE_CASE = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__SCREAMING_SNAKE_CASE = file_args + args if args is not None else file_args + sys.argv[1:]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.parse_known_args(args=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = []
for dtype in self.dataclass_types:
__SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(__SCREAMING_SNAKE_CASE ) if f.init}
__SCREAMING_SNAKE_CASE = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE ).items() if k in keys}
for k in keys:
delattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = dtype(**__SCREAMING_SNAKE_CASE )
outputs.append(__SCREAMING_SNAKE_CASE )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(__SCREAMING_SNAKE_CASE )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" )
return (*outputs,)
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] = False ) -> Tuple[DataClass, ...]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = set(args.keys() )
__SCREAMING_SNAKE_CASE = []
for dtype in self.dataclass_types:
__SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(__SCREAMING_SNAKE_CASE ) if f.init}
__SCREAMING_SNAKE_CASE = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__SCREAMING_SNAKE_CASE = dtype(**__SCREAMING_SNAKE_CASE )
outputs.append(__SCREAMING_SNAKE_CASE )
if not allow_extra_keys and unused_keys:
raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__SCREAMING_SNAKE_CASE )}""" )
return tuple(__SCREAMING_SNAKE_CASE )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] = False ) -> Tuple[DataClass, ...]:
"""simple docstring"""
with open(Path(__SCREAMING_SNAKE_CASE ) , encoding='''utf-8''' ) as open_json_file:
__SCREAMING_SNAKE_CASE = json.loads(open_json_file.read() )
__SCREAMING_SNAKE_CASE = self.parse_dict(__SCREAMING_SNAKE_CASE , allow_extra_keys=__SCREAMING_SNAKE_CASE )
return tuple(__SCREAMING_SNAKE_CASE )
def _a ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] = False ) -> Tuple[DataClass, ...]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.parse_dict(yaml.safe_load(Path(__SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=__SCREAMING_SNAKE_CASE )
return tuple(__SCREAMING_SNAKE_CASE )
| 702 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = XLMRobertaTokenizer
lowerCAmelCase = XLMRobertaTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<pad>'''
__SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@cached_property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name )
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE )
pickle.loads(__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.'''
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''Hello World!'''
__SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__SCREAMING_SNAKE_CASE = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 690 | 0 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase__ =abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _a ( UpperCAmelCase__ ) -> Dict:
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def _a ( UpperCAmelCase__ ) -> str:
from diffusers.utils.testing_utils import pytest_terminal_summary_main
__SCREAMING_SNAKE_CASE = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 703 |
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]:
__SCREAMING_SNAKE_CASE = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 690 | 0 |
"""simple docstring"""
from random import shuffle
import tensorflow as tf
from numpy import array
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = int(_lowerCamelCase )
assert noofclusters < len(_lowerCamelCase )
# Find out the dimensionality
__SCREAMING_SNAKE_CASE = len(vectors[0] )
# Will help select random centroids from among the available vectors
__SCREAMING_SNAKE_CASE = list(range(len(_lowerCamelCase ) ) )
shuffle(_lowerCamelCase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__SCREAMING_SNAKE_CASE = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__SCREAMING_SNAKE_CASE = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__SCREAMING_SNAKE_CASE = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase )
]
##These nodes will assign the centroid Variables the appropriate
##values
__SCREAMING_SNAKE_CASE = tf.placeholder('''float64''' , [dim] )
__SCREAMING_SNAKE_CASE = []
for centroid in centroids:
cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__SCREAMING_SNAKE_CASE = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__SCREAMING_SNAKE_CASE = tf.placeholder('''int32''' )
__SCREAMING_SNAKE_CASE = []
for assignment in assignments:
cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__SCREAMING_SNAKE_CASE = tf.reduce_mean(_lowerCamelCase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [dim] )
__SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [dim] )
__SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__SCREAMING_SNAKE_CASE = tf.placeholder('''float''' , [noofclusters] )
__SCREAMING_SNAKE_CASE = tf.argmin(_lowerCamelCase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__SCREAMING_SNAKE_CASE = tf.initialize_all_variables()
# Initialize all variables
sess.run(_lowerCamelCase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__SCREAMING_SNAKE_CASE = 1_00
for _ in range(_lowerCamelCase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(_lowerCamelCase ) ):
__SCREAMING_SNAKE_CASE = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__SCREAMING_SNAKE_CASE = [
sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__SCREAMING_SNAKE_CASE = sess.run(
_lowerCamelCase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(_lowerCamelCase ):
# Collect all the vectors assigned to this cluster
__SCREAMING_SNAKE_CASE = [
vectors[i]
for i in range(len(_lowerCamelCase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__SCREAMING_SNAKE_CASE = sess.run(
_lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__SCREAMING_SNAKE_CASE = sess.run(_lowerCamelCase )
__SCREAMING_SNAKE_CASE = sess.run(_lowerCamelCase )
return centroids, assignments
| 704 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE = q
__SCREAMING_SNAKE_CASE = k
__SCREAMING_SNAKE_CASE = v
del sd[key]
return sd
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ )
if config is not None:
__SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = OPTConfig()
__SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval()
model.load_state_dict(UpperCAmelCase__ )
# Check results
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
lowerCAmelCase__ =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 690 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
__SCREAMING_SNAKE_CASE = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_euler''' )
__SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger"""
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__SCREAMING_SNAKE_CASE = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_euler''' )
__SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger"""
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__SCREAMING_SNAKE_CASE = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
__SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger"""
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=_a , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_a , )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 705 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__( __magic_name__ ):
lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa'''
lowerCAmelCase = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
lowerCAmelCase = '''document_qa'''
lowerCAmelCase = AutoProcessor
lowerCAmelCase = VisionEncoderDecoderModel
lowerCAmelCase = ['''image''', '''text''']
lowerCAmelCase = ['''text''']
def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids
__SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE )
return sequence["answer"]
| 690 | 0 |
"""simple docstring"""
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = VideoMAEConfig()
set_architecture_configs(snake_case__ , snake_case__ )
if "finetuned" not in model_name:
__SCREAMING_SNAKE_CASE = False
if "finetuned" in model_name:
__SCREAMING_SNAKE_CASE = """huggingface/label-files"""
if "kinetics" in model_name:
__SCREAMING_SNAKE_CASE = 4_00
__SCREAMING_SNAKE_CASE = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
__SCREAMING_SNAKE_CASE = 1_74
__SCREAMING_SNAKE_CASE = """something-something-v2-id2label.json"""
else:
raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' )
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
__SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if "small" in model_name:
__SCREAMING_SNAKE_CASE = 3_84
__SCREAMING_SNAKE_CASE = 15_36
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 16
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 3
__SCREAMING_SNAKE_CASE = 1_92
__SCREAMING_SNAKE_CASE = 7_68
elif "large" in model_name:
__SCREAMING_SNAKE_CASE = 10_24
__SCREAMING_SNAKE_CASE = 40_96
__SCREAMING_SNAKE_CASE = 24
__SCREAMING_SNAKE_CASE = 16
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 8
__SCREAMING_SNAKE_CASE = 5_12
__SCREAMING_SNAKE_CASE = 20_48
elif "huge" in model_name:
__SCREAMING_SNAKE_CASE = 12_80
__SCREAMING_SNAKE_CASE = 51_20
__SCREAMING_SNAKE_CASE = 32
__SCREAMING_SNAKE_CASE = 16
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 8
__SCREAMING_SNAKE_CASE = 6_40
__SCREAMING_SNAKE_CASE = 25_60
elif "base" not in model_name:
raise ValueError('''Model name should include either \"small\", \"base\", \"large\", or \"huge\"''' )
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ) -> Tuple:
if "encoder." in name:
__SCREAMING_SNAKE_CASE = name.replace('''encoder.''' , '''''' )
if "cls_token" in name:
__SCREAMING_SNAKE_CASE = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' )
if "decoder_pos_embed" in name:
__SCREAMING_SNAKE_CASE = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' )
if "pos_embed" in name and "decoder" not in name:
__SCREAMING_SNAKE_CASE = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__SCREAMING_SNAKE_CASE = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' )
if "decoder.blocks" in name:
__SCREAMING_SNAKE_CASE = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' )
if "blocks" in name:
__SCREAMING_SNAKE_CASE = name.replace('''blocks''' , '''videomae.encoder.layer''' )
if "attn.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name and "bias" not in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' )
if "attn" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.attention''' )
if "norm1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' )
if "decoder_embed" in name:
__SCREAMING_SNAKE_CASE = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' )
if "decoder_norm" in name:
__SCREAMING_SNAKE_CASE = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' )
if "decoder_pred" in name:
__SCREAMING_SNAKE_CASE = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' )
if "head" in name and "decoder" not in name:
__SCREAMING_SNAKE_CASE = name.replace('''head''' , '''classifier''' )
return name
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
for key in orig_state_dict.copy().keys():
__SCREAMING_SNAKE_CASE = orig_state_dict.pop(snake_case__ )
if key.startswith('''encoder.''' ):
__SCREAMING_SNAKE_CASE = key.replace('''encoder.''' , '''''' )
if "qkv" in key:
__SCREAMING_SNAKE_CASE = key.split('''.''' )
if key.startswith('''decoder.blocks''' ):
__SCREAMING_SNAKE_CASE = config.decoder_hidden_size
__SCREAMING_SNAKE_CASE = int(key_split[2] )
__SCREAMING_SNAKE_CASE = """decoder.decoder_layers."""
if "weight" in key:
__SCREAMING_SNAKE_CASE = val[:dim, :]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
__SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
__SCREAMING_SNAKE_CASE = config.hidden_size
__SCREAMING_SNAKE_CASE = int(key_split[1] )
__SCREAMING_SNAKE_CASE = """videomae.encoder.layer."""
if "weight" in key:
__SCREAMING_SNAKE_CASE = val[:dim, :]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
__SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
__SCREAMING_SNAKE_CASE = val
return orig_state_dict
def SCREAMING_SNAKE_CASE ( ) -> List[str]:
__SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' )
__SCREAMING_SNAKE_CASE = np.load(snake_case__ )
return list(snake_case__ )
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
__SCREAMING_SNAKE_CASE = get_videomae_config(snake_case__ )
if "finetuned" in model_name:
__SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification(snake_case__ )
else:
__SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(snake_case__ )
# download original checkpoint, hosted on Google Drive
__SCREAMING_SNAKE_CASE = """pytorch_model.bin"""
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
__SCREAMING_SNAKE_CASE = torch.load(snake_case__ , map_location='''cpu''' )
if "model" in files:
__SCREAMING_SNAKE_CASE = files["""model"""]
else:
__SCREAMING_SNAKE_CASE = files["""module"""]
__SCREAMING_SNAKE_CASE = convert_state_dict(snake_case__ , snake_case__ )
model.load_state_dict(snake_case__ )
model.eval()
# verify model on basic input
__SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
__SCREAMING_SNAKE_CASE = prepare_video()
__SCREAMING_SNAKE_CASE = image_processor(snake_case__ , return_tensors='''pt''' )
if "finetuned" not in model_name:
__SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' )
__SCREAMING_SNAKE_CASE = torch.load(snake_case__ )
__SCREAMING_SNAKE_CASE = model(**snake_case__ )
__SCREAMING_SNAKE_CASE = outputs.logits
__SCREAMING_SNAKE_CASE = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
__SCREAMING_SNAKE_CASE = torch.Size([1, 4_00] )
__SCREAMING_SNAKE_CASE = torch.tensor([-0.9291, -0.4061, -0.9307] )
elif model_name == "videomae-small-finetuned-ssv2":
__SCREAMING_SNAKE_CASE = torch.Size([1, 1_74] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2671, -0.4689, -0.8235] )
elif model_name == "videomae-base":
__SCREAMING_SNAKE_CASE = torch.Size([1, 14_08, 15_36] )
__SCREAMING_SNAKE_CASE = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] )
elif model_name == "videomae-base-short":
__SCREAMING_SNAKE_CASE = torch.Size([1, 14_08, 15_36] )
__SCREAMING_SNAKE_CASE = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] )
# we verified the loss both for normalized and unnormalized targets for this one
__SCREAMING_SNAKE_CASE = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] )
elif model_name == "videomae-large":
__SCREAMING_SNAKE_CASE = torch.Size([1, 14_08, 15_36] )
__SCREAMING_SNAKE_CASE = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] )
elif model_name == "videomae-large-finetuned-kinetics":
__SCREAMING_SNAKE_CASE = torch.Size([1, 4_00] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.0771, 0.0011, -0.3625] )
elif model_name == "videomae-huge-finetuned-kinetics":
__SCREAMING_SNAKE_CASE = torch.Size([1, 4_00] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2433, 0.1632, -0.4894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
__SCREAMING_SNAKE_CASE = torch.Size([1, 4_00] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.6588, 0.0990, -0.2493] )
elif model_name == "videomae-base-finetuned-kinetics":
__SCREAMING_SNAKE_CASE = torch.Size([1, 4_00] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.3669, -0.0688, -0.2421] )
elif model_name == "videomae-base-short-ssv2":
__SCREAMING_SNAKE_CASE = torch.Size([1, 14_08, 15_36] )
__SCREAMING_SNAKE_CASE = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
__SCREAMING_SNAKE_CASE = torch.Size([1, 1_74] )
__SCREAMING_SNAKE_CASE = torch.tensor([-0.0537, -0.1539, -0.3266] )
elif model_name == "videomae-base-ssv2":
__SCREAMING_SNAKE_CASE = torch.Size([1, 14_08, 15_36] )
__SCREAMING_SNAKE_CASE = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] )
elif model_name == "videomae-base-finetuned-ssv2":
__SCREAMING_SNAKE_CASE = torch.Size([1, 1_74] )
__SCREAMING_SNAKE_CASE = torch.tensor([0.1961, -0.8337, -0.6389] )
else:
raise ValueError(f"""Model name not supported. Should be one of {model_names}""" )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , snake_case__ , atol=1E-4 )
else:
print('''Logits:''' , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 )
print('''Logits ok!''' )
# verify loss, if applicable
if model_name == "videomae-base-short":
__SCREAMING_SNAKE_CASE = outputs.loss
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-4 )
print('''Loss ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(snake_case__ )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('''Pushing to the hub...''' )
model.push_to_hub(snake_case__ , organization='''nielsr''' )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4",
type=str,
help=(
"URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct"
" download link."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="/Users/nielsrogge/Documents/VideoMAE/Test",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.")
