code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __a = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( a_ ) ->List[Any]: warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , a_ , ) if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): A =[image] if isinstance(image[0] , PIL.Image.Image ): A , A =image[0].size A , A =(x - x % 8 for x in (w, h)) # resize to integer multiple of 8 A =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] A =np.concatenate(a_ , axis=0 ) A =np.array(a_ ).astype(np.floataa ) / 255.0 A =image.transpose(0 , 3 , 1 , 2 ) A =2.0 * image - 1.0 A =torch.from_numpy(a_ ) elif isinstance(image[0] , torch.Tensor ): A =torch.cat(a_ , dim=0 ) return image def UpperCamelCase_ ( a_ ) ->Dict: if isinstance(a_ , torch.Tensor ): return mask elif isinstance(a_ , PIL.Image.Image ): A =[mask] if isinstance(mask[0] , PIL.Image.Image ): A , A =mask[0].size A , A =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A =[np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] A =np.concatenate(a_ , axis=0 ) A =mask.astype(np.floataa ) / 255.0 A =0 A =1 A =torch.from_numpy(a_ ) elif isinstance(mask[0] , torch.Tensor ): A =torch.cat(a_ , dim=0 ) return mask class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = 4_2 _A = 4_2 def __init__( self : str , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : List[str] , snake_case__ : Union[torch.Tensor, PIL.Image.Image] , snake_case__ : Union[torch.Tensor, PIL.Image.Image] , snake_case__ : int = 2_50 , snake_case__ : float = 0.0 , snake_case__ : int = 10 , snake_case__ : int = 10 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): """simple docstring""" A =image A =_preprocess_image(snake_case__ ) A =original_image.to(device=self.device , dtype=self.unet.dtype ) A =_preprocess_mask(snake_case__ ) A =mask_image.to(device=self.device , dtype=self.unet.dtype ) A =original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A =original_image.shape A =randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case__ , snake_case__ , snake_case__ , self.device ) A =eta A =self.scheduler.timesteps[0] + 1 A =generator[0] if isinstance(snake_case__ , snake_case__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual A =self.unet(snake_case__ , snake_case__ ).sample # compute previous image: x_t -> x_t-1 A =self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t A =self.scheduler.undo_step(snake_case__ , snake_case__ , snake_case__ ) A =t A =(image / 2 + 0.5).clamp(0 , 1 ) A =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
701
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __a = None __a = logging.get_logger(__name__) __a = """▁""" __a = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __a = { """google/pegasus-xsum""": 5_1_2, } class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = PegasusTokenizer _A = ["input_ids", "attention_mask"] def __init__( self : List[str] , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Any="<pad>" , snake_case__ : str="</s>" , snake_case__ : Optional[Any]="<unk>" , snake_case__ : Union[str, Any]="<mask_2>" , snake_case__ : List[Any]="<mask_1>" , snake_case__ : Tuple=None , snake_case__ : List[str]=1_03 , **snake_case__ : str , ): """simple docstring""" A =offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( f'''additional_special_tokens should be of type {type(snake_case__ )}, but is''' f''' {type(snake_case__ )}''' ) A =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) A =additional_special_tokens_extended else: A =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( snake_case__ , tokenizer_file=snake_case__ , pad_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) A =vocab_file A =False if not self.vocab_file else True def _a ( self : Optional[int] , snake_case__ : Union[str, Any] ): """simple docstring""" A =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _a ( self : Tuple , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _a ( self : int , snake_case__ : Optional[int] , snake_case__ : Dict=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
702
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
689
0
def UpperCamelCase_ ( a_ = 100 ) ->int: A =set() A =0 A =n + 1 # maximum limit for a in range(2 , a_ ): for b in range(2 , a_ ): A =a**b # calculates the current power collect_powers.add(a_ ) # adds the result to the set return len(a_ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters __a = False __a = False def UpperCamelCase_ ( a_ ) ->Optional[Any]: return TrainCommand(a_ ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" @staticmethod def _a ( snake_case__ : ArgumentParser ): """simple docstring""" A =parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=snake_case__ , required=snake_case__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=snake_case__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=snake_case__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=snake_case__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=snake_case__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=snake_case__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=snake_case__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=snake_case__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=snake_case__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=snake_case__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=snake_case__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=snake_case__ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=snake_case__ , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=snake_case__ ) def __init__( self : List[str] , snake_case__ : Namespace ): """simple docstring""" A =logging.get_logger("transformers-cli/training" ) A ="tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=snake_case__ ) A =args.output A =args.column_label A =args.column_text A =args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": A =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) A =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A =None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) A =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A =args.validation_split A =args.train_batch_size A =args.valid_batch_size A =args.learning_rate A =args.adam_epsilon def _a ( self : Union[str, Any] ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def _a ( self : List[Any] ): """simple docstring""" raise NotImplementedError def _a ( self : Optional[Any] ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