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase__ =parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 706 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A__( unittest.TestCase ):
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def _a ( self : str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_uncond_unet
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A__( unittest.TestCase ):
def _a ( self : Any ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256'''
__SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 690 | 0 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A__( __magic_name__ ):
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Tuple = False , __SCREAMING_SNAKE_CASE : Union[str, Any] = False , __SCREAMING_SNAKE_CASE : Tuple = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Dict:
"""simple docstring"""
super().__init__(
__lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , )
__SCREAMING_SNAKE_CASE = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths}
__SCREAMING_SNAKE_CASE = Text(
cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , **__lowerCAmelCase , )
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
if self.streaming:
__SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , )
__SCREAMING_SNAKE_CASE = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory )
return dataset
| 707 |
"""simple docstring"""
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={"vocab_file": "spiece.model"}
lowerCAmelCase__ ={
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
lowerCAmelCase__ ={
"AI-Sweden/gpt-sw3-126m": 2_048,
"AI-Sweden/gpt-sw3-350m": 2_048,
"AI-Sweden/gpt-sw3-1.6b": 2_048,
"AI-Sweden/gpt-sw3-6.7b": 2_048,
"AI-Sweden/gpt-sw3-20b": 2_048,
}
class A__( __magic_name__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
__SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__SCREAMING_SNAKE_CASE = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token
__SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token
else:
__SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = do_lower_case
__SCREAMING_SNAKE_CASE = remove_space
__SCREAMING_SNAKE_CASE = keep_accents
__SCREAMING_SNAKE_CASE = vocab_file
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# Used for whitespace normalization in input texts
# fmt : off
__SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__SCREAMING_SNAKE_CASE = re.compile(
f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE )
# Normalize whitespaces
__SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE )
return text
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
return out_string
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string
def _a ( self : Union[str, Any] ) -> Dict[str, int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__SCREAMING_SNAKE_CASE = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
else:
__SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text]
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
if return_tensors is True or return_tensors == "pt":
__SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE )
return token_ids
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str:
"""simple docstring"""
return self.sp_model.decode(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__SCREAMING_SNAKE_CASE = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=__SCREAMING_SNAKE_CASE )
| 690 | 0 |
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=10_24 ) -> Dict:
__SCREAMING_SNAKE_CASE = [], []
__SCREAMING_SNAKE_CASE = list(zip(UpperCAmelCase__ , UpperCAmelCase__ ) )
__SCREAMING_SNAKE_CASE = sorted_examples[0]
def is_too_big(UpperCAmelCase__ ):
return tok(UpperCAmelCase__ , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
__SCREAMING_SNAKE_CASE = new_src + """ """ + src
__SCREAMING_SNAKE_CASE = new_tgt + """ """ + tgt
if is_too_big(UpperCAmelCase__ ) or is_too_big(UpperCAmelCase__ ): # cant fit, finalize example
finished_src.append(UpperCAmelCase__ )
finished_tgt.append(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = src, tgt
else: # can fit, keep adding
__SCREAMING_SNAKE_CASE = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(UpperCAmelCase__ )
finished_tgt.append(UpperCAmelCase__ )
return finished_src, finished_tgt
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = Path(UpperCAmelCase__ )
save_path.mkdir(exist_ok=UpperCAmelCase__ )
for split in ["train"]:
__SCREAMING_SNAKE_CASE = data_dir / f"""{split}.source""", data_dir / f"""{split}.target"""
__SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()]
__SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()]
__SCREAMING_SNAKE_CASE = pack_examples(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
print(f"""packed {split} split from {len(UpperCAmelCase__ )} examples -> {len(UpperCAmelCase__ )}.""" )
Path(save_path / f"""{split}.source""" ).open('''w''' ).write('''\n'''.join(UpperCAmelCase__ ) )
Path(save_path / f"""{split}.target""" ).open('''w''' ).write('''\n'''.join(UpperCAmelCase__ ) )
for split in ["val", "test"]:
__SCREAMING_SNAKE_CASE = data_dir / f"""{split}.source""", data_dir / f"""{split}.target"""
shutil.copyfile(UpperCAmelCase__ , save_path / f"""{split}.source""" )
shutil.copyfile(UpperCAmelCase__ , save_path / f"""{split}.target""" )
def _a ( ) -> Tuple:
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument('''--tok_name''' , type=UpperCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''--max_seq_len''' , type=UpperCAmelCase__ , default=1_28 )
parser.add_argument('''--data_dir''' , type=UpperCAmelCase__ )
parser.add_argument('''--save_path''' , type=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(UpperCAmelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 708 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ ={"UserAgent": UserAgent().random}
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = script.contents[0]
__SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class A__:
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/"""
__SCREAMING_SNAKE_CASE = self.get_json()
def _a ( self : List[Any] ) -> dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text
__SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return f"""{self.__class__.__name__}('{self.username}')"""
def __str__( self : Optional[int] ) -> str:
"""simple docstring"""
return f"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def _a ( self : Tuple ) -> str:
"""simple docstring"""
return self.user_data["username"]
@property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return self.user_data["full_name"]
@property
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.user_data["biography"]
@property
def _a ( self : List[str] ) -> str:
"""simple docstring"""
return self.user_data["business_email"]
@property
def _a ( self : Any ) -> str:
"""simple docstring"""
return self.user_data["external_url"]
@property
def _a ( self : Any ) -> int:
"""simple docstring"""
return self.user_data["edge_followed_by"]["count"]
@property
def _a ( self : Dict ) -> int:
"""simple docstring"""
return self.user_data["edge_follow"]["count"]
@property
def _a ( self : str ) -> int:
"""simple docstring"""
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.user_data["profile_pic_url_hd"]
@property
def _a ( self : Tuple ) -> bool:
"""simple docstring"""
return self.user_data["is_verified"]
@property
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.user_data["is_private"]
def _a ( UpperCAmelCase__ = "github" ) -> None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
__SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , UpperCAmelCase__ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ =InstagramUser("github")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 690 | 0 |
"""simple docstring"""
import math
def _a ( UpperCAmelCase__ ) -> list[int]:
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = int(math.sqrt(_lowercase ) ) # Size of every segment
__SCREAMING_SNAKE_CASE = [True] * (end + 1)
__SCREAMING_SNAKE_CASE = []
while start <= end:
if temp[start] is True:
in_prime.append(_lowercase )
for i in range(start * start , end + 1 , _lowercase ):
__SCREAMING_SNAKE_CASE = False
start += 1
prime += in_prime
__SCREAMING_SNAKE_CASE = end + 1
__SCREAMING_SNAKE_CASE = min(2 * end , _lowercase )
while low <= n:
__SCREAMING_SNAKE_CASE = [True] * (high - low + 1)
for each in in_prime:
__SCREAMING_SNAKE_CASE = math.floor(low / each ) * each
if t < low:
t += each
for j in range(_lowercase , high + 1 , _lowercase ):
__SCREAMING_SNAKE_CASE = False
for j in range(len(_lowercase ) ):
if temp[j] is True:
prime.append(j + low )
__SCREAMING_SNAKE_CASE = high + 1
__SCREAMING_SNAKE_CASE = min(high + end , _lowercase )
return prime
print(sieve(10**6))
| 709 |
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__( datasets.Metric ):
def _a ( self : Any ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = recall_score(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , )
return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
| 690 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class A__( UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase = '''swin'''
lowerCAmelCase = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_24 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=96 , __SCREAMING_SNAKE_CASE : Optional[int]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : Any=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=4.0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-5 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**__lowerCAmelCase )
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embed_dim
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = len(__lowerCAmelCase )
__SCREAMING_SNAKE_CASE = num_heads
__SCREAMING_SNAKE_CASE = window_size
__SCREAMING_SNAKE_CASE = mlp_ratio
__SCREAMING_SNAKE_CASE = qkv_bias
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = drop_path_rate
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = use_absolute_embeddings
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) )
__SCREAMING_SNAKE_CASE = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(__lowerCAmelCase ) + 1 )]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
class A__( UpperCAmelCase__ ):
lowerCAmelCase = version.parse('''1.11''' )
@property
def _a ( self : Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _a ( self : Optional[int] ) -> float:
"""simple docstring"""
return 1E-4
| 710 |
"""simple docstring"""
def _a ( UpperCAmelCase__ = 10**9 ) -> int:
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A__( __UpperCAmelCase , unittest.TestCase ):
lowerCAmelCase = KandinskyVaaPipeline
lowerCAmelCase = [
"""image_embeds""",
"""negative_image_embeds""",
]
lowerCAmelCase = ["""image_embeds""", """negative_image_embeds"""]
lowerCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
lowerCAmelCase = False
@property
def _a ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return 32
@property
def _a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return 32
@property
def _a ( self : str ) -> List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
return 1_00
@property
def _a ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def _a ( self : str ) -> Any:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _a ( self : Any ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs )
return model
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_unet
__SCREAMING_SNAKE_CASE = self.dummy_movq
__SCREAMING_SNAKE_CASE = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=UpperCAmelCase_ , )
__SCREAMING_SNAKE_CASE = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = {
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''cpu'''
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : int ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' )
__SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = KandinskyVaaPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
__SCREAMING_SNAKE_CASE = '''red cat, 4k photo'''
__SCREAMING_SNAKE_CASE = torch.Generator(device='''cuda''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__SCREAMING_SNAKE_CASE = torch.Generator(device='''cuda''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=1_00 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 711 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase__ =pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase__ =dataset.iloc[:, 1:2].values
lowerCAmelCase__ =dataset.iloc[:, 2].values
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase__ =PolynomialFeatures(degree=4)
lowerCAmelCase__ =poly_reg.fit_transform(X)
lowerCAmelCase__ =LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> List[Any]:
plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' )
plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 690 | 0 |
"""simple docstring"""
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
lowerCAmelCase__ ={
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
lowerCAmelCase__ =logging.WARNING
def _a ( ) -> List[str]:
__SCREAMING_SNAKE_CASE = os.getenv('''DATASETS_VERBOSITY''' , _lowercase )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ", ".join(log_levels.keys() ) }""" )
return _default_log_level
def _a ( ) -> Optional[int]:
return __name__.split('''.''' )[0]
def _a ( ) -> Optional[Any]:
return logging.getLogger(_get_library_name() )
def _a ( ) -> List[Any]:
# Apply our default configuration to the library root logger.
__SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def _a ( ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def _a ( UpperCAmelCase__ = None ) -> Optional[int]:
if name is None:
__SCREAMING_SNAKE_CASE = _get_library_name()
return logging.getLogger(_lowercase )
def _a ( ) -> List[str]:
return _get_library_root_logger().getEffectiveLevel()
def _a ( UpperCAmelCase__ ) -> List[Any]:
_get_library_root_logger().setLevel(_lowercase )
def _a ( ) -> Union[str, Any]:
return set_verbosity(_lowercase )
def _a ( ) -> Tuple:
return set_verbosity(_lowercase )
def _a ( ) -> Any:
return set_verbosity(_lowercase )
def _a ( ) -> Dict:
return set_verbosity(_lowercase )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = False
def _a ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class A__:
def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : int ) -> str: # pylint: disable=unused-argument
"""simple docstring"""
__SCREAMING_SNAKE_CASE = args[0] if args else None
def __iter__( self : Any ) -> Any:
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict:
"""simple docstring"""
def empty_fn(*__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Tuple ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return self
def __exit__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]:
"""simple docstring"""
return
lowerCAmelCase__ =True
class A__:
def __call__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=False , **__SCREAMING_SNAKE_CASE : str ) -> Dict:
"""simple docstring"""
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*UpperCamelCase__ , **UpperCamelCase__ )
else:
return EmptyTqdm(*UpperCamelCase__ , **UpperCamelCase__ )
def _a ( self : Tuple , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*UpperCamelCase__ , **UpperCamelCase__ )
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
lowerCAmelCase__ =_tqdm_cls()
def _a ( ) -> Tuple:
global _tqdm_active
return bool(_tqdm_active )
def _a ( ) -> Any:
global _tqdm_active
__SCREAMING_SNAKE_CASE = True
def _a ( ) -> Dict:
global _tqdm_active
__SCREAMING_SNAKE_CASE = False
| 712 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = '''gelu'''
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict['''input_ids''']
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''head_mask''']
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE )
self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE )
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
return generated_words
@slow
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 690 | 0 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
lowerCAmelCase__ ="src/transformers"
# Matches is_xxx_available()
lowerCAmelCase__ =re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
lowerCAmelCase__ =re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
lowerCAmelCase__ =re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
lowerCAmelCase__ =re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
lowerCAmelCase__ =re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
lowerCAmelCase__ =re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
lowerCAmelCase__ =re.compile(r"^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
lowerCAmelCase__ =re.compile(r"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
lowerCAmelCase__ =re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
lowerCAmelCase__ =re.compile(r"^\s*try:")
# Catches a line with else:
lowerCAmelCase__ =re.compile(r"^\s*else:")
def _a ( UpperCAmelCase__ ) -> Union[str, Any]:
if _re_test_backend.search(__UpperCamelCase ) is None:
return None
__SCREAMING_SNAKE_CASE = [b[0] for b in _re_backend.findall(__UpperCamelCase )]
backends.sort()
return "_and_".join(__UpperCamelCase )
def _a ( UpperCAmelCase__ ) -> List[str]:
with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__SCREAMING_SNAKE_CASE = f.readlines()
__SCREAMING_SNAKE_CASE = 0
while line_index < len(__UpperCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__UpperCamelCase ):
return None
# First grab the objects without a specific backend in _import_structure
__SCREAMING_SNAKE_CASE = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
__SCREAMING_SNAKE_CASE = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__UpperCamelCase ):
__SCREAMING_SNAKE_CASE = _re_one_line_import_struct.search(__UpperCamelCase ).groups()[0]
__SCREAMING_SNAKE_CASE = re.findall(r'''\[([^\]]+)\]''' , __UpperCamelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
__SCREAMING_SNAKE_CASE = _re_import_struct_key_value.search(__UpperCamelCase )
if single_line_import_search is not None:
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCamelCase ) > 0]
objects.extend(__UpperCamelCase )
elif line.startswith(''' ''' * 8 + '''\"''' ):
objects.append(line[9:-3] )
line_index += 1
__SCREAMING_SNAKE_CASE = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__SCREAMING_SNAKE_CASE = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__SCREAMING_SNAKE_CASE = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__SCREAMING_SNAKE_CASE = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
__SCREAMING_SNAKE_CASE = lines[line_index]
if _re_import_struct_add_one.search(__UpperCamelCase ) is not None:
objects.append(_re_import_struct_add_one.search(__UpperCamelCase ).groups()[0] )
elif _re_import_struct_add_many.search(__UpperCamelCase ) is not None:
__SCREAMING_SNAKE_CASE = _re_import_struct_add_many.search(__UpperCamelCase ).groups()[0].split(''', ''' )
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0]
objects.extend(__UpperCamelCase )
elif _re_between_brackets.search(__UpperCamelCase ) is not None:
__SCREAMING_SNAKE_CASE = _re_between_brackets.search(__UpperCamelCase ).groups()[0].split(''', ''' )
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0]
objects.extend(__UpperCamelCase )
elif _re_quote_object.search(__UpperCamelCase ) is not None:
objects.append(_re_quote_object.search(__UpperCamelCase ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''\"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''\"''' ):
objects.append(line[13:-3] )
line_index += 1
__SCREAMING_SNAKE_CASE = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__SCREAMING_SNAKE_CASE = []
while (
line_index < len(__UpperCamelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
__SCREAMING_SNAKE_CASE = lines[line_index]
__SCREAMING_SNAKE_CASE = _re_import.search(__UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__SCREAMING_SNAKE_CASE = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(__UpperCamelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
__SCREAMING_SNAKE_CASE = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__SCREAMING_SNAKE_CASE = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__SCREAMING_SNAKE_CASE = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
__SCREAMING_SNAKE_CASE = lines[line_index]
__SCREAMING_SNAKE_CASE = _re_import.search(__UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__SCREAMING_SNAKE_CASE = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
def find_duplicates(UpperCAmelCase__ ):
return [k for k, v in collections.Counter(__UpperCamelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__SCREAMING_SNAKE_CASE = []
for key in import_dict_objects.keys():
__SCREAMING_SNAKE_CASE = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__SCREAMING_SNAKE_CASE = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__SCREAMING_SNAKE_CASE = '''base imports''' if key == '''none''' else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _a ( ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = []
for root, _, files in os.walk(__UpperCamelCase ):
if "__init__.py" in files:
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCamelCase , '''__init__.py''' )
__SCREAMING_SNAKE_CASE = parse_init(__UpperCamelCase )
if objects is not None:
__SCREAMING_SNAKE_CASE = analyze_results(*__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(__UpperCamelCase ) )
if len(__UpperCamelCase ) > 0:
raise ValueError('''\n\n'''.join(__UpperCamelCase ) )
def _a ( ) -> int:
__SCREAMING_SNAKE_CASE = []
for path, directories, files in os.walk(__UpperCamelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(__UpperCamelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__UpperCamelCase ) / folder).glob('''*.py''' ) ) ) == 0:
continue
__SCREAMING_SNAKE_CASE = str((Path(__UpperCamelCase ) / folder).relative_to(__UpperCamelCase ) )
__SCREAMING_SNAKE_CASE = short_path.replace(os.path.sep , '''.''' )
submodules.append(__UpperCamelCase )
for fname in files:
if fname == "__init__.py":
continue
__SCREAMING_SNAKE_CASE = str((Path(__UpperCamelCase ) / fname).relative_to(__UpperCamelCase ) )
__SCREAMING_SNAKE_CASE = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(__UpperCamelCase )
return submodules
lowerCAmelCase__ =[
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
]
def _a ( ) -> int:
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
__SCREAMING_SNAKE_CASE = direct_transformers_import(__UpperCamelCase )
__SCREAMING_SNAKE_CASE = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(__UpperCamelCase , '''__init__.py''' ) , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = f.read()
import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , __UpperCamelCase ) ) )