704
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __a = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __a = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __a = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def _a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): """simple docstring""" A =len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A =[[refs[i] for refs in references] for i in range(snake_case__ )] A =CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __a = _symbol_database.Default() __a = _descriptor_pool.Default().AddSerializedFile( B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) __a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __a = None __a = B"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __a = 4_5 __a = 1_5_8_1 __a = 1_5_1_7 __a = 1_5_7_0 __a = 1_5_8_4 __a = 1_7_9_3 __a = 1_7_9_5 __a = 1_9_1_6 __a = 1_8_6_4 __a = 1_9_0_5 __a = 1_9_1_9 __a = 2_4_2_9 __a = 2_2_0_8 __a = 2_4_1_8 __a = 2_3_2_3 __a = 2_4_0_7 # @@protoc_insertion_point(module_scope)
706
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase__: """simple docstring""" def __init__( self : List[str] , snake_case__ : Optional[int] , ): """simple docstring""" A =parent A =13 A =7 A =True A =True A =True A =True A =True A =False A =False A =False A =2 A =99 A =0 A =32 A =2 A =4 A =0.1 A =0.1 A =5_12 A =16 A =2 A =0.02 A =3 A =4 A ="last" A =True A =None A =0 def _a ( self : Optional[Any] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A =None if self.use_input_lengths: A =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A =None if self.use_token_type_ids: A =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A =None A =None A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A =ids_tensor([self.batch_size] , self.num_choices ) A =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : Any , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , ): """simple docstring""" A =TFFlaubertModel(config=snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) A =[input_ids, input_mask] A =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertWithLMHeadModel(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , ): """simple docstring""" A =TFFlaubertForQuestionAnsweringSimple(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertForSequenceClassification(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , ): """simple docstring""" A =self.num_labels A =TFFlaubertForTokenClassification(config=snake_case__ ) A ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =self.num_choices A =TFFlaubertForMultipleChoice(config=snake_case__ ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) =config_and_inputs A ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Optional[int] ): """simple docstring""" A =TFFlaubertModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A =TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A =tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A =model(snake_case__ )[0] A =tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. A =tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
689
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __a = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(PATH_TO_TRANSFORMERS) __a = transformers.models.auto.configuration_auto.CONFIG_MAPPING __a = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ ) ->List[Any]: A =False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): A =True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , a_ , ) is not None ): A =True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A =True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A =[ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] A =["encoder_no_repeat_ngram_size"] # Special cases to be allowed A =True if not attribute_used: A =False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A =True elif attribute in ["tie_word_embeddings"] and default_value is False: A =True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A =True elif attribute.endswith("_token_id" ): A =True # configuration class specific cases if not case_allowed: A =SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A =allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase_ ( a_ ) ->Union[str, Any]: A =dict(inspect.signature(config_class.__init__ ).parameters ) A =[x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] A =[signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A ={} if len(config_class.attribute_map ) > 0: A ={v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A =inspect.getsourcefile(a_ ) A =os.path.dirname(a_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A =[os.path.join(a_ , a_ ) for fn in os.listdir(a_ ) if fn.startswith("modeling_" )] # Get the source code strings A =[] for path in modeling_paths: if os.path.isfile(a_ ): with open(a_ ) as fp: modeling_sources.append(fp.read() ) A =[] for config_param, default_value in zip(a_ , a_ ): # `attributes` here is all the variant names for `config_param` A =[config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(a_ , a_ , a_ , a_ ): unused_attributes.append(attributes[0] ) return sorted(a_ ) def UpperCamelCase_ ( ) ->List[Any]: A ={} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A =[ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda a_ : inspect.isclass(a_ ) and issubclass(a_ , a_ ) and inspect.getmodule(a_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A =check_config_attributes_being_used(a_ ) if len(a_ ) > 0: A =unused_attributes if len(a_ ) > 0: A ="The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(a_ ) if __name__ == "__main__": check_config_attributes()
707
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
0
import torch from transformers import AutoModel class UpperCamelCase__( torch.nn.Module ): """simple docstring""" def __init__( self : List[Any] , snake_case__ : Dict="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(snake_case__ , self ).__init__() A =AutoModel.from_pretrained(snake_case__ , return_dict=snake_case__ ) A =torch.nn.CosineSimilarity(3 , 1E-08 ) A =torch.nn.Softmax(dim=1 ) def _a ( self : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.bert(**snake_case__ ).last_hidden_state def _a ( self : Optional[Any] , snake_case__ : Dict ): """simple docstring""" return token_embeddings.sum(2 , keepdim=snake_case__ ) def _a ( self : int , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : str=1 ): """simple docstring""" return self.softmax(T * self.cos(snake_case__ , snake_case__ ) ) def _a ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[Any] ): """simple docstring""" A =W_supports["sizes"].tolist() A =W_supports["start_token_id"].item() A =W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] A =self.BERT(**snake_case__ ) A =self.BERT(**snake_case__ ) A =None A =None A =W_supports["input_ids"] == start_token_id A =W_supports["input_ids"] == end_token_id for i, size in enumerate(snake_case__ ): if i == 0: A =0 else: A =support_sizes[i - 1] A =S[s : s + size][start_token_masks[s : s + size]] A =S[s : s + size][end_token_masks[s : s + size]] A =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) A =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: A =torch.vstack((p_starts, p_start) ) A =torch.vstack((p_ends, p_end) ) else: A =p_start A =p_end return p_starts, p_ends
708
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def _a ( self : int ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A =DDPMScheduler() A =AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 ) A =output.audios[0] A =output.images[0] A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) A =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A =DDIMScheduler() A =self.dummy_vqvae_and_unet A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) A =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A =self.dummy_unet_condition A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =torch.rand((1, 1, 10) ) A =pipe(generator=snake_case__ , encoding=snake_case__ ) A =output.images[0] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A =torch_device A =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ ) A =output.audios[0] A =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
689
0
def UpperCamelCase_ ( a_ ) ->list: A =int(a_ ) if n_element < 1: A =ValueError("a should be a positive number" ) raise my_error A =[1] A , A , A =(0, 0, 0) A =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __a = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __a = hamming(int(n)) print("""-----------------------------------------------------""") print(F'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
709
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __a = logging.get_logger(__name__) @dataclass class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Union[str, Any] , **snake_case__ : Tuple ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A =deprecated_arg[3:] A =not kwargs.pop(snake_case__ ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) A =kwargs.pop("tpu_name" , self.tpu_name ) A =kwargs.pop("device_idx" , self.device_idx ) A =kwargs.pop("eager_mode" , self.eager_mode ) A =kwargs.pop("use_xla" , self.use_xla ) super().__init__(**snake_case__ ) _A = field( default=lowerCAmelCase__ , metadata={"help": "Name of TPU"} , ) _A = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _A = field(default=lowerCAmelCase__ , metadata={"help": "Benchmark models in eager model."} ) _A = field( default=lowerCAmelCase__ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _a ( self : Any ): """simple docstring""" requires_backends(self , ["tf"] ) A =None if self.tpu: try: if self.tpu_name: A =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A =None return tpu @cached_property def _a ( self : List[Any] ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) A =tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU A =tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _a ( self : Dict ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _a ( self : Optional[int] ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def _a ( self : Dict ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _a ( self : Optional[int] ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self : Tuple ): """simple docstring""" return self.n_gpu > 0
710