__SCREAMING_SNAKE_CASE = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(__UpperCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = '''\n'''.join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registed in the main init of Transformers:\n'''
f"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 713 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class A__( __magic_name__ ):
lowerCAmelCase = '''van'''
def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_sizes
__SCREAMING_SNAKE_CASE = strides
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = mlp_ratios
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = layer_scale_init_value
__SCREAMING_SNAKE_CASE = drop_path_rate
__SCREAMING_SNAKE_CASE = dropout_rate
| 690 | 0 |
"""simple docstring"""
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ) -> Tuple:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = len(set_a.intersection(UpperCAmelCase__ ) )
if alternative_union:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) + len(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = len(set_a.union(UpperCAmelCase__ ) )
return intersection / union
if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(UpperCAmelCase__ , (list, tuple) ):
__SCREAMING_SNAKE_CASE = [element for element in set_a if element in set_b]
if alternative_union:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) + len(UpperCAmelCase__ )
return len(UpperCAmelCase__ ) / union
else:
__SCREAMING_SNAKE_CASE = set_a + [element for element in set_b if element not in set_a]
return len(UpperCAmelCase__ ) / len(UpperCAmelCase__ )
return len(UpperCAmelCase__ ) / len(UpperCAmelCase__ )
return None
if __name__ == "__main__":
lowerCAmelCase__ ={"a", "b", "c", "d", "e"}
lowerCAmelCase__ ={"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 714 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A__( lowercase__ ):
lowerCAmelCase = """roformer"""
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_00_00 , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=7_68 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : int=30_72 , __SCREAMING_SNAKE_CASE : Tuple="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=15_36 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=1E-1_2 , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=True , **__SCREAMING_SNAKE_CASE : Dict , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=__lowercase , **__lowercase )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size if embedding_size is None else embedding_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = rotary_value
__SCREAMING_SNAKE_CASE = use_cache
class A__( lowercase__ ):
@property
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''}
__SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __snake_case ):
lowerCAmelCase = ['input_values', 'padding_mask']
def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any = 1 , __SCREAMING_SNAKE_CASE : int = 2_40_00 , __SCREAMING_SNAKE_CASE : List[Any] = 0.0 , __SCREAMING_SNAKE_CASE : Any = None , __SCREAMING_SNAKE_CASE : Any = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ )
__SCREAMING_SNAKE_CASE = chunk_length_s
__SCREAMING_SNAKE_CASE = overlap
@property
def _a ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _a ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = False , __SCREAMING_SNAKE_CASE : Optional[Any] = None , __SCREAMING_SNAKE_CASE : Dict = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> Any:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
if padding and truncation:
raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' )
elif padding is None:
# by default let's pad the inputs
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = bool(
isinstance(A_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray(A_ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(A_ , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(A_ , dtype=np.floataa )
elif isinstance(A_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray(A_ ).T]
# verify inputs are valid
for idx, example in enumerate(A_ ):
if example.ndim > 2:
raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = BatchFeature({'''input_values''': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
__SCREAMING_SNAKE_CASE = min(array.shape[0] for array in raw_audio )
__SCREAMING_SNAKE_CASE = int(np.floor(max_length / self.chunk_stride ) )
__SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
__SCREAMING_SNAKE_CASE = max(array.shape[0] for array in raw_audio )
__SCREAMING_SNAKE_CASE = int(np.ceil(max_length / self.chunk_stride ) )
__SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length
__SCREAMING_SNAKE_CASE = "max_length"
else:
__SCREAMING_SNAKE_CASE = input_values
# normal padding on batch
if padded_inputs is None:
__SCREAMING_SNAKE_CASE = self.pad(
A_ , max_length=A_ , truncation=A_ , padding=A_ , return_attention_mask=A_ , )
if padding:
__SCREAMING_SNAKE_CASE = padded_inputs.pop('''attention_mask''' )
__SCREAMING_SNAKE_CASE = []
for example in padded_inputs.pop('''input_values''' ):
if self.feature_size == 1:
__SCREAMING_SNAKE_CASE = example[..., None]
input_values.append(example.T )
__SCREAMING_SNAKE_CASE = input_values
if return_tensors is not None:
__SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(A_ )
return padded_inputs
| 716 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A__( unittest.TestCase ):
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict()
config_dict.pop('''image_processor_type''' )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def _a ( self : int ) -> Any:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
class A__( __magic_name__ ):
lowerCAmelCase = True
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 690 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'''
),
}
class A__( UpperCamelCase__ ):
lowerCAmelCase = """dpr"""
def __init__( self : int , __SCREAMING_SNAKE_CASE : Tuple=3_05_22 , __SCREAMING_SNAKE_CASE : int=7_68 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : List[Any]=30_72 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=5_12 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-1_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , __SCREAMING_SNAKE_CASE : Tuple = 0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = projection_dim
__SCREAMING_SNAKE_CASE = position_embedding_type
| 717 |
"""simple docstring"""
import math
lowerCAmelCase__ =10
lowerCAmelCase__ =7
lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS
def _a ( UpperCAmelCase__ = 20 ) -> str:
__SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 690 | 0 |
from __future__ import annotations
lowerCAmelCase__ =10
def _a ( UpperCAmelCase__ ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = max(__lowerCAmelCase )
while placement <= max_digit:
# declare and initialize empty buckets
__SCREAMING_SNAKE_CASE = [[] for _ in range(__lowerCAmelCase )]
# split list_of_ints between the buckets
for i in list_of_ints:
__SCREAMING_SNAKE_CASE = int((i / placement) % RADIX )
buckets[tmp].append(__lowerCAmelCase )
# put each buckets' contents into list_of_ints
__SCREAMING_SNAKE_CASE = 0
for b in range(__lowerCAmelCase ):
for i in buckets[b]:
__SCREAMING_SNAKE_CASE = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class A__( __magic_name__ ):
def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 690 | 0 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
lowerCAmelCase__ =logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class A__( unittest.TestCase ):
def _a ( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = True , ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [file for file in os.listdir(lowerCAmelCase_ ) if os.path.isfile(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )]
if identifier is not None:
__SCREAMING_SNAKE_CASE = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
for n_ in n_identifier:
__SCREAMING_SNAKE_CASE = [file for file in files if n_ not in file]
else:
__SCREAMING_SNAKE_CASE = [file for file in files if n_identifier not in file]
__SCREAMING_SNAKE_CASE = ignore_files or []
ignore_files.append('''__init__.py''' )
__SCREAMING_SNAKE_CASE = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , lowerCAmelCase_ )
if only_modules:
__SCREAMING_SNAKE_CASE = file.split('''.''' )[0]
try:
__SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = doctest.DocTestSuite(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = unittest.TextTestRunner().run(lowerCAmelCase_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f"""{module_identifier} is not a module.""" )
else:
__SCREAMING_SNAKE_CASE = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path('''src/transformers''' )
__SCREAMING_SNAKE_CASE = '''modeling'''
__SCREAMING_SNAKE_CASE = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(lowerCAmelCase_ , identifier=lowerCAmelCase_ , ignore_files=lowerCAmelCase_ )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path('''src/transformers''' )
__SCREAMING_SNAKE_CASE = '''tokenization'''
self.analyze_directory(lowerCAmelCase_ , identifier=lowerCAmelCase_ )
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path('''src/transformers''' )
__SCREAMING_SNAKE_CASE = '''configuration'''
self.analyze_directory(lowerCAmelCase_ , identifier=lowerCAmelCase_ )
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path('''src/transformers''' )
__SCREAMING_SNAKE_CASE = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(lowerCAmelCase_ , n_identifier=lowerCAmelCase_ )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path('''docs/source''' )
__SCREAMING_SNAKE_CASE = ['''favicon.ico''']
self.analyze_directory(lowerCAmelCase_ , ignore_files=lowerCAmelCase_ , only_modules=lowerCAmelCase_ )
| 719 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ =list[list[float | int]]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase__ ):
for row in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ )
]
def _a ( UpperCAmelCase__ ) -> Callable[[int], int]:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ )
def interpolated_func(UpperCAmelCase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase__ ) )
return interpolated_func
def _a ( UpperCAmelCase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int:
__SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ):
x_val += 1
ret += poly(UpperCAmelCase__ )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
from collections.abc import Callable
class A__:
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Callable | None = None ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
# Stores indexes of each item for supporting updates and deletion.
__SCREAMING_SNAKE_CASE = {}
# Stores current size of heap.
__SCREAMING_SNAKE_CASE = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__SCREAMING_SNAKE_CASE = key or (lambda __SCREAMING_SNAKE_CASE : x)
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int ) -> int | None:
"""simple docstring"""
return int((i - 1) / 2 ) if i > 0 else None
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> int | None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = int(2 * i + 1 )
return left if 0 < left < self.size else None
def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> int | None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = int(2 * i + 2 )
return right if 0 < right < self.size else None
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__SCREAMING_SNAKE_CASE = self.arr[j], self.arr[i]
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
return self.arr[i][1] < self.arr[j][1]
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._left(__a )
__SCREAMING_SNAKE_CASE = self._right(__a )
__SCREAMING_SNAKE_CASE = i
if left is not None and not self._cmp(__a , __a ):
__SCREAMING_SNAKE_CASE = left
if right is not None and not self._cmp(__a , __a ):
__SCREAMING_SNAKE_CASE = right
return valid_parent
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._parent(__a )
while parent is not None and not self._cmp(__a , __a ):
self._swap(__a , __a )
__SCREAMING_SNAKE_CASE = parent, self._parent(__a )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._get_valid_parent(__a )
while valid_parent != index:
self._swap(__a , __a )
__SCREAMING_SNAKE_CASE = valid_parent, self._get_valid_parent(__a )
def _a ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
if item not in self.pos_map:
return
__SCREAMING_SNAKE_CASE = self.pos_map[item]
__SCREAMING_SNAKE_CASE = [item, self.key(__a )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(__a )
self._heapify_down(__a )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
if item not in self.pos_map:
return
__SCREAMING_SNAKE_CASE = self.pos_map[item]
del self.pos_map[item]
__SCREAMING_SNAKE_CASE = self.arr[self.size - 1]
__SCREAMING_SNAKE_CASE = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(__a )
self._heapify_down(__a )
def _a ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(__a )] )
else:
__SCREAMING_SNAKE_CASE = [item, self.key(__a )]
__SCREAMING_SNAKE_CASE = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def _a ( self : Union[str, Any] ) -> tuple | None:
"""simple docstring"""
return self.arr[0] if self.size else None
def _a ( self : Tuple ) -> tuple | None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _a ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 | 0 |
"""simple docstring"""
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
lowerCAmelCase__ ={"target_lang": "fi", "source_lang": "en"}
lowerCAmelCase__ =">>zh<<"
lowerCAmelCase__ ="Helsinki-NLP/"
if is_torch_available():
lowerCAmelCase__ ="pt"
elif is_tf_available():
lowerCAmelCase__ ="tf"
else:
lowerCAmelCase__ ="jax"
@require_sentencepiece
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = MarianTokenizer
lowerCAmelCase = False
lowerCAmelCase = True
def _a ( self : List[Any] ) -> int:
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
__SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
__SCREAMING_SNAKE_CASE = Path(self.tmpdirname )
save_json(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab'''] )
save_json(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] )
copyfile(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] )
__SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> int:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def _a ( self : Any ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''</s>'''
__SCREAMING_SNAKE_CASE = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''</s>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(UpperCAmelCase__ ) , 9 )
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" )
__SCREAMING_SNAKE_CASE = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [38, 1_21, 14, 6_97, 3_88_48, 0]
self.assertListEqual(UpperCAmelCase__ , batch.input_ids[0] )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [x.name for x in Path(UpperCAmelCase__ ).glob('''*''' )]
self.assertIn('''source.spm''' , UpperCAmelCase__ )
MarianTokenizer.from_pretrained(UpperCAmelCase__ )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = tok(
['''I am a small frog''' * 10_00, '''I am a small frog'''] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_12) )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ )
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def _a ( self : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , )
def _a ( self : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' )
__SCREAMING_SNAKE_CASE = '''Tämä on testi'''
__SCREAMING_SNAKE_CASE = '''This is a test'''
__SCREAMING_SNAKE_CASE = [76, 7, 20_47, 2]
__SCREAMING_SNAKE_CASE = [69, 12, 11, 9_40, 2]
__SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ ).input_ids
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer(text_target=UpperCAmelCase__ ).input_ids
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
| 721 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __magic_name__ ):
lowerCAmelCase = ['''audio_values''', '''audio_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = spectrogram_length
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE = n_fft
__SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = padding_value
__SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE = log_spec - 20.0
__SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE = audio_features[i]
__SCREAMING_SNAKE_CASE = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 690 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class A__( unittest.TestCase ):
def __init__( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[str]=18 , __SCREAMING_SNAKE_CASE : Any=30 , __SCREAMING_SNAKE_CASE : List[str]=4_00 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=True , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 20}
__SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_center_crop
__SCREAMING_SNAKE_CASE = crop_size
__SCREAMING_SNAKE_CASE = do_flip_channel_order
def _a ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class A__( __a , unittest.TestCase ):
lowerCAmelCase = MobileViTImageProcessor if is_vision_available() else None
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTImageProcessingTester(self )
@property
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : str ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A__ , '''do_resize''' ) )
self.assertTrue(hasattr(A__ , '''size''' ) )
self.assertTrue(hasattr(A__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(A__ , '''center_crop''' ) )
self.assertTrue(hasattr(A__ , '''do_flip_channel_order''' ) )
def _a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
pass
def _a ( self : str ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def _a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ )
for image in image_inputs:
self.assertIsInstance(A__ , torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 700 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _a ( UpperCAmelCase__ ) -> dict[str, str]:
__SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
# First fill cipher with key characters
__SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(UpperCAmelCase__ ) , 26 ):
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
__SCREAMING_SNAKE_CASE = char
return cipher_alphabet
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ )
print(func(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 690 | 0 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class A__( unittest.TestCase ):
def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : List[str]=4_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : str=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 / 2_55 , __SCREAMING_SNAKE_CASE : str=True , ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_pad
def _a ( self : str ) -> List[str]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=False ) -> List[Any]:
"""simple docstring"""
if not batched:
__SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * h / w )
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
elif w > h:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * w / h )
else:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
else:
__SCREAMING_SNAKE_CASE = []
for image in image_inputs:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0]
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessingTester(self )
@property
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_rescale''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) )
def _a ( self : Tuple ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
pass
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : Dict ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''image_id''': 3_97_69, '''annotations''': target}
# encode them
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor()
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target}
__SCREAMING_SNAKE_CASE = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
__SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor(format='''coco_panoptic''' )
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify masks
__SCREAMING_SNAKE_CASE = 82_28_73
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __SCREAMING_SNAKE_CASE )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
| 701 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__:
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ):
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 690 | 0 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> Union[str, Any]:
if not head:
return True
# split the list to two parts
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = head.next, head
while fast and fast.next:
__SCREAMING_SNAKE_CASE = fast.next.next
__SCREAMING_SNAKE_CASE = slow.next
__SCREAMING_SNAKE_CASE = slow.next
__SCREAMING_SNAKE_CASE = None # Don't forget here! But forget still works!
# reverse the second part
__SCREAMING_SNAKE_CASE = None
while second:
__SCREAMING_SNAKE_CASE = second.next
__SCREAMING_SNAKE_CASE = node
__SCREAMING_SNAKE_CASE = second
__SCREAMING_SNAKE_CASE = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
__SCREAMING_SNAKE_CASE = node.next
__SCREAMING_SNAKE_CASE = head.next
return True
def _a ( UpperCAmelCase__ ) -> Tuple:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
__SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = head
while fast and fast.next:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fast.next.next, slow.next
# 2. Push the second half into the stack
__SCREAMING_SNAKE_CASE = [slow.val]
while slow.next:
__SCREAMING_SNAKE_CASE = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
__SCREAMING_SNAKE_CASE = cur.next
return True
def _a ( UpperCAmelCase__ ) -> Any:
if not head or not head.next:
return True
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = 0
while head:
if head.val in d:
d[head.val].append(lowercase__ )
else:
__SCREAMING_SNAKE_CASE = [pos]
__SCREAMING_SNAKE_CASE = head.next
pos += 1
__SCREAMING_SNAKE_CASE = pos - 1
__SCREAMING_SNAKE_CASE = 0
for v in d.values():
if len(lowercase__ ) % 2 != 0:
middle += 1
else:
__SCREAMING_SNAKE_CASE = 0
for i in range(0 , len(lowercase__ ) ):
if v[i] + v[len(lowercase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 702 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = XLMRobertaTokenizer
lowerCAmelCase = XLMRobertaTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<pad>'''
__SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@cached_property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name )
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE )
pickle.loads(__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.'''
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''Hello World!'''
__SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__SCREAMING_SNAKE_CASE = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 690 | 0 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class A__( unittest.TestCase ):
def _a ( self : Optional[Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
__SCREAMING_SNAKE_CASE = Vector()
def _a ( self : List[Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(lowercase__ ) , '''(0,0,0,0,0,1)''' )
def _a ( self : Union[str, Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3, 4] )
self.assertEqual(len(lowercase__ ) , 4 )
def _a ( self : Any ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2] )
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3, 4, 5] )
__SCREAMING_SNAKE_CASE = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
__SCREAMING_SNAKE_CASE = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 )
def _a ( self : Dict ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def _a ( self : Dict ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def _a ( self : Any ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE = Vector([2, -1, 4] ) # for test of dot product
__SCREAMING_SNAKE_CASE = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' )
self.assertEqual((a * b) , 0 )
def _a ( self : Any ) -> None:
"""simple docstring"""
self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 )
def _a ( self : Dict ) -> None:
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' )
def _a ( self : str ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
__SCREAMING_SNAKE_CASE = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , lowercase__ , lowercase__ ) ) , '''(3,4,7)''' )
def _a ( self : List[Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 0, 0, 0, 0, 0] )
__SCREAMING_SNAKE_CASE = x.copy()
self.assertEqual(str(lowercase__ ) , str(lowercase__ ) )
def _a ( self : Optional[int] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(lowercase__ ) , '''(0,1,0)''' )
def _a ( self : Any ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) )
def _a ( self : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(lowercase__ , lowercase__ ) )
def _a ( self : Dict ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(lowercase__ , lowercase__ ) )
def _a ( self : Optional[int] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def _a ( self : List[Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
__SCREAMING_SNAKE_CASE = Vector([1, 2, 3] )
self.assertEqual('''(14,32,50)''' , str(a * x ) )
self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) )
def _a ( self : Union[str, Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) )
def _a ( self : Union[str, Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def _a ( self : str ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) )
def _a ( self : Any ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__SCREAMING_SNAKE_CASE = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) )
def _a ( self : int ) -> None:
"""simple docstring"""
self.assertEqual(
'''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 703 |
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]:
__SCREAMING_SNAKE_CASE = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 690 | 0 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> Optional[Any]:
return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] )
def _a ( UpperCAmelCase__ ) -> str:
if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(SCREAMING_SNAKE_CASE__ ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE = q
__SCREAMING_SNAKE_CASE = k
__SCREAMING_SNAKE_CASE = v
del sd[key]
return sd
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ )
if config is not None:
__SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = OPTConfig()
__SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval()
model.load_state_dict(UpperCAmelCase__ )
# Check results
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
lowerCAmelCase__ =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 690 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ ={
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
"processing_layoutlmv2": ["LayoutLMv2Processor"],
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["LayoutLMv2TokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["LayoutLMv2FeatureExtractor"]
lowerCAmelCase__ =["LayoutLMv2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMv2ForQuestionAnswering",
"LayoutLMv2ForSequenceClassification",
"LayoutLMv2ForTokenClassification",
"LayoutLMv2Layer",
"LayoutLMv2Model",
"LayoutLMv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__( __magic_name__ ):
lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa'''
lowerCAmelCase = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
lowerCAmelCase = '''document_qa'''
lowerCAmelCase = AutoProcessor
lowerCAmelCase = VisionEncoderDecoderModel
lowerCAmelCase = ['''image''', '''text''']
lowerCAmelCase = ['''text''']
def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids
__SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE )
return sequence["answer"]
| 690 | 0 |
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"""facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""",
"""facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""",
}
class A__( __magic_name__ ):
lowerCAmelCase = "encodec"
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int=[1.5, 3.0, 6.0, 12.0, 24.0] , __SCREAMING_SNAKE_CASE : Tuple=2_40_00 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=1_28 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[Any]=[8, 5, 4, 2] , __SCREAMING_SNAKE_CASE : Union[str, Any]="weight_norm" , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]="reflect" , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=10_24 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : str=True , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = target_bandwidths
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = audio_channels
__SCREAMING_SNAKE_CASE = normalize
__SCREAMING_SNAKE_CASE = chunk_length_s
__SCREAMING_SNAKE_CASE = overlap
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_filters
__SCREAMING_SNAKE_CASE = num_residual_layers
__SCREAMING_SNAKE_CASE = upsampling_ratios
__SCREAMING_SNAKE_CASE = norm_type
__SCREAMING_SNAKE_CASE = kernel_size
__SCREAMING_SNAKE_CASE = last_kernel_size
__SCREAMING_SNAKE_CASE = residual_kernel_size
__SCREAMING_SNAKE_CASE = dilation_growth_rate
__SCREAMING_SNAKE_CASE = use_causal_conv
__SCREAMING_SNAKE_CASE = pad_mode
__SCREAMING_SNAKE_CASE = compress
__SCREAMING_SNAKE_CASE = num_lstm_layers
__SCREAMING_SNAKE_CASE = trim_right_ratio
__SCREAMING_SNAKE_CASE = codebook_size
__SCREAMING_SNAKE_CASE = codebook_dim if codebook_dim is not None else hidden_size
__SCREAMING_SNAKE_CASE = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**__SCREAMING_SNAKE_CASE )
@property
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def _a ( self : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def _a ( self : int ) -> int:
"""simple docstring"""
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 706 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A__( unittest.TestCase ):
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def _a ( self : str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_uncond_unet
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A__( unittest.TestCase ):
def _a ( self : Any ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256'''
__SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 690 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ ={
"configuration_informer": [
"INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"InformerForPrediction",
"InformerModel",
"InformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 707 |
"""simple docstring"""
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={"vocab_file": "spiece.model"}
lowerCAmelCase__ ={
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
lowerCAmelCase__ ={
"AI-Sweden/gpt-sw3-126m": 2_048,
"AI-Sweden/gpt-sw3-350m": 2_048,
"AI-Sweden/gpt-sw3-1.6b": 2_048,
"AI-Sweden/gpt-sw3-6.7b": 2_048,
"AI-Sweden/gpt-sw3-20b": 2_048,
}
class A__( __magic_name__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
__SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__SCREAMING_SNAKE_CASE = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token
__SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token
else:
__SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = do_lower_case
__SCREAMING_SNAKE_CASE = remove_space
__SCREAMING_SNAKE_CASE = keep_accents
__SCREAMING_SNAKE_CASE = vocab_file
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# Used for whitespace normalization in input texts
# fmt : off
__SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__SCREAMING_SNAKE_CASE = re.compile(
f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE )
# Normalize whitespaces
__SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE )
return text
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
return out_string
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string
def _a ( self : Union[str, Any] ) -> Dict[str, int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__SCREAMING_SNAKE_CASE = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
else:
__SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text]
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
if return_tensors is True or return_tensors == "pt":
__SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE )
return token_ids
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str:
"""simple docstring"""
return self.sp_model.decode(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__SCREAMING_SNAKE_CASE = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=__SCREAMING_SNAKE_CASE )
| 690 | 0 |
from __future__ import annotations
def _a ( UpperCAmelCase__ ) -> int:
if not nums:
return 0
__SCREAMING_SNAKE_CASE = nums[0]
__SCREAMING_SNAKE_CASE = 0
for num in nums[1:]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
max_excluding + num,
max(__UpperCamelCase , __UpperCamelCase ),
)
return max(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ ={"UserAgent": UserAgent().random}
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = script.contents[0]
__SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class A__:
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/"""
__SCREAMING_SNAKE_CASE = self.get_json()
def _a ( self : List[Any] ) -> dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text
__SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return f"""{self.__class__.__name__}('{self.username}')"""
def __str__( self : Optional[int] ) -> str:
"""simple docstring"""
return f"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def _a ( self : Tuple ) -> str:
"""simple docstring"""
return self.user_data["username"]
@property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return self.user_data["full_name"]
@property
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.user_data["biography"]
@property
def _a ( self : List[str] ) -> str:
"""simple docstring"""
return self.user_data["business_email"]
@property
def _a ( self : Any ) -> str:
"""simple docstring"""
return self.user_data["external_url"]
@property
def _a ( self : Any ) -> int:
"""simple docstring"""
return self.user_data["edge_followed_by"]["count"]
@property
def _a ( self : Dict ) -> int:
"""simple docstring"""
return self.user_data["edge_follow"]["count"]
@property
def _a ( self : str ) -> int:
"""simple docstring"""
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.user_data["profile_pic_url_hd"]
@property
def _a ( self : Tuple ) -> bool:
"""simple docstring"""
return self.user_data["is_verified"]
@property
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.user_data["is_private"]
def _a ( UpperCAmelCase__ = "github" ) -> None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
__SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , UpperCAmelCase__ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ =InstagramUser("github")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 690 | 0 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class A__( unittest.TestCase ):
'''simple docstring'''
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
def _a ( self : List[str] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , )
__SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger'''
__SCREAMING_SNAKE_CASE = jax.device_count()
__SCREAMING_SNAKE_CASE = num_samples * [prompt]
__SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = replicate(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = shard(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 )
__SCREAMING_SNAKE_CASE = jax.random.split(_lowerCAmelCase , jax.device_count() )
__SCREAMING_SNAKE_CASE = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__SCREAMING_SNAKE_CASE = images[0, 2_53:2_56, 2_53:2_56, -1]
__SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__SCREAMING_SNAKE_CASE = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''stabilityai/stable-diffusion-2'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder='''scheduler''' )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
_lowerCAmelCase , scheduler=_lowerCAmelCase , revision='''bf16''' , dtype=jnp.bfloataa , )
__SCREAMING_SNAKE_CASE = scheduler_params
__SCREAMING_SNAKE_CASE = '''A painting of a squirrel eating a burger'''
__SCREAMING_SNAKE_CASE = jax.device_count()
__SCREAMING_SNAKE_CASE = num_samples * [prompt]
__SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = replicate(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = shard(_lowerCAmelCase )
__SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 )
__SCREAMING_SNAKE_CASE = jax.random.split(_lowerCAmelCase , jax.device_count() )
__SCREAMING_SNAKE_CASE = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__SCREAMING_SNAKE_CASE = images[0, 2_53:2_56, 2_53:2_56, -1]
__SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__SCREAMING_SNAKE_CASE = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 709 |
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__( datasets.Metric ):
def _a ( self : Any ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = recall_score(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , )
return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
| 690 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__SCREAMING_SNAKE_CASE = 1_28
elif "12-12" in model_name:
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = 12
elif "14-14" in model_name:
__SCREAMING_SNAKE_CASE = 14
__SCREAMING_SNAKE_CASE = 14
elif "16-16" in model_name:
__SCREAMING_SNAKE_CASE = 16
__SCREAMING_SNAKE_CASE = 16
else:
raise ValueError('''Model not supported''' )
__SCREAMING_SNAKE_CASE = """huggingface/label-files"""
if "speech-commands" in model_name:
__SCREAMING_SNAKE_CASE = 35
__SCREAMING_SNAKE_CASE = """speech-commands-v2-id2label.json"""
else:
__SCREAMING_SNAKE_CASE = 5_27
__SCREAMING_SNAKE_CASE = """audioset-id2label.json"""
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) )
__SCREAMING_SNAKE_CASE = {int(snake_case_ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
return config
def _a ( UpperCAmelCase__ ) -> Tuple:
if "module.v" in name:
__SCREAMING_SNAKE_CASE = name.replace('''module.v''' , '''audio_spectrogram_transformer''' )
if "cls_token" in name:
__SCREAMING_SNAKE_CASE = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "dist_token" in name:
__SCREAMING_SNAKE_CASE = name.replace('''dist_token''' , '''embeddings.distillation_token''' )
if "pos_embed" in name:
__SCREAMING_SNAKE_CASE = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
# transformer blocks
if "blocks" in name:
__SCREAMING_SNAKE_CASE = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__SCREAMING_SNAKE_CASE = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' )
# classifier head
if "module.mlp_head.0" in name:
__SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' )
if "module.mlp_head.1" in name:
__SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.1''' , '''classifier.dense''' )
return name
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple:
for key in orig_state_dict.copy().keys():
__SCREAMING_SNAKE_CASE = orig_state_dict.pop(snake_case_ )
if "qkv" in key:
__SCREAMING_SNAKE_CASE = key.split('''.''' )
__SCREAMING_SNAKE_CASE = int(key_split[3] )
__SCREAMING_SNAKE_CASE = config.hidden_size
if "weight" in key:
__SCREAMING_SNAKE_CASE = val[:dim, :]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
__SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
__SCREAMING_SNAKE_CASE = val[:dim]
__SCREAMING_SNAKE_CASE = val[dim : dim * 2]
__SCREAMING_SNAKE_CASE = val[-dim:]
else:
__SCREAMING_SNAKE_CASE = val
return orig_state_dict
def _a ( UpperCAmelCase__ ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(snake_case_ , snake_case_ )
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False ) -> List[str]:
__SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(snake_case_ )
__SCREAMING_SNAKE_CASE = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__SCREAMING_SNAKE_CASE = model_name_to_url[model_name]
__SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' )
# remove some keys
remove_keys(snake_case_ )
# rename some keys
__SCREAMING_SNAKE_CASE = convert_state_dict(snake_case_ , snake_case_ )
# load 🤗 model
__SCREAMING_SNAKE_CASE = ASTForAudioClassification(snake_case_ )
model.eval()
model.load_state_dict(snake_case_ )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__SCREAMING_SNAKE_CASE = -4.2677393 if """speech-commands""" not in model_name else -6.845978
__SCREAMING_SNAKE_CASE = 4.5689974 if """speech-commands""" not in model_name else 5.5654526
__SCREAMING_SNAKE_CASE = 10_24 if """speech-commands""" not in model_name else 1_28
__SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=snake_case_ , std=snake_case_ , max_length=snake_case_ )
if "speech-commands" in model_name:
__SCREAMING_SNAKE_CASE = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' )
__SCREAMING_SNAKE_CASE = dataset[0]["""audio"""]["""array"""]
else:
__SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , )
__SCREAMING_SNAKE_CASE = torchaudio.load(snake_case_ )
__SCREAMING_SNAKE_CASE = waveform.squeeze().numpy()
__SCREAMING_SNAKE_CASE = feature_extractor(snake_case_ , sampling_rate=1_60_00 , return_tensors='''pt''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**snake_case_ )
__SCREAMING_SNAKE_CASE = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__SCREAMING_SNAKE_CASE = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__SCREAMING_SNAKE_CASE = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__SCREAMING_SNAKE_CASE = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__SCREAMING_SNAKE_CASE = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__SCREAMING_SNAKE_CASE = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__SCREAMING_SNAKE_CASE = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__SCREAMING_SNAKE_CASE = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__SCREAMING_SNAKE_CASE = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('''Unknown model name''' )
if not torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ):
raise ValueError('''Logits don\'t match''' )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(snake_case_ )
print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(snake_case_ )
if push_to_hub:
print('''Pushing model and feature extractor to the hub...''' )
model.push_to_hub(f"""MIT/{model_name}""" )
feature_extractor.push_to_hub(f"""MIT/{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase__ =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 710 |
"""simple docstring"""
def _a ( UpperCAmelCase__ = 10**9 ) -> int:
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase__ =250_004
lowerCAmelCase__ =250_020
@require_sentencepiece
@require_tokenizers
class A__( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
lowerCAmelCase = MBartTokenizer
lowerCAmelCase = MBartTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(UpperCamelCase__ )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
shutil.rmtree(UpperCamelCase__ )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(UpperCamelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(UpperCamelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) )
shutil.rmtree(UpperCamelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class A__( unittest.TestCase ):
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
lowerCAmelCase = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE]
@classmethod
def _a ( cls : Dict ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__SCREAMING_SNAKE_CASE = 1
return cls
def _a ( self : Any ) -> List[Any]:
"""simple docstring"""
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
def _a ( self : Dict ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids )
__SCREAMING_SNAKE_CASE = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__SCREAMING_SNAKE_CASE = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ )
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = 10
__SCREAMING_SNAKE_CASE = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , UpperCamelCase__ )
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
def _a ( self : List[str] ) -> List[Any]:
"""simple docstring"""
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = MBartTokenizer.from_pretrained(UpperCamelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ )
@require_torch
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__SCREAMING_SNAKE_CASE = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE = self.tokenizer(
text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10 , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE = targets['''input_ids''']
__SCREAMING_SNAKE_CASE = shift_tokens_right(UpperCamelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(UpperCamelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 30_34, 2, 25_00_04]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 711 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase__ =pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase__ =dataset.iloc[:, 1:2].values
lowerCAmelCase__ =dataset.iloc[:, 2].values
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase__ =PolynomialFeatures(degree=4)
lowerCAmelCase__ =poly_reg.fit_transform(X)
lowerCAmelCase__ =LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> List[Any]:
plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' )
plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 690 | 0 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A__( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase = StableUnCLIPPipeline
lowerCAmelCase = TEXT_TO_IMAGE_PARAMS
lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
lowerCAmelCase = False
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 32
__SCREAMING_SNAKE_CASE = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCamelCase , num_layers=1 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowerCamelCase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase )
__SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = AutoencoderKL()
__SCREAMING_SNAKE_CASE = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> str:
"""simple docstring"""
if str(_lowerCamelCase ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase )
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__SCREAMING_SNAKE_CASE = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe('''anime turle''' , generator=_lowerCamelCase , output_type='''np''' )
__SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
def _a ( self : Tuple ) -> str:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__SCREAMING_SNAKE_CASE = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__SCREAMING_SNAKE_CASE = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 712 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = '''gelu'''
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict['''input_ids''']
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''head_mask''']
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE )
self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE )
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
return generated_words
@slow
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 690 | 0 |
"""simple docstring"""
import unittest
import numpy as np
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
__SCREAMING_SNAKE_CASE = np.shape(__snake_case )
__SCREAMING_SNAKE_CASE = np.shape(__snake_case )
__SCREAMING_SNAKE_CASE = np.shape(__snake_case )
if shape_a[0] != shape_b[0]:
__SCREAMING_SNAKE_CASE = (
"Expected the same number of rows for A and B. "
f"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(__snake_case )
if shape_b[1] != shape_c[1]:
__SCREAMING_SNAKE_CASE = (
"Expected the same number of columns for B and C. "
f"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(__snake_case )
__SCREAMING_SNAKE_CASE = pseudo_inv
if a_inv is None:
try:
__SCREAMING_SNAKE_CASE = np.linalg.inv(__snake_case )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class A__( unittest.TestCase ):
def _a ( self : Tuple ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__SCREAMING_SNAKE_CASE = np.array([[0, 3], [3, 0], [2, 3]] )
__SCREAMING_SNAKE_CASE = np.array([[2, 1], [6, 3]] )
__SCREAMING_SNAKE_CASE = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = np.block([[a, b], [b.T, c]] )
__SCREAMING_SNAKE_CASE = np.linalg.det(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = np.linalg.det(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = np.linalg.det(__SCREAMING_SNAKE_CASE )
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s )
def _a ( self : List[Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__SCREAMING_SNAKE_CASE = np.array([[0, 3], [3, 0], [2, 3]] )
__SCREAMING_SNAKE_CASE = np.array([[2, 1], [6, 3]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__SCREAMING_SNAKE_CASE = np.array([[0, 3], [3, 0], [2, 3]] )
__SCREAMING_SNAKE_CASE = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 713 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class A__( __magic_name__ ):
lowerCAmelCase = '''van'''
def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_sizes
__SCREAMING_SNAKE_CASE = strides
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = mlp_ratios
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = layer_scale_init_value
__SCREAMING_SNAKE_CASE = drop_path_rate
__SCREAMING_SNAKE_CASE = dropout_rate
| 690 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A__( __lowercase ):
lowerCAmelCase = 'ClapFeatureExtractor'
lowerCAmelCase = ('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(__A , __A )