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: """simple docstring""" _A = 42 _A = None _A = None __a = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase_ ( a_ ) ->int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A , A =get_distrib(node.left ) A , A =get_distrib(node.right ) A =1 - left_distrib_excess A =1 - right_distrib_excess A =( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) A =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __a = 1_0 def UpperCamelCase_ ( a_ , a_ , a_ , a_ ) ->int: for i in range(a_ , a_ ): if array[i] == target: return i return -1 def UpperCamelCase_ ( a_ , a_ ) ->int: A =0 A =len(a_ ) while left <= right: if right - left < precision: return lin_search(a_ , a_ , a_ , a_ ) A =(left + right) // 3 + 1 A =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A =one_third - 1 elif array[two_third] < target: A =two_third + 1 else: A =one_third + 1 A =two_third - 1 else: return -1 def UpperCamelCase_ ( a_ , a_ , a_ , a_ ) ->int: if left < right: if right - left < precision: return lin_search(a_ , a_ , a_ , a_ ) A =(left + right) // 3 + 1 A =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a_ , one_third - 1 , a_ , a_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a_ , a_ , a_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a_ , a_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __a = input("""Enter numbers separated by comma:\n""").strip() __a = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __a = int(input("""Enter the number to be found in the list:\n""").strip()) __a = ite_ternary_search(collection, target) __a = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
711
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
689
0
def UpperCamelCase_ ( a_ ) ->int: A =1 for i in range(1 , num + 1 ): fact *= i return fact def UpperCamelCase_ ( a_ ) ->int: A =0 while number > 0: A =number % 10 sum_of_digits += last_digit A =number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCamelCase_ ( a_ = 100 ) ->int: A =factorial(a_ ) A =split_and_add(a_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
712
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
0
'''simple docstring''' import datasets from .evaluate import evaluate __a = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ __a = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ __a = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _a ( self : int , snake_case__ : Tuple , snake_case__ : Optional[int] ): """simple docstring""" A ={prediction["id"]: prediction["prediction_text"] for prediction in predictions} A =[ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A =evaluate(dataset=snake_case__ , predictions=snake_case__ ) return score
713
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
0
__a = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase_ ( ) ->None: A =input("Enter message: " ) A =input("Enter key [alphanumeric]: " ) A =input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): A ="encrypt" A =encrypt_message(a_ , a_ ) elif mode.lower().startswith("d" ): A ="decrypt" A =decrypt_message(a_ , a_ ) print(f'''\n{mode.title()}ed message:''' ) print(a_ ) def UpperCamelCase_ ( a_ , a_ ) ->str: return translate_message(a_ , a_ , "encrypt" ) def UpperCamelCase_ ( a_ , a_ ) ->str: return translate_message(a_ , a_ , "decrypt" ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->str: A =[] A =0 A =key.upper() for symbol in message: A =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(a_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(a_ ): A =0 else: translated.append(a_ ) return "".join(a_ ) if __name__ == "__main__": main()
714
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
689
0
from typing import Any import numpy as np def UpperCamelCase_ ( a_ ) ->bool: return np.array_equal(a_ , matrix.conjugate().T ) def UpperCamelCase_ ( a_ , a_ ) ->Any: A =v.conjugate().T A =v_star.dot(a_ ) assert isinstance(a_ , np.ndarray ) return (v_star_dot.dot(a_ )) / (v_star.dot(a_ )) def UpperCamelCase_ ( ) ->None: A =np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) A =np.array([[1], [2], [3]] ) assert is_hermitian(a_ ), f'''{a} is not hermitian.''' print(rayleigh_quotient(a_ , a_ ) ) A =np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(a_ ), f'''{a} is not hermitian.''' assert rayleigh_quotient(a_ , a_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
715
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = None _A = None _A = None _A = None class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , snake_case__ : Tuple=1 , snake_case__ : str=0 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=5_12 , snake_case__ : Optional[Any]="cls" , snake_case__ : Union[str, Any]=False , snake_case__ : Tuple=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) A =project_dim A =pooler_fn A =learn_encoder A =use_attention_mask class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = [r"pooler", r"logit_scale"] _A = [r"position_ids", r"predictions.decoder.bias"] _A = "roberta" _A = RobertaSeriesConfig def __init__( self : Optional[int] , snake_case__ : Dict ): """simple docstring""" super().__init__(snake_case__ ) A =XLMRobertaModel(snake_case__ ) A =nn.Linear(config.hidden_size , config.project_dim ) A =getattr(snake_case__ , "has_pre_transformation" , snake_case__ ) if self.has_pre_transformation: A =nn.Linear(config.hidden_size , config.project_dim ) A =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _a ( self : str , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" A =return_dict if return_dict is not None else self.config.use_return_dict A =self.base_model( input_ids=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , position_ids=snake_case__ , head_mask=snake_case__ , inputs_embeds=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_attentions=snake_case__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=snake_case__ , ) if self.has_pre_transformation: A =outputs["hidden_states"][-2] A =self.pre_LN(snake_case__ ) A =self.transformation_pre(snake_case__ ) return TransformationModelOutput( projection_state=snake_case__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: A =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=snake_case__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""MobileViTFeatureExtractor"""] __a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
717
def UpperCamelCase_ ( a_ , a_ ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase_ ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
689