def __call__( self : int , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.pop('''sampling_rate''' , __A )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
__SCREAMING_SNAKE_CASE = self.tokenizer(__A , return_tensors=__A , **__A )
if audios is not None:
__SCREAMING_SNAKE_CASE = self.feature_extractor(
__A , sampling_rate=__A , return_tensors=__A , **__A )
if text is not None and audios is not None:
__SCREAMING_SNAKE_CASE = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _a ( self : Tuple , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _a ( self : Any , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _a ( self : Dict ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names
__SCREAMING_SNAKE_CASE = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 714 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class A__( UpperCamelCase__ , unittest.TestCase ):
lowerCAmelCase = ShapEPipeline
lowerCAmelCase = ['''prompt''']
lowerCAmelCase = ['''prompt''']
lowerCAmelCase = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
lowerCAmelCase = False
@property
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
return 32
@property
def _a ( self : Dict ) -> str:
"""simple docstring"""
return 32
@property
def _a ( self : str ) -> Tuple:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _a ( self : Optional[int] ) -> Any:
"""simple docstring"""
return 8
@property
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def _a ( self : Tuple ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(__A )
@property
def _a ( self : str ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__SCREAMING_SNAKE_CASE = PriorTransformer(**__A )
return model
@property
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__SCREAMING_SNAKE_CASE = ShapERenderer(**__A )
return model
def _a ( self : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_prior
__SCREAMING_SNAKE_CASE = self.dummy_text_encoder
__SCREAMING_SNAKE_CASE = self.dummy_tokenizer
__SCREAMING_SNAKE_CASE = self.dummy_renderer
__SCREAMING_SNAKE_CASE = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , )
__SCREAMING_SNAKE_CASE = {
'''prior''': prior,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=0 ) -> Optional[int]:
"""simple docstring"""
if str(__A ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(__A )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=__A ).manual_seed(__A )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''horse''',
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''cpu'''
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**__A )
__SCREAMING_SNAKE_CASE = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(__A ) )
__SCREAMING_SNAKE_CASE = output.images[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _a ( self : Dict ) -> Any:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch_device == '''cpu'''
__SCREAMING_SNAKE_CASE = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__A , relax_max_difference=__A , )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**__A )
__SCREAMING_SNAKE_CASE = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__A )
for key in inputs.keys():
if key in self.batch_params:
__SCREAMING_SNAKE_CASE = batch_size * [inputs[key]]
__SCREAMING_SNAKE_CASE = pipe(**__A , num_images_per_prompt=__A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_np_out.npy''' )
__SCREAMING_SNAKE_CASE = ShapEPipeline.from_pretrained('''openai/shap-e''' )
__SCREAMING_SNAKE_CASE = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = torch.Generator(device=__A ).manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(
'''a shark''' , generator=__A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__A , __A )
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class A__( __UpperCAmelCase ):
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''neck_hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_attention_heads''' ) )
class A__:
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=6_40 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Optional[Any]="silu" , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = last_hidden_size
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = conv_kernel_size
__SCREAMING_SNAKE_CASE = output_stride
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = classifier_dropout_prob
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = scope
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels, pixel_labels
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = MobileViTForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = MobileViTForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A__( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowerCAmelCase = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCAmelCase = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Any ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTModelTester(self )
__SCREAMING_SNAKE_CASE = MobileViTConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViT does not use inputs_embeds''' )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not support input and output embeddings''' )
def _a ( self : str ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='''MobileViT does not output attentions''' )
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : Tuple ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def _a ( self : int ) -> Dict:
"""simple docstring"""
pass
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE = outputs.hidden_states
__SCREAMING_SNAKE_CASE = 5
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__SCREAMING_SNAKE_CASE = 2
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = MobileViTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None
@slow
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
@slow
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
__SCREAMING_SNAKE_CASE = model.to(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.logits
# verify the logits
__SCREAMING_SNAKE_CASE = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor(
[
[[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]],
[[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]],
[[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]],
] , device=__SCREAMING_SNAKE_CASE , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
@slow
def _a ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
__SCREAMING_SNAKE_CASE = model.to(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' )
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu()
__SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(50, 60)] )
__SCREAMING_SNAKE_CASE = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
| 716 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A__( unittest.TestCase ):
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict()
config_dict.pop('''image_processor_type''' )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def _a ( self : int ) -> Any:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
class A__( __magic_name__ ):
lowerCAmelCase = True
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 690 | 0 |
"""simple docstring"""
from math import pi, sqrt, tan
def _a ( UpperCAmelCase__ ) -> float:
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def _a ( UpperCAmelCase__ ) -> float:
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def _a ( UpperCAmelCase__ ) -> float:
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
__SCREAMING_SNAKE_CASE = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(UpperCAmelCase__ , 2 ) * torus_radius * tube_radius
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def _a ( UpperCAmelCase__ ) -> float:
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
__SCREAMING_SNAKE_CASE = (sidea + sidea + sidea) / 2
__SCREAMING_SNAKE_CASE = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def _a ( UpperCAmelCase__ ) -> float:
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(F'''Rectangle: {area_rectangle(10, 20) = }''')
print(F'''Square: {area_square(10) = }''')
print(F'''Triangle: {area_triangle(10, 10) = }''')
print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(F'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(F'''Rhombus: {area_rhombus(10, 20) = }''')
print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(F'''Circle: {area_circle(20) = }''')
print(F'''Ellipse: {area_ellipse(10, 20) = }''')
print("\nSurface Areas of various geometric shapes: \n")
print(F'''Cube: {surface_area_cube(20) = }''')
print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(F'''Sphere: {surface_area_sphere(20) = }''')
print(F'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(F'''Cone: {surface_area_cone(10, 20) = }''')
print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(F'''Torus: {surface_area_torus(20, 10) = }''')
print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(F'''Square: {area_reg_polygon(4, 10) = }''')
print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
| 717 |
"""simple docstring"""
import math
lowerCAmelCase__ =10
lowerCAmelCase__ =7
lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS
def _a ( UpperCAmelCase__ = 20 ) -> str:
__SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 690 | 0 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=0 ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__A ) )
__SCREAMING_SNAKE_CASE = torch.manual_seed(__A )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
__SCREAMING_SNAKE_CASE = pipe(**__A ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def _a ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
__SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
__SCREAMING_SNAKE_CASE = pipe(**__A ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
__SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
__SCREAMING_SNAKE_CASE = pipe(**__A ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _a ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
__SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
__SCREAMING_SNAKE_CASE = pipe(**__A ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def _a ( self : List[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
__SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
__SCREAMING_SNAKE_CASE = pipe(**__A ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class A__( unittest.TestCase ):
@property
def _a ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ort.SessionOptions()
__SCREAMING_SNAKE_CASE = False
return options
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__SCREAMING_SNAKE_CASE = init_image.resize((1_28, 1_28) )
# using the PNDM scheduler by default
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = '''A fantasy landscape, trending on artstation'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(
prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__SCREAMING_SNAKE_CASE = init_image.resize((1_28, 1_28) )
__SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' )
__SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
__SCREAMING_SNAKE_CASE = '''A fantasy landscape, trending on artstation'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(
prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=20 , generator=__A , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 718 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class A__( __magic_name__ ):
def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 690 | 0 |
"""simple docstring"""
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class A__( __snake_case , unittest.TestCase ):
lowerCAmelCase = TransfoXLTokenizer
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE = [
"""<unk>""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""unwanted""",
"""wa""",
"""un""",
"""running""",
""",""",
"""low""",
"""l""",
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """<unk> UNwanted , running"""
__SCREAMING_SNAKE_CASE = """<unk> unwanted, running"""
return input_text, output_text
def _a ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_lowercase )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''<unk> UNwanted , running''' )
self.assertListEqual(_lowercase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [0, 4, 8, 7] )
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
def _a ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _a ( self : List[str] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TransfoXLTokenizer(lower_case=_lowercase )
__SCREAMING_SNAKE_CASE = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?"""
__SCREAMING_SNAKE_CASE = [
"""Hello""",
"""(""",
"""bracket""",
""")""",
"""and""",
"""side""",
"""@-@""",
"""scrolled""",
"""[""",
"""and""",
"""]""",
"""Henry""",
"""'s""",
"""$""",
"""5""",
"""@,@""",
"""000""",
"""with""",
"""3""",
"""@.@""",
"""34""",
"""m""",
""".""",
"""What""",
"""'s""",
"""up""",
"""!""",
"""?""",
]
self.assertListEqual(tokenizer.tokenize(_lowercase ) , _lowercase )
self.assertEqual(tokenizer.convert_tokens_to_string(_lowercase ) , _lowercase )
def _a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = len(_lowercase )
tokenizer.add_tokens(['''new1''', '''new2'''] )
tokenizer.move_added_token('''new1''' , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(_lowercase ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode('''new1''' ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
| 719 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ =list[list[float | int]]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase__ ):
for row in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ )
]
def _a ( UpperCAmelCase__ ) -> Callable[[int], int]:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ )
def interpolated_func(UpperCAmelCase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase__ ) )
return interpolated_func
def _a ( UpperCAmelCase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int:
__SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ):
x_val += 1
ret += poly(UpperCAmelCase__ )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
lowerCAmelCase__ ={
'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.',
'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.',
'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-',
'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----',
'2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...',
'8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.',
':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.',
'?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-',
'(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/'
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
lowerCAmelCase__ ={value: key for key, value in MORSE_CODE_DICT.items()}
def _a ( UpperCAmelCase__ ) -> str:
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def _a ( UpperCAmelCase__ ) -> str:
return "".join(REVERSE_DICT[char] for char in message.split() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = """Morse code here!"""
print(lowercase_ )
__SCREAMING_SNAKE_CASE = encrypt(lowercase_ )
print(lowercase_ )
__SCREAMING_SNAKE_CASE = decrypt(lowercase_ )
print(lowercase_ )
if __name__ == "__main__":
main()
| 720 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 | 0 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( enum.Enum ):
lowerCAmelCase = 0
lowerCAmelCase = 1
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class A__( __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = 'generated'
def __init__( self : int , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[str] ) -> int:
"""simple docstring"""
super().__init__(*_a , **_a )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Any , ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if truncation is not None:
__SCREAMING_SNAKE_CASE = truncation
__SCREAMING_SNAKE_CASE = generate_kwargs
__SCREAMING_SNAKE_CASE = {}
if return_tensors is not None and return_type is None:
__SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
__SCREAMING_SNAKE_CASE = return_type
if clean_up_tokenization_spaces is not None:
__SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces
if stop_sequence is not None:
__SCREAMING_SNAKE_CASE = self.tokenizer.encode(_a , add_special_tokens=_a )
if len(_a ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
__SCREAMING_SNAKE_CASE = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
"""simple docstring"""
return True
def _a ( self : Any , *__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model.config.prefix if self.model.config.prefix is not None else ''''''
if isinstance(args[0] , _a ):
if self.tokenizer.pad_token_id is None:
raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' )
__SCREAMING_SNAKE_CASE = ([prefix + arg for arg in args[0]],)
__SCREAMING_SNAKE_CASE = True
elif isinstance(args[0] , _a ):
__SCREAMING_SNAKE_CASE = (prefix + args[0],)
__SCREAMING_SNAKE_CASE = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
__SCREAMING_SNAKE_CASE = self.tokenizer(*_a , padding=_a , truncation=_a , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = super().__call__(*_a , **_a )
if (
isinstance(args[0] , _a )
and all(isinstance(_a , _a ) for el in args[0] )
and all(len(_a ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._parse_and_tokenize(_a , truncation=_a , **_a )
return inputs
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : str ) -> Tuple:
"""simple docstring"""
if self.framework == "pt":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_inputs['''input_ids'''].shape
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tf.shape(model_inputs['''input_ids'''] ).numpy()
__SCREAMING_SNAKE_CASE = generate_kwargs.get('''min_length''' , self.model.config.min_length )
__SCREAMING_SNAKE_CASE = generate_kwargs.get('''max_length''' , self.model.config.max_length )
self.check_inputs(_a , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] )
__SCREAMING_SNAKE_CASE = self.model.generate(**_a , **_a )
__SCREAMING_SNAKE_CASE = output_ids.shape[0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = output_ids.reshape(_a , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = tf.reshape(_a , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=ReturnType.TEXT , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
__SCREAMING_SNAKE_CASE = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
__SCREAMING_SNAKE_CASE = {
f"""{self.return_name}_text""": self.tokenizer.decode(
_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , )
}
records.append(_a )
return records
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class A__( __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = 'summary'
def __call__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]:
"""simple docstring"""
return super().__call__(*_a , **_a )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]:
"""simple docstring"""
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'''a summarization task, where outputs shorter than the input are typically wanted, you might '''
f"""consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})""" )
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class A__( __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = 'translation'
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' )
return True
def _a ( self : Tuple , *__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=None ) -> List[Any]:
"""simple docstring"""
if getattr(self.tokenizer , '''_build_translation_inputs''' , _a ):
return self.tokenizer._build_translation_inputs(
*_a , return_tensors=self.framework , truncation=_a , src_lang=_a , tgt_lang=_a )
else:
return super()._parse_and_tokenize(*_a , truncation=_a )
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super()._sanitize_parameters(**_a )
if src_lang is not None:
__SCREAMING_SNAKE_CASE = src_lang
if tgt_lang is not None:
__SCREAMING_SNAKE_CASE = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
__SCREAMING_SNAKE_CASE = kwargs.get('''task''' , self.task )
__SCREAMING_SNAKE_CASE = task.split('''_''' )
if task and len(_a ) == 4:
# translation, XX, to YY
__SCREAMING_SNAKE_CASE = items[1]
__SCREAMING_SNAKE_CASE = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
return super().__call__(*_a , **_a )
| 721 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __magic_name__ ):
lowerCAmelCase = ['''audio_values''', '''audio_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = spectrogram_length
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE = n_fft
__SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = padding_value
__SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE = log_spec - 20.0
__SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE = audio_features[i]
__SCREAMING_SNAKE_CASE = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 690 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _a ( UpperCAmelCase__ ) -> dict[str, str]:
__SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
# First fill cipher with key characters
__SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(UpperCAmelCase__ ) , 26 ):
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
__SCREAMING_SNAKE_CASE = char
return cipher_alphabet
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ )
print(func(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 690 | 0 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class A__( unittest.TestCase ):
def __init__( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=30 , __SCREAMING_SNAKE_CASE : Optional[int]=4_00 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Any=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Any=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[str]=1 / 2_55 , __SCREAMING_SNAKE_CASE : Tuple=True , ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_pad
def _a ( self : int ) -> Optional[int]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False ) -> Dict:
"""simple docstring"""
if not batched:
__SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * h / w )
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
elif w > h:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = int(self.size['''shortest_edge'''] * w / h )
else:
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
__SCREAMING_SNAKE_CASE = self.size['''shortest_edge''']
else:
__SCREAMING_SNAKE_CASE = []
for image in image_inputs:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0]
__SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A__( snake_case_ , unittest.TestCase ):
lowerCAmelCase = DetaImageProcessor if is_vision_available() else None
def _a ( self : List[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self )
@property
def _a ( self : str ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_rescale''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) )
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
pass
def _a ( self : List[str] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''image_id''': 3_97_69, '''annotations''': target}
# encode them
__SCREAMING_SNAKE_CASE = DetaImageProcessor()
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target}
__SCREAMING_SNAKE_CASE = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
__SCREAMING_SNAKE_CASE = DetaImageProcessor(format='''coco_panoptic''' )
__SCREAMING_SNAKE_CASE = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['''pixel_values'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __SCREAMING_SNAKE_CASE ) )
# verify masks
__SCREAMING_SNAKE_CASE = 82_28_73
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __SCREAMING_SNAKE_CASE )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __SCREAMING_SNAKE_CASE ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __SCREAMING_SNAKE_CASE ) )
| 701 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__:
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ):
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 690 | 0 |
"""simple docstring"""
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase__ =logging.getLogger()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
__SCREAMING_SNAKE_CASE = "\n".join(SCREAMING_SNAKE_CASE_ )
Path(SCREAMING_SNAKE_CASE_ ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ ="patrickvonplaten/t5-tiny-random"
lowerCAmelCase__ ="sshleifer/bart-tiny-random"
lowerCAmelCase__ ="sshleifer/tiny-mbart"
lowerCAmelCase__ =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class A__( _UpperCAmelCase ):
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__SCREAMING_SNAKE_CASE = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(lowercase__ , lowercase__ )
__SCREAMING_SNAKE_CASE = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' )
__SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
__SCREAMING_SNAKE_CASE = f"""\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n """.split()
with patch.object(lowercase__ , '''argv''' , lowercase__ ):
run_generate()
assert Path(lowercase__ ).exists()
# os.remove(Path(output_file_name))
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
self.run_eval_tester(lowercase__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple:
"""simple docstring"""
self.run_eval_tester(lowercase__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _a ( self : int , __SCREAMING_SNAKE_CASE : str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
__SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
__SCREAMING_SNAKE_CASE = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
__SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() )
__SCREAMING_SNAKE_CASE = str(tmp_dir / '''scores.json''' )
__SCREAMING_SNAKE_CASE = str(tmp_dir / '''val.target''' )
_dump_articles(lowercase__ , text['''en'''] )
_dump_articles(lowercase__ , text['''de'''] )
__SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
__SCREAMING_SNAKE_CASE = f"""\n run_eval_search.py\n {model}\n {str(lowercase__ )}\n {str(lowercase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n """.split()
testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] )
with patch.object(lowercase__ , '''argv''' , lowercase__ ):
with CaptureStdout() as cs:
run_search()
__SCREAMING_SNAKE_CASE = [" num_beams | length_penalty", model, "Best score args"]
__SCREAMING_SNAKE_CASE = ["Info"]
if "translation" in task:
expected_strings.append('''bleu''' )
else:
expected_strings.extend(lowercase__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowercase__ ).exists()
os.remove(Path(lowercase__ ) )
| 702 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = XLMRobertaTokenizer
lowerCAmelCase = XLMRobertaTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<pad>'''
__SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@cached_property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name )
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE )
pickle.loads(__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.'''
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''Hello World!'''
__SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__SCREAMING_SNAKE_CASE = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 690 | 0 |
"""simple docstring"""
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__SCREAMING_SNAKE_CASE = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
__SCREAMING_SNAKE_CASE = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
__SCREAMING_SNAKE_CASE = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]:
__SCREAMING_SNAKE_CASE = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 690 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class A__:
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None # sigma(t_i)
@classmethod
def _a ( cls : int ) -> List[Any]:
"""simple docstring"""
return cls()
@dataclass
class A__( __A ):
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
class A__( __A , __A ):
@property
def _a ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
return True
@register_to_config
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] = 0.02 , __SCREAMING_SNAKE_CASE : List[str] = 1_00 , __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0_07 , __SCREAMING_SNAKE_CASE : Tuple = 80 , __SCREAMING_SNAKE_CASE : List[Any] = 0.05 , __SCREAMING_SNAKE_CASE : Optional[int] = 50 , ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return KarrasVeSchedulerState.create()
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] = () ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = jnp.arange(0 , __SCREAMING_SNAKE_CASE )[::-1].copy()
__SCREAMING_SNAKE_CASE = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=__SCREAMING_SNAKE_CASE , schedule=jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=__SCREAMING_SNAKE_CASE , )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , ) -> List[Any]:
"""simple docstring"""
if self.config.s_min <= sigma <= self.config.s_max:
__SCREAMING_SNAKE_CASE = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
__SCREAMING_SNAKE_CASE = 0
# sample eps ~ N(0, S_noise^2 * I)
__SCREAMING_SNAKE_CASE = random.split(__SCREAMING_SNAKE_CASE , num=1 )
__SCREAMING_SNAKE_CASE = self.config.s_noise * random.normal(key=__SCREAMING_SNAKE_CASE , shape=sample.shape )
__SCREAMING_SNAKE_CASE = sigma + gamma * sigma
__SCREAMING_SNAKE_CASE = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] = True , ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = sample_hat + sigma_hat * model_output
__SCREAMING_SNAKE_CASE = (sample_hat - pred_original_sample) / sigma_hat
__SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple = True , ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = sample_prev + sigma_prev * model_output
__SCREAMING_SNAKE_CASE = (sample_prev - pred_original_sample) / sigma_prev
__SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Dict:
"""simple docstring"""
raise NotImplementedError()
| 704 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE = q
__SCREAMING_SNAKE_CASE = k
__SCREAMING_SNAKE_CASE = v
del sd[key]
return sd
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ )
if config is not None:
__SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = OPTConfig()
__SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval()
model.load_state_dict(UpperCAmelCase__ )
# Check results
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
lowerCAmelCase__ =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 690 | 0 |
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class A__:
lowerCAmelCase = 42 # [batch_size x 3]
lowerCAmelCase = 42 # [batch_size x 3]
lowerCAmelCase = 42 # [batch_size x 3]
lowerCAmelCase = 42 # [batch_size x 3]
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def _a ( self : Tuple ) -> List[str]:
"""simple docstring"""
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def _a ( self : List[str] ) -> List[str]:
"""simple docstring"""
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def _a ( self : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width )
__SCREAMING_SNAKE_CASE = torch.stack(
[
pixel_indices % self.width,
torch.div(_A , self.width , rounding_mode='''trunc''' ),
] , axis=1 , )
return coords
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE = self.shape
__SCREAMING_SNAKE_CASE = int(np.prod(_A ) )
__SCREAMING_SNAKE_CASE = self.get_image_coords()
__SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
__SCREAMING_SNAKE_CASE = self.get_camera_rays(_A )
__SCREAMING_SNAKE_CASE = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
__SCREAMING_SNAKE_CASE = coords.view(_A , -1 , 2 )
__SCREAMING_SNAKE_CASE = self.resolution()
__SCREAMING_SNAKE_CASE = self.fov()
__SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1
__SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 )
__SCREAMING_SNAKE_CASE = fracs.view(_A , -1 , 2 )
__SCREAMING_SNAKE_CASE = (
self.z.view(_A , 1 , 3 )
+ self.x.view(_A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:]
)
__SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=_A )
__SCREAMING_SNAKE_CASE = torch.stack(
[
torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_A , *_A , 2 , 3 )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> List[Any]:
"""simple docstring"""
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , )
def _a ( UpperCAmelCase__ ) -> int:
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
__SCREAMING_SNAKE_CASE = np.array([np.sin(__snake_case ), np.cos(__snake_case ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
__SCREAMING_SNAKE_CASE = -z * 4
__SCREAMING_SNAKE_CASE = np.array([np.cos(__snake_case ), -np.sin(__snake_case ), 0.0] )
__SCREAMING_SNAKE_CASE = np.cross(__snake_case , __snake_case )
origins.append(__snake_case )
xs.append(__snake_case )
ys.append(__snake_case )
zs.append(__snake_case )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , width=__snake_case , height=__snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__snake_case )) , )
| 705 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__( __magic_name__ ):
lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa'''
lowerCAmelCase = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
lowerCAmelCase = '''document_qa'''
lowerCAmelCase = AutoProcessor
lowerCAmelCase = VisionEncoderDecoderModel
lowerCAmelCase = ['''image''', '''text''']
lowerCAmelCase = ['''text''']
def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
"""simple docstring"""
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids
__SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
"""simple docstring"""
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token
__SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE )
return sequence["answer"]
| 690 | 0 |
"""simple docstring"""
from ....utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __a ):
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[str]=20_48 ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = config.__dict__
__SCREAMING_SNAKE_CASE = modal_hidden_size
if num_labels:
__SCREAMING_SNAKE_CASE = num_labels
| 706 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A__( unittest.TestCase ):
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def _a ( self : str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.dummy_uncond_unet
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A__( unittest.TestCase ):
def _a ( self : Any ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256'''
__SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = KarrasVeScheduler()
__SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 690 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__( __lowerCamelCase ):
lowerCAmelCase = (
'''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'''
'''It takes two arguments named `image` which should be the original image, and `label` which should be a text '''
'''describing the elements what should be identified in the segmentation mask. The tool returns the mask.'''
)
lowerCAmelCase = '''CIDAS/clipseg-rd64-refined'''
lowerCAmelCase = '''image_segmenter'''
lowerCAmelCase = CLIPSegForImageSegmentation
lowerCAmelCase = ['''image''', '''text''']
lowerCAmelCase = ['''image''']
def __init__( self : Dict , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*a_ , **a_ )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str:
"""simple docstring"""
return self.pre_processor(text=[label] , images=[image] , padding=a_ , return_tensors='''pt''' )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
__SCREAMING_SNAKE_CASE = self.model(**a_ ).logits
return logits
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy()
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 1
return Image.fromarray((array * 2_55).astype(np.uinta ) )
| 707 |
"""simple docstring"""
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={"vocab_file": "spiece.model"}
lowerCAmelCase__ ={
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
lowerCAmelCase__ ={
"AI-Sweden/gpt-sw3-126m": 2_048,
"AI-Sweden/gpt-sw3-350m": 2_048,
"AI-Sweden/gpt-sw3-1.6b": 2_048,
"AI-Sweden/gpt-sw3-6.7b": 2_048,
"AI-Sweden/gpt-sw3-20b": 2_048,
}
class A__( __magic_name__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
__SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
__SCREAMING_SNAKE_CASE = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token
__SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token
else:
__SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token
__SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = do_lower_case
__SCREAMING_SNAKE_CASE = remove_space
__SCREAMING_SNAKE_CASE = keep_accents
__SCREAMING_SNAKE_CASE = vocab_file
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# Used for whitespace normalization in input texts
# fmt : off
__SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__SCREAMING_SNAKE_CASE = re.compile(
f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" )
def __getstate__( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE )
# Normalize whitespaces
__SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
__SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE )
return text
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : str ) -> str:
"""simple docstring"""
return out_string
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string
def _a ( self : Union[str, Any] ) -> Dict[str, int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__SCREAMING_SNAKE_CASE = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
else:
__SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text]
__SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
if return_tensors is True or return_tensors == "pt":
__SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE )
return token_ids
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str:
"""simple docstring"""
return self.sp_model.decode(__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__SCREAMING_SNAKE_CASE = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=__SCREAMING_SNAKE_CASE )
| 690 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ ={
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 708 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ ={"UserAgent": UserAgent().random}
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = script.contents[0]
__SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class A__:
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/"""
__SCREAMING_SNAKE_CASE = self.get_json()
def _a ( self : List[Any] ) -> dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text
__SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return f"""{self.__class__.__name__}('{self.username}')"""
def __str__( self : Optional[int] ) -> str:
"""simple docstring"""
return f"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def _a ( self : Tuple ) -> str:
"""simple docstring"""
return self.user_data["username"]
@property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return self.user_data["full_name"]
@property
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.user_data["biography"]
@property
def _a ( self : List[str] ) -> str:
"""simple docstring"""
return self.user_data["business_email"]
@property
def _a ( self : Any ) -> str:
"""simple docstring"""
return self.user_data["external_url"]
@property
def _a ( self : Any ) -> int:
"""simple docstring"""
return self.user_data["edge_followed_by"]["count"]
@property
def _a ( self : Dict ) -> int:
"""simple docstring"""
return self.user_data["edge_follow"]["count"]
@property
def _a ( self : str ) -> int:
"""simple docstring"""
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.user_data["profile_pic_url_hd"]
@property
def _a ( self : Tuple ) -> bool:
"""simple docstring"""
return self.user_data["is_verified"]
@property
def _a ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.user_data["is_private"]
def _a ( UpperCAmelCase__ = "github" ) -> None:
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
__SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , UpperCAmelCase__ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ =InstagramUser("github")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 690 | 0 |
"""simple docstring"""
from datetime import datetime
import requests
def _a ( UpperCAmelCase__ ) -> bytes:
__SCREAMING_SNAKE_CASE = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
__SCREAMING_SNAKE_CASE = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(_A ).content
if __name__ == "__main__":
lowerCAmelCase__ =input("Enter Video/IGTV url: ").strip()
lowerCAmelCase__ =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F'''Done. Video saved to disk as {file_name}.''')
| 709 |
"""simple docstring"""
from sklearn.metrics import recall_score
import datasets
lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n"
lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n"
lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__( datasets.Metric ):
def _a ( self : Any ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = recall_score(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , )
return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
| 690 | 0 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCAmelCase__ =2
class A__:
def __init__( self : int , *, # begin keyword-only arguments
__SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , __SCREAMING_SNAKE_CASE : Tuple="<pad>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : int=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bos, unk, pad, eos
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = self.add_symbol(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = self.add_symbol(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = self.add_symbol(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = self.add_symbol(UpperCamelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = len(self.symbols )
def __eq__( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return self.indices == other.indices
def __getitem__( self : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
"""simple docstring"""
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return len(self.symbols )
def __contains__( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
return sym in self.indices
@classmethod
def _a ( cls : str , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = cls()
d.add_from_file(UpperCamelCase__ )
return d
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Any=False ) -> Union[str, Any]:
"""simple docstring"""
if word in self.indices and not overwrite:
__SCREAMING_SNAKE_CASE = self.indices[word]
__SCREAMING_SNAKE_CASE = self.count[idx] + n
return idx
else:
__SCREAMING_SNAKE_CASE = len(self.symbols )
__SCREAMING_SNAKE_CASE = idx
self.symbols.append(UpperCamelCase__ )
self.count.append(UpperCamelCase__ )
return idx
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> List[str]:
"""simple docstring"""
return 0
def _a ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
"""simple docstring"""
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
try:
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(UpperCamelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(UpperCamelCase__ ) )
return
__SCREAMING_SNAKE_CASE = f.readlines()
__SCREAMING_SNAKE_CASE = self._load_meta(UpperCamelCase__ )
for line in lines[indices_start_line:]:
try:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = line.rstrip().rsplit(''' ''' , 1 )
if field == "#fairseq:overwrite":
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = line.rsplit(''' ''' , 1 )
else:
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = int(UpperCamelCase__ )
__SCREAMING_SNAKE_CASE = line
if word in self and not overwrite:
raise RuntimeError(
'''Duplicate word found when loading Dictionary: \'{}\'. '''
'''Duplicate words can overwrite earlier ones by adding the '''
'''#fairseq:overwrite flag at the end of the corresponding row '''
'''in the dictionary file. If using the Camembert model, please '''
'''download an updated copy of the model file.'''.format(UpperCamelCase__ ) )
self.add_symbol(UpperCamelCase__ , n=UpperCamelCase__ , overwrite=UpperCamelCase__ )
except ValueError:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' )
def _a ( UpperCAmelCase__ ) -> List[str]:
__SCREAMING_SNAKE_CASE = dict((re.sub(r'''@@$''' , '''''' , A_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , A_ ), v) for k, v in d.items() )
__SCREAMING_SNAKE_CASE = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
__SCREAMING_SNAKE_CASE = d[k] # restore
return da
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if not os.path.exists(A_ ):
raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" )
os.makedirs(A_ , exist_ok=A_ )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
__SCREAMING_SNAKE_CASE = os.path.join(A_ , '''checkpoint.pt''' )
if not os.path.isfile(A_ ):
raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" )
__SCREAMING_SNAKE_CASE = torch.load(A_ , map_location='''cpu''' )
__SCREAMING_SNAKE_CASE = chkpt['''cfg''']['''model''']
# dicts
__SCREAMING_SNAKE_CASE = os.path.join(A_ , '''dict.txt''' )
if not os.path.isfile(A_ ):
raise ValueError(f"""path to the file {dict_file} does not exist!""" )
__SCREAMING_SNAKE_CASE = Dictionary.load(A_ )
__SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices )
__SCREAMING_SNAKE_CASE = len(A_ )
__SCREAMING_SNAKE_CASE = os.path.join(A_ , VOCAB_FILES_NAMES['''vocab_file'''] )
print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" )
with open(A_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) )
# merges_file (bpecodes)
__SCREAMING_SNAKE_CASE = os.path.join(A_ , '''bpecodes''' )
if not os.path.isfile(A_ ):
raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" )
__SCREAMING_SNAKE_CASE = os.path.join(A_ , VOCAB_FILES_NAMES['''merges_file'''] )
shutil.copyfile(A_ , A_ )
# model config
__SCREAMING_SNAKE_CASE = os.path.join(A_ , '''config.json''' )
__SCREAMING_SNAKE_CASE = {
'''activation_dropout''': args['''activation_dropout'''],
'''architectures''': ['''BioGptForCausalLM'''],
'''attention_probs_dropout_prob''': args['''attention_dropout'''],
'''bos_token_id''': 0,
'''eos_token_id''': 2,
'''hidden_act''': args['''activation_fn'''],
'''hidden_dropout_prob''': args['''dropout'''],
'''hidden_size''': args['''decoder_embed_dim'''],
'''initializer_range''': 0.02,
'''intermediate_size''': args['''decoder_ffn_embed_dim'''],
'''layer_norm_eps''': 1E-12,
'''layerdrop''': args['''decoder_layerdrop'''],
'''max_position_embeddings''': args['''max_target_positions'''],
'''model_type''': '''biogpt''',
'''num_attention_heads''': args['''decoder_attention_heads'''],
'''num_hidden_layers''': args['''decoder_layers'''],
'''pad_token_id''': 1,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_decoder_input_output_embed'''],
'''vocab_size''': src_vocab_size,
}
# good hparam defaults to start with
print(f"""Generating {biogpt_model_config_file}""" )
with open(A_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) )
# tokenizer config
__SCREAMING_SNAKE_CASE = os.path.join(A_ , A_ )
__SCREAMING_SNAKE_CASE = {
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
'''model_max_length''': 10_24,
'''pad_token''': '''<pad>''',
'''special_tokens_map_file''': None,
'''tokenizer_class''': '''BioGptTokenizer''',
'''unk_token''': '''<unk>''',
}
print(f"""Generating {biogpt_tokenizer_config_file}""" )
with open(A_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(A_ , ensure_ascii=A_ , indent=A_ ) )
# model
__SCREAMING_SNAKE_CASE = chkpt['''model''']
# remove unneeded keys
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
]
for k in ignore_keys:
model_state_dict.pop(A_ , A_ )
__SCREAMING_SNAKE_CASE = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('''output_projection.weight''' ):
__SCREAMING_SNAKE_CASE = model_state_dict.pop(A_ )
else:
__SCREAMING_SNAKE_CASE = model_state_dict.pop(A_ )
__SCREAMING_SNAKE_CASE = BioGptConfig.from_pretrained(A_ )
__SCREAMING_SNAKE_CASE = BioGptForCausalLM(A_ )
# check that it loads ok
model_new.load_state_dict(A_ )
# save
__SCREAMING_SNAKE_CASE = os.path.join(A_ , A_ )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(A_ , A_ )
print('''Conversion is done!''' )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--biogpt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 710 |
"""simple docstring"""
def _a ( UpperCAmelCase__ = 10**9 ) -> int:
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__( snake_case__ , unittest.TestCase ):
lowerCAmelCase = ProphetNetTokenizer
lowerCAmelCase = False
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running'
__SCREAMING_SNAKE_CASE = 'unwanted, running'
return input_text, output_text
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] )
def _a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def _a ( self : List[str] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def _a ( self : Dict ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _a ( self : Tuple ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__SCREAMING_SNAKE_CASE = {}
for i, token in enumerate(_A ):
__SCREAMING_SNAKE_CASE = i
__SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
__SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__SCREAMING_SNAKE_CASE = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__SCREAMING_SNAKE_CASE = tokenizer(_A , padding=_A , return_tensors='''pt''' )
self.assertIsInstance(_A , _A )
__SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_A , _A )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def _a ( self : str ) -> str:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
__SCREAMING_SNAKE_CASE = tokenizer.encode('''sequence builders''' , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_A )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_A , _A )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 711 |
"""simple docstring"""
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase__ =pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase__ =dataset.iloc[:, 1:2].values
lowerCAmelCase__ =dataset.iloc[:, 2].values
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase__ =PolynomialFeatures(degree=4)
lowerCAmelCase__ =poly_reg.fit_transform(X)
lowerCAmelCase__ =LinearRegression()
pol_reg.fit(X_poly, y)
def _a ( ) -> List[Any]:
plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' )
plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 690 | 0 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={"tokenizer_file": "tokenizer.json"}
lowerCAmelCase__ ={
"tokenizer_file": {
"bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json",
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json",
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json",
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json",
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json",
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json",
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json",
},
}
class A__( __magic_name__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
lowerCAmelCase = None
def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
super().__init__(
__a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , )
__SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __a ) != add_prefix_space:
__SCREAMING_SNAKE_CASE = getattr(__a , pre_tok_state.pop('''type''' ) )
__SCREAMING_SNAKE_CASE = add_prefix_space
__SCREAMING_SNAKE_CASE = pre_tok_class(**__a )
__SCREAMING_SNAKE_CASE = add_prefix_space
def _a ( self : Any , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> BatchEncoding:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __a )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*__a , **__a )
def _a ( self : int , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Tuple ) -> BatchEncoding:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , __a )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"""
''' pretokenized inputs.''' )
return super()._encode_plus(*__a , **__a )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] = None ) -> Tuple[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__a , name=__a )
return tuple(__a )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] )
if len(__a ) > self.model_max_length:
__SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
return input_ids
| 712 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__:
lowerCAmelCase = MBartConfig
lowerCAmelCase = {}
lowerCAmelCase = '''gelu'''
def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = seq_length
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = pad_token_id
__SCREAMING_SNAKE_CASE = bos_token_id
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 )
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
__SCREAMING_SNAKE_CASE = inputs_dict['''input_ids''']
__SCREAMING_SNAKE_CASE = input_ids[:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :]
__SCREAMING_SNAKE_CASE = inputs_dict['''head_mask''']
__SCREAMING_SNAKE_CASE = 1
# first forward pass
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple()
__SCREAMING_SNAKE_CASE = past_key_values[1]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]:
if attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__SCREAMING_SNAKE_CASE = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFMBartModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__( unittest.TestCase ):
lowerCAmelCase = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
lowerCAmelCase = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
lowerCAmelCase = '''facebook/mbart-large-en-ro'''
@cached_property
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE )
self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE )
def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
__SCREAMING_SNAKE_CASE = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
return generated_words
@slow
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 690 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__( unittest.TestCase ):
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=18 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : List[Any]=4_00 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=True , ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 18, """width""": 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__( lowercase_ , unittest.TestCase ):
lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ImageGPTImageProcessingTester(self )
@property
def _a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self : List[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
__SCREAMING_SNAKE_CASE = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCamelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCamelCase_ )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(lowerCamelCase_ )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_json_file(lowerCamelCase_ ).to_dict()
__SCREAMING_SNAKE_CASE = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCamelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCamelCase_ )
def _a ( self : List[str] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCamelCase_ )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_pretrained(lowerCamelCase_ ).to_dict()
__SCREAMING_SNAKE_CASE = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCamelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCamelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def _a ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__SCREAMING_SNAKE_CASE = Image.open(dataset[4]['''file'''] )
__SCREAMING_SNAKE_CASE = Image.open(dataset[5]['''file'''] )
__SCREAMING_SNAKE_CASE = [imagea, imagea]
return images
@require_vision
@require_torch
class A__( unittest.TestCase ):
@slow
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
__SCREAMING_SNAKE_CASE = prepare_images()
# test non-batched
__SCREAMING_SNAKE_CASE = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 10_24) )
__SCREAMING_SNAKE_CASE = [3_06, 1_91, 1_91]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase_ )
# test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 10_24) )
__SCREAMING_SNAKE_CASE = [3_03, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase_ )
| 713 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ={
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class A__( __magic_name__ ):
lowerCAmelCase = '''van'''
def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_sizes
__SCREAMING_SNAKE_CASE = strides
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = mlp_ratios
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = layer_scale_init_value
__SCREAMING_SNAKE_CASE = drop_path_rate
__SCREAMING_SNAKE_CASE = dropout_rate
| 690 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class A__( unittest.TestCase ):
lowerCAmelCase = StableDiffusionLDMaDPipeline
lowerCAmelCase = TEXT_TO_IMAGE_PARAMS
lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
def _a ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__SCREAMING_SNAKE_CASE = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> Optional[int]:
"""simple docstring"""
if str(UpperCamelCase_ ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase_ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe.to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
__SCREAMING_SNAKE_CASE = np.array(
[0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] )
__SCREAMING_SNAKE_CASE = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe.to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = 3 * [inputs['''prompt''']]
# forward
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1]
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = 3 * [inputs.pop('''prompt''' )]
__SCREAMING_SNAKE_CASE = ldmad_pipe.tokenizer(
UpperCamelCase_ , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='''pt''' , )
__SCREAMING_SNAKE_CASE = text_inputs['''input_ids'''].to(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe.text_encoder(UpperCamelCase_ )[0]
__SCREAMING_SNAKE_CASE = prompt_embeds
# forward
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe.to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = '''french fries'''
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
__SCREAMING_SNAKE_CASE = np.array(
[0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] )
__SCREAMING_SNAKE_CASE = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]="cpu" , __SCREAMING_SNAKE_CASE : int=torch.floataa , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 64, 64) )
__SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : Optional[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' )
__SCREAMING_SNAKE_CASE = ldmad_pipe.to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1].flatten()
__SCREAMING_SNAKE_CASE = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12)
__SCREAMING_SNAKE_CASE = np.array(
[0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] )
__SCREAMING_SNAKE_CASE = np.array(
[0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3
@nightly
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int="cpu" , __SCREAMING_SNAKE_CASE : List[Any]=torch.floataa , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 64, 64) )
__SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 50,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : int ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = 0.49_55_86
__SCREAMING_SNAKE_CASE = 0.33_79_55_15
__SCREAMING_SNAKE_CASE = 1_12.4_85_18
__SCREAMING_SNAKE_CASE = 98.48_97_46
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(UpperCamelCase_ )
ldmad_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = self.get_inputs(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = ldmad_pipe(**UpperCamelCase_ )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.rgb, output.depth
__SCREAMING_SNAKE_CASE = 0.4_19_41_27
__SCREAMING_SNAKE_CASE = 0.35_37_55_86
__SCREAMING_SNAKE_CASE = 0.5_63_85_02
__SCREAMING_SNAKE_CASE = 0.34_68_61_03
assert rgb.shape == (1, 5_12, 5_12, 3)
assert depth.shape == (1, 5_12, 5_12, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
| 714 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> Dict:
if not nums: # Makes sure that the list is not empty
raise ValueError('''List is empty''' )
__SCREAMING_SNAKE_CASE = sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ ={
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 690 | 0 |
"""simple docstring"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__( __magic_name__ ):
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Distribution , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Dict=0 ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 1.0 if scale is None else scale
__SCREAMING_SNAKE_CASE = 0.0 if loc is None else loc
super().__init__(lowercase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowercase_ )] )
@property
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.base_dist.mean * self.scale + self.loc
@property
def _a ( self : int ) -> Tuple:
"""simple docstring"""
return self.base_dist.variance * self.scale**2
@property
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
return self.variance.sqrt()
class A__( nn.Module ):
def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Callable[..., Tuple[torch.Tensor]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> None:
"""simple docstring"""
super().__init__(**lowercase_ )
__SCREAMING_SNAKE_CASE = args_dim
__SCREAMING_SNAKE_CASE = nn.ModuleList([nn.Linear(lowercase_ , lowercase_ ) for dim in args_dim.values()] )
__SCREAMING_SNAKE_CASE = domain_map
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Tuple[torch.Tensor]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [proj(lowercase_ ) for proj in self.proj]
return self.domain_map(*lowercase_ )
class A__( nn.Module ):
def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dict ) -> Dict:
"""simple docstring"""
super().__init__()
__SCREAMING_SNAKE_CASE = function
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , *__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]:
"""simple docstring"""
return self.function(lowercase_ , *lowercase_ )
class A__:
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int = 1 ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = dim
__SCREAMING_SNAKE_CASE = {k: dim * self.args_dim[k] for k in self.args_dim}
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> str:
"""simple docstring"""
if self.dim == 1:
return self.distribution_class(*lowercase_ )
else:
return Independent(self.distribution_class(*lowercase_ ) , 1 )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> Distribution:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self._base_distribution(lowercase_ )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(lowercase_ , loc=lowercase_ , scale=lowercase_ , event_dim=self.event_dim )
@property
def _a ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return () if self.dim == 1 else (self.dim,)
@property
def _a ( self : Optional[int] ) -> int:
"""simple docstring"""
return len(self.event_shape )
@property
def _a ( self : Union[str, Any] ) -> float:
"""simple docstring"""
return 0.0
def _a ( self : int , __SCREAMING_SNAKE_CASE : int ) -> nn.Module:
"""simple docstring"""
return ParameterProjection(
in_features=lowercase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _a ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : torch.Tensor ) -> Dict:
"""simple docstring"""
raise NotImplementedError()
@staticmethod
def _a ( __SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return (x + torch.sqrt(torch.square(lowercase_ ) + 4.0 )) / 2.0
class A__( __magic_name__ ):
lowerCAmelCase = {'''df''': 1, '''loc''': 1, '''scale''': 1}
lowerCAmelCase = StudentT
@classmethod
def _a ( cls : str , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps )
__SCREAMING_SNAKE_CASE = 2.0 + cls.squareplus(lowercase_ )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__( __magic_name__ ):
lowerCAmelCase = {'''loc''': 1, '''scale''': 1}
lowerCAmelCase = Normal
@classmethod
def _a ( cls : Union[str, Any] , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__( __magic_name__ ):
lowerCAmelCase = {'''total_count''': 1, '''logits''': 1}
lowerCAmelCase = NegativeBinomial
@classmethod
def _a ( cls : Tuple , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = cls.squareplus(lowercase_ )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> Distribution:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = distr_args
if self.dim == 1:
return self.distribution_class(total_count=lowercase_ , logits=lowercase_ )
else:
return Independent(self.distribution_class(total_count=lowercase_ , logits=lowercase_ ) , 1 )
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None ) -> Distribution:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 716 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class A__( unittest.TestCase ):
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = 0
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict()
config_dict.pop('''image_processor_type''' )
__SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
config.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# make sure private variable is not incorrectly saved
__SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' )
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
with self.assertRaisesRegex(
__SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def _a ( self : int ) -> Any:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json'''
__SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) )
__SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
class A__( __magic_name__ ):
lowerCAmelCase = True
try:
AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE )
AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
__SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 690 | 0 |
"""simple docstring"""
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 717 |
"""simple docstring"""
import math
lowerCAmelCase__ =10
lowerCAmelCase__ =7
lowerCAmelCase__ =BALLS_PER_COLOUR * NUM_COLOURS
def _a ( UpperCAmelCase__ = 20 ) -> str:
__SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 690 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = CycleDiffusionPipeline
lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'negative_prompt',
'height',
'width',
'negative_prompt_embeds',
}
lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'}
lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} )
lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _a ( self : Dict ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__SCREAMING_SNAKE_CASE = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = image / 2 + 0.5
if str(UpperCAmelCase__ ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
for name, module in components.items():
if hasattr(UpperCAmelCase__ , '''half''' ):
__SCREAMING_SNAKE_CASE = module.half()
__SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__SCREAMING_SNAKE_CASE = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def _a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return super().test_inference_batch_single_identical()
@skip_mps
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def _a ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return super().test_save_load_optional_components()
@skip_mps
def _a ( self : int ) -> Any:
"""simple docstring"""
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class A__( unittest.TestCase ):
def _a ( self : int ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : str ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__SCREAMING_SNAKE_CASE = init_image.resize((5_12, 5_12) )
__SCREAMING_SNAKE_CASE = '''CompVis/stable-diffusion-v1-4'''
__SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' )
__SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(
UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__SCREAMING_SNAKE_CASE = '''A black colored car'''
__SCREAMING_SNAKE_CASE = '''A blue colored car'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(
prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def _a ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__SCREAMING_SNAKE_CASE = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__SCREAMING_SNAKE_CASE = init_image.resize((5_12, 5_12) )
__SCREAMING_SNAKE_CASE = '''CompVis/stable-diffusion-v1-4'''
__SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' )
__SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__SCREAMING_SNAKE_CASE = '''A black colored car'''
__SCREAMING_SNAKE_CASE = '''A blue colored car'''
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = pipe(
prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type='''np''' , )
__SCREAMING_SNAKE_CASE = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 718 |
"""simple docstring"""
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class A__( __magic_name__ ):
def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_image,
}
return model_outputs
def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' )
__SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 690 | 0 |
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase__ =logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE__ )
class A__( SCREAMING_SNAKE_CASE__ ):
def __init__( self : List[str] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int:
"""simple docstring"""
super().__init__(**snake_case__ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(snake_case__ )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> List[Any]:
"""simple docstring"""
if "text_queries" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs.pop('''text_queries''' )
if isinstance(snake_case__ , (str, Image.Image) ):
__SCREAMING_SNAKE_CASE = {"image": image, "candidate_labels": candidate_labels}
else:
__SCREAMING_SNAKE_CASE = image
__SCREAMING_SNAKE_CASE = super().__call__(snake_case__ , **snake_case__ )
return results
def _a ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
if "threshold" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["threshold"]
if "top_k" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["top_k"]
return {}, {}, postprocess_params
def _a ( self : str , __SCREAMING_SNAKE_CASE : str ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = load_image(inputs['''image'''] )
__SCREAMING_SNAKE_CASE = inputs["candidate_labels"]
if isinstance(snake_case__ , snake_case__ ):
__SCREAMING_SNAKE_CASE = candidate_labels.split(''',''' )
__SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(snake_case__ ):
__SCREAMING_SNAKE_CASE = self.tokenizer(snake_case__ , return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = self.image_processor(snake_case__ , return_tensors=self.framework )
yield {
"is_last": i == len(snake_case__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = model_inputs.pop('''target_size''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_label''' )
__SCREAMING_SNAKE_CASE = model_inputs.pop('''is_last''' )
__SCREAMING_SNAKE_CASE = self.model(**snake_case__ )
__SCREAMING_SNAKE_CASE = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : str=None ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
for model_output in model_outputs:
__SCREAMING_SNAKE_CASE = model_output["candidate_label"]
__SCREAMING_SNAKE_CASE = BaseModelOutput(snake_case__ )
__SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection(
outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
__SCREAMING_SNAKE_CASE = outputs["scores"][index].item()
__SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs['''boxes'''][index][0] )
__SCREAMING_SNAKE_CASE = {"score": score, "label": label, "box": box}
results.append(snake_case__ )
__SCREAMING_SNAKE_CASE = sorted(snake_case__ , key=lambda __SCREAMING_SNAKE_CASE : x["score"] , reverse=snake_case__ )
if top_k:
__SCREAMING_SNAKE_CASE = results[:top_k]
return results
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
__SCREAMING_SNAKE_CASE = box.int().tolist()
__SCREAMING_SNAKE_CASE = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 719 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ =list[list[float | int]]
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Matrix:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase__ , UpperCAmelCase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase__ ):
for row in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase__ )
]
def _a ( UpperCAmelCase__ ) -> Callable[[int], int]:
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(UpperCAmelCase__ )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(UpperCAmelCase__ ):
for col in range(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(UpperCAmelCase__ , UpperCAmelCase__ )
def interpolated_func(UpperCAmelCase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase__ ) )
return interpolated_func
def _a ( UpperCAmelCase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase__ = question_function , UpperCAmelCase__ = 10 ) -> int:
__SCREAMING_SNAKE_CASE = [func(UpperCAmelCase__ ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(UpperCAmelCase__ ) == poly(UpperCAmelCase__ ):
x_val += 1
ret += poly(UpperCAmelCase__ )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 690 | 0 |
"""simple docstring"""
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A__( __lowerCamelCase ):
lowerCAmelCase = (DDPMParallelScheduler,)
def _a ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Tuple ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.00_01,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**SCREAMING_SNAKE_CASE_ )
return config
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ )
def _a ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ )
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ )
def _a ( self : Tuple ) -> Dict:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ )
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def _a ( self : Tuple ) -> int:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ )
def _a ( self : str ) -> Optional[int]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ )
def _a ( self : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5
def _a ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.dummy_model()
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1
__SCREAMING_SNAKE_CASE = samplea.shape[0]
__SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea] , dim=0 )
__SCREAMING_SNAKE_CASE = torch.arange(SCREAMING_SNAKE_CASE_ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
__SCREAMING_SNAKE_CASE = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
__SCREAMING_SNAKE_CASE = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 11_53.18_33 ) < 1E-2
assert abs(result_mean.item() - 0.50_05 ) < 1E-3
def _a ( self : Dict ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.dummy_model()
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ):
# 1. predict noise residual
__SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# 2. predict previous mean of sample x_t-1
__SCREAMING_SNAKE_CASE = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample
__SCREAMING_SNAKE_CASE = pred_prev_sample
__SCREAMING_SNAKE_CASE = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
__SCREAMING_SNAKE_CASE = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2
assert abs(result_mean.item() - 0.33_72 ) < 1E-3
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type='''v_prediction''' )
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = self.dummy_model()
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter
__SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ):
# 1. predict noise residual
__SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# 2. predict previous mean of sample x_t-1
__SCREAMING_SNAKE_CASE = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample
__SCREAMING_SNAKE_CASE = pred_prev_sample
__SCREAMING_SNAKE_CASE = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
__SCREAMING_SNAKE_CASE = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2
assert abs(result_mean.item() - 0.26_31 ) < 1E-3
def _a ( self : Tuple ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_ ):
if i == len(SCREAMING_SNAKE_CASE_ ) - 1:
__SCREAMING_SNAKE_CASE = -1
else:
__SCREAMING_SNAKE_CASE = timesteps[i + 1]
__SCREAMING_SNAKE_CASE = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
def _a ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = [1_00, 87, 50, 1, 0]
__SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ )
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**SCREAMING_SNAKE_CASE_ )
__SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
| 720 |
"""simple docstring"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict:
__SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid"""
raise ValueError(UpperCAmelCase__ )
return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json()
def _a ( UpperCAmelCase__ ) -> dict:
__SCREAMING_SNAKE_CASE = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__SCREAMING_SNAKE_CASE = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__SCREAMING_SNAKE_CASE = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 690 | 0 |
"""simple docstring"""
lowerCAmelCase__ ={
"""Pillow""": """Pillow""",
"""accelerate""": """accelerate>=0.11.0""",
"""compel""": """compel==0.1.8""",
"""black""": """black~=23.1""",
"""datasets""": """datasets""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.13.2""",
"""requests-mock""": """requests-mock==1.10.0""",
"""importlib_metadata""": """importlib_metadata""",
"""invisible-watermark""": """invisible-watermark""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2""",
"""jaxlib""": """jaxlib>=0.1.65""",
"""Jinja2""": """Jinja2""",
"""k-diffusion""": """k-diffusion>=0.0.12""",
"""torchsde""": """torchsde""",
"""note_seq""": """note_seq""",
"""librosa""": """librosa""",
"""numpy""": """numpy""",
"""omegaconf""": """omegaconf""",
"""parameterized""": """parameterized""",
"""protobuf""": """protobuf>=3.20.3,<4""",
"""pytest""": """pytest""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""ruff""": """ruff>=0.0.241""",
"""safetensors""": """safetensors""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""scipy""": """scipy""",
"""onnx""": """onnx""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""tensorboard""": """tensorboard""",
"""torch""": """torch>=1.4""",
"""torchvision""": """torchvision""",
"""transformers""": """transformers>=4.25.1""",
"""urllib3""": """urllib3<=2.0.0""",
}
| 721 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase__ =logging.get_logger(__name__)
class A__( __magic_name__ ):
lowerCAmelCase = ['''audio_values''', '''audio_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : List[Any]=[16, 16] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_28 , __SCREAMING_SNAKE_CASE : int=4_41_00 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : str=20_48 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
__SCREAMING_SNAKE_CASE = spectrogram_length
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE = n_fft
__SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE = sampling_rate
__SCREAMING_SNAKE_CASE = padding_value
__SCREAMING_SNAKE_CASE = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE = log_spec - 20.0
__SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : str , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__SCREAMING_SNAKE_CASE = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
__SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE = audio_features[i]
__SCREAMING_SNAKE_CASE = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 690 | 0 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class A__( unittest.TestCase ):
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : Tuple=30 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : str=10 , __SCREAMING_SNAKE_CASE : Dict=0.02 , ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
return config, pixel_values
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = FlaxViTModel(config=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
__SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size)
__SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
__SCREAMING_SNAKE_CASE
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class A__( lowercase__ , unittest.TestCase ):
lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _a ( self : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = FlaxViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 )
def _a ( self : Dict ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _a ( self : str ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__ )
def _a ( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Dict ):
return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ )
with self.subTest('''JIT Enabled''' ):
__SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__SCREAMING_SNAKE_CASE = model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('''google/vit-base-patch16-224''' )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(UpperCAmelCase__ )
| 700 |
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _a ( UpperCAmelCase__ ) -> dict[str, str]:
__SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
# First fill cipher with key characters
__SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(UpperCAmelCase__ ) , 26 ):
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__SCREAMING_SNAKE_CASE = alphabet[i - offset]
__SCREAMING_SNAKE_CASE = char
return cipher_alphabet
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() )
def _a ( ) -> None:
__SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip()
__SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ )
print(func(UpperCAmelCase__ , UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 690 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowerCAmelCase__ ="hf-internal-testing/tiny-random-bert"
lowerCAmelCase__ =os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert")
lowerCAmelCase__ ="9b8c223d42b2188cb49d29af482996f9d0f3e5a6"
class A__( unittest.TestCase ):
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , _lowerCamelCase )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_lowerCamelCase ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) )
with open(os.path.join(_lowerCamelCase , '''refs''' , '''main''' ) ) as f:
__SCREAMING_SNAKE_CASE = f.read()
self.assertEqual(_lowerCamelCase , os.path.join(_lowerCamelCase , '''snapshots''' , _lowerCamelCase , _lowerCamelCase ) )
self.assertTrue(os.path.isfile(_lowerCamelCase ) )
# File is cached at the same place the second time.
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , _lowerCamelCase )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
# Using a specific revision to test the full commit hash.
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , _lowerCamelCase , revision='''9b8c223''' )
self.assertEqual(_lowerCamelCase , os.path.join(_lowerCamelCase , '''snapshots''' , _lowerCamelCase , _lowerCamelCase ) )
def _a ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
with self.assertRaisesRegex(_lowerCamelCase , '''is not a valid model identifier''' ):
__SCREAMING_SNAKE_CASE = cached_file('''tiny-random-bert''' , _lowerCamelCase )
with self.assertRaisesRegex(_lowerCamelCase , '''is not a valid git identifier''' ):
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , _lowerCamelCase , revision='''aaaa''' )
with self.assertRaisesRegex(_lowerCamelCase , '''does not appear to have a file named''' ):
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , '''conf''' )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
with self.assertRaisesRegex(_lowerCamelCase , '''does not appear to have a file named''' ):
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , '''conf''' )
with open(os.path.join(_lowerCamelCase , '''refs''' , '''main''' ) ) as f:
__SCREAMING_SNAKE_CASE = f.read()
self.assertTrue(os.path.isfile(os.path.join(_lowerCamelCase , '''.no_exist''' , _lowerCamelCase , '''conf''' ) ) )
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=_lowerCamelCase )
self.assertIsNone(_lowerCamelCase )
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , '''conf''' , local_files_only=_lowerCamelCase , _raise_exceptions_for_missing_entries=_lowerCamelCase )
self.assertIsNone(_lowerCamelCase )
__SCREAMING_SNAKE_CASE = mock.Mock()
__SCREAMING_SNAKE_CASE = 5_00
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = HTTPError
__SCREAMING_SNAKE_CASE = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head:
__SCREAMING_SNAKE_CASE = cached_file(_lowerCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=_lowerCamelCase )
self.assertIsNone(_lowerCamelCase )
# This check we did call the fake head request
mock_head.assert_called()
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _lowerCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _lowerCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _lowerCamelCase ) )
def _a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_lowerCamelCase , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , _lowerCamelCase )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_lowerCamelCase , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , _lowerCamelCase , revision='''ahaha''' )
__SCREAMING_SNAKE_CASE = get_file_from_repo('''bert-base-cased''' , _lowerCamelCase )
# The name is the cached name which is not very easy to test, so instead we load the content.
__SCREAMING_SNAKE_CASE = json.loads(open(_lowerCamelCase , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 7_68 )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__SCREAMING_SNAKE_CASE = Path(_lowerCamelCase ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(_lowerCamelCase , '''a.txt''' ) , str(_lowerCamelCase ) )
self.assertIsNone(get_file_from_repo(_lowerCamelCase , '''b.txt''' ) )
| 701 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__:
def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _a ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ):
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ):
if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} )
def _a ( self : str ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : List[Any] ) -> str:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 690 | 0 |
"""simple docstring"""
import math
import flax.linen as nn
import jax.numpy as jnp
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 1.0E4 , UpperCAmelCase__ = False , UpperCAmelCase__ = 1.0 , ) -> List[str]:
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even"""
__SCREAMING_SNAKE_CASE = float(embedding_dim // 2 )
__SCREAMING_SNAKE_CASE = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
__SCREAMING_SNAKE_CASE = min_timescale * jnp.exp(jnp.arange(lowerCamelCase_ , dtype=jnp.floataa ) * -log_timescale_increment )
__SCREAMING_SNAKE_CASE = jnp.expand_dims(lowerCamelCase_ , 1 ) * jnp.expand_dims(lowerCamelCase_ , 0 )
# scale embeddings
__SCREAMING_SNAKE_CASE = scale * emb
if flip_sin_to_cos:
__SCREAMING_SNAKE_CASE = jnp.concatenate([jnp.cos(lowerCamelCase_ ), jnp.sin(lowerCamelCase_ )] , axis=1 )
else:
__SCREAMING_SNAKE_CASE = jnp.concatenate([jnp.sin(lowerCamelCase_ ), jnp.cos(lowerCamelCase_ )] , axis=1 )
__SCREAMING_SNAKE_CASE = jnp.reshape(lowerCamelCase_ , [jnp.shape(lowerCamelCase_ )[0], embedding_dim] )
return signal
class A__( nn.Module ):
lowerCAmelCase = 32
lowerCAmelCase = jnp.floataa
@nn.compact
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(__lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.silu(__lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(__lowerCamelCase )
return temb
class A__( nn.Module ):
lowerCAmelCase = 32
lowerCAmelCase = False
lowerCAmelCase = 1
@nn.compact
def __call__( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> int:
"""simple docstring"""
return get_sinusoidal_embeddings(
__lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 702 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = XLMRobertaTokenizer
lowerCAmelCase = XLMRobertaTokenizerFast
lowerCAmelCase = True
lowerCAmelCase = True
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''<pad>'''
__SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 )
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _a ( self : int ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _a ( self : int ) -> Tuple:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@cached_property
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name )
__SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE )
pickle.loads(__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.'''
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''Hello World!'''
__SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
__SCREAMING_SNAKE_CASE = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 690 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ ={
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ =[
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
lowerCAmelCase__ =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 703 |
"""simple docstring"""
from __future__ import annotations
lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]:
__SCREAMING_SNAKE_CASE = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 690 | 0 |
"""simple docstring"""
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ ="▁"
lowerCAmelCase__ ={"vocab_file": "prophetnet.tokenizer"}
lowerCAmelCase__ ={
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
lowerCAmelCase__ ={
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
lowerCAmelCase__ ={
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def _a ( UpperCAmelCase__ ) -> str:
__SCREAMING_SNAKE_CASE = collections.OrderedDict()
with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as reader:
__SCREAMING_SNAKE_CASE = reader.readlines()
for index, token in enumerate(__SCREAMING_SNAKE_CASE ):
__SCREAMING_SNAKE_CASE = token.rstrip('''\n''' )
__SCREAMING_SNAKE_CASE = index
return vocab
class A__( snake_case__ ):
lowerCAmelCase = VOCAB_FILES_NAMES
lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : str="[SEP]" , __SCREAMING_SNAKE_CASE : Any="[SEP]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[UNK]" , __SCREAMING_SNAKE_CASE : Tuple="[PAD]" , __SCREAMING_SNAKE_CASE : int="[CLS]" , __SCREAMING_SNAKE_CASE : int="[MASK]" , __SCREAMING_SNAKE_CASE : List[str] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase_ ) )
__SCREAMING_SNAKE_CASE = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
__SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10 ):
__SCREAMING_SNAKE_CASE = f"""[unused{i}]"""
__SCREAMING_SNAKE_CASE = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
__SCREAMING_SNAKE_CASE = 12
__SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(lowercase_ )
def __getstate__( self : str ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : str = False ) -> List[str]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is None:
return ([0] * len(lowercase_ )) + [1]
return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1]
def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int = None ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset
def _a ( self : List[str] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Dict:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(lowercase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = "".join(lowercase_ ).replace(lowercase_ , ''' ''' ).strip()
return out_string
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] = None ) -> List[str]:
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__SCREAMING_SNAKE_CASE = os.path.join(
lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple = None ) -> List[str]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
__SCREAMING_SNAKE_CASE = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 704 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ =logging.get_logger(__name__)
def _a ( UpperCAmelCase__ ) -> Tuple:
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE = q
__SCREAMING_SNAKE_CASE = k
__SCREAMING_SNAKE_CASE = v
del sd[key]
return sd
@torch.no_grad()
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ )
if config is not None:
__SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ )
else:
__SCREAMING_SNAKE_CASE = OPTConfig()
__SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval()
model.load_state_dict(UpperCAmelCase__ )
# Check results
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
lowerCAmelCase__ =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 690 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.