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __a = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = UNetaDModel _A = "sample" @property def _a ( self : Optional[int] ): """simple docstring""" A =4 A =3 A =(32, 32) A =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) A =torch.tensor([10] ).to(snake_case__ ) return {"sample": noise, "timestep": time_step} @property def _a ( self : List[str] ): """simple docstring""" return (3, 32, 32) @property def _a ( self : List[str] ): """simple docstring""" return (3, 32, 32) def _a ( self : Any ): """simple docstring""" A ={ "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } A =self.dummy_input return init_dict, inputs_dict class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = UNetaDModel _A = "sample" @property def _a ( self : str ): """simple docstring""" A =4 A =4 A =(32, 32) A =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) A =torch.tensor([10] ).to(snake_case__ ) return {"sample": noise, "timestep": time_step} @property def _a ( self : List[Any] ): """simple docstring""" return (4, 32, 32) @property def _a ( self : Tuple ): """simple docstring""" return (4, 32, 32) def _a ( self : List[str] ): """simple docstring""" A ={ "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } A =self.dummy_input return init_dict, inputs_dict def _a ( self : List[Any] ): """simple docstring""" A , A =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case__ ) A =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _a ( self : List[str] ): """simple docstring""" A , A =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case__ ) model.to(snake_case__ ) A =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _a ( self : int ): """simple docstring""" A , A =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=snake_case__ ) model_accelerate.to(snake_case__ ) model_accelerate.eval() A =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A =noise.to(snake_case__ ) A =torch.tensor([10] * noise.shape[0] ).to(snake_case__ ) A =model_accelerate(snake_case__ , snake_case__ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A , A =UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=snake_case__ , low_cpu_mem_usage=snake_case__ ) model_normal_load.to(snake_case__ ) model_normal_load.eval() A =model_normal_load(snake_case__ , snake_case__ )["sample"] assert torch_all_close(snake_case__ , snake_case__ , rtol=1E-3 ) def _a ( self : str ): """simple docstring""" A =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(snake_case__ ) A =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A =noise.to(snake_case__ ) A =torch.tensor([10] * noise.shape[0] ).to(snake_case__ ) with torch.no_grad(): A =model(snake_case__ , snake_case__ ).sample A =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A =torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(snake_case__ , snake_case__ , rtol=1E-3 ) ) class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = UNetaDModel _A = "sample" @property def _a ( self : str , snake_case__ : Any=(32, 32) ): """simple docstring""" A =4 A =3 A =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) A =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=snake_case__ ) return {"sample": noise, "timestep": time_step} @property def _a ( self : Optional[int] ): """simple docstring""" return (3, 32, 32) @property def _a ( self : Any ): """simple docstring""" return (3, 32, 32) def _a ( self : Optional[Any] ): """simple docstring""" A ={ "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } A =self.dummy_input return init_dict, inputs_dict @slow def _a ( self : Tuple ): """simple docstring""" A , A =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case__ ) A =self.dummy_input A =floats_tensor((4, 3) + (2_56, 2_56) ).to(snake_case__ ) A =noise A =model(**snake_case__ ) assert image is not None, "Make sure output is not None" @slow def _a ( self : Dict ): """simple docstring""" A =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(snake_case__ ) A =4 A =3 A =(2_56, 2_56) A =torch.ones((batch_size, num_channels) + sizes ).to(snake_case__ ) A =torch.tensor(batch_size * [1E-4] ).to(snake_case__ ) with torch.no_grad(): A =model(snake_case__ , snake_case__ ).sample A =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A =torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(snake_case__ , snake_case__ , rtol=1E-2 ) ) def _a ( self : List[Any] ): """simple docstring""" A =UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(snake_case__ ) A =4 A =3 A =(32, 32) A =torch.ones((batch_size, num_channels) + sizes ).to(snake_case__ ) A =torch.tensor(batch_size * [1E-4] ).to(snake_case__ ) with torch.no_grad(): A =model(snake_case__ , snake_case__ ).sample A =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A =torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(snake_case__ , snake_case__ , rtol=1E-2 ) ) def _a ( self : List[Any] ): """simple docstring""" pass
718
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
0
from pathlib import Path import numpy as np from PIL import Image def UpperCamelCase_ ( a_ ) ->np.ndarray: A , A , A =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def UpperCamelCase_ ( a_ ) ->np.ndarray: return (gray > 127) & (gray <= 255) def UpperCamelCase_ ( a_ , a_ ) ->np.ndarray: A =np.zeros_like(a_ ) A =np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image A =image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): A =( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() A =int(summation > 0 ) return output if __name__ == "__main__": # read original image __a = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __a = np.array(Image.open(lena_path)) # kernel to be applied __a = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __a = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __a = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __a = logging.get_logger(__name__) class UpperCamelCase__: """simple docstring""" _A = 4_2 _A = None @staticmethod def _a ( ): """simple docstring""" raise NotImplementedError def _a ( self : Any , snake_case__ : Dict , snake_case__ : int , snake_case__ : str , **snake_case__ : Dict ): """simple docstring""" raise NotImplementedError def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" raise NotImplementedError def _a ( self : Optional[Any] ): """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _a ( cls : List[Any] ): """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "optuna" @staticmethod def _a ( ): """simple docstring""" return is_optuna_available() def _a ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : str , **snake_case__ : Optional[Any] ): """simple docstring""" return run_hp_search_optuna(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) def _a ( self : Any , snake_case__ : List[Any] ): """simple docstring""" return default_hp_space_optuna(snake_case__ ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "ray" _A = "'ray[tune]'" @staticmethod def _a ( ): """simple docstring""" return is_ray_available() def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : str , **snake_case__ : Optional[Any] ): """simple docstring""" return run_hp_search_ray(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" return default_hp_space_ray(snake_case__ ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "sigopt" @staticmethod def _a ( ): """simple docstring""" return is_sigopt_available() def _a ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : str , **snake_case__ : List[Any] ): """simple docstring""" return run_hp_search_sigopt(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) def _a ( self : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" return default_hp_space_sigopt(snake_case__ ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "wandb" @staticmethod def _a ( ): """simple docstring""" return is_wandb_available() def _a ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : str , **snake_case__ : int ): """simple docstring""" return run_hp_search_wandb(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) def _a ( self : Optional[int] , snake_case__ : List[Any] ): """simple docstring""" return default_hp_space_wandb(snake_case__ ) __a = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase_ ( ) ->str: A =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a_ ) > 0: A =available_backends[0].name if len(a_ ) > 1: logger.info( f'''{len(a_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
720
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( a_ ) ->Any: # getting number of pixels in the image A , A =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_ ): for j in range(a_ ): A =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread("""image_data/lena.jpg""", 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
689
0
def UpperCamelCase_ ( a_ ) ->bool: if not isinstance(a_ , a_ ): raise ValueError("check_bouncy() accepts only integer arguments" ) A =str(a_ ) A ="".join(sorted(a_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def UpperCamelCase_ ( a_ = 99 ) ->int: if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) A =0 A =1 while True: if check_bouncy(a_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(9_9)}''')
721
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a = { """ctrl""": 2_5_6, } __a = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def UpperCamelCase_ ( a_ ) ->List[str]: A =set() A =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A =char A =set(a_ ) return pairs class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]="<unk>" , **snake_case__ : List[str] ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: A =json.load(snake_case__ ) A ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: A =merges_handle.read().split("\n" )[1:-1] A =[tuple(merge.split() ) for merge in merges] A =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A ={} @property def _a ( self : str ): """simple docstring""" return len(self.encoder ) def _a ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] A =tuple(snake_case__ ) A =tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A =get_pairs(snake_case__ ) if not pairs: return token while True: A =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A , A =bigram A =[] A =0 while i < len(snake_case__ ): try: A =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A =tuple(snake_case__ ) A =new_word if len(snake_case__ ) == 1: break else: A =get_pairs(snake_case__ ) A ="@@ ".join(snake_case__ ) A =word[:-4] A =word return word def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" A =[] A =re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def _a ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : Any ): """simple docstring""" A =" ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def _a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) A =0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A =token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCamelCase__( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case__ : str=None , **snake_case__ : str ): """simple docstring""" super().__init__(features=snake_case__ ) A =torch_tensor_kwargs import torch # noqa import torch at initialization def _a ( self : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" import torch if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(snake_case__ ) return column def _a ( self : List[str] , snake_case__ : str ): """simple docstring""" import torch if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A ={} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): A ={"dtype": torch.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A ={"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): A =np.asarray(snake_case__ ) return torch.tensor(snake_case__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _a ( self : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(snake_case__ , "__array__" ) and not isinstance(snake_case__ , torch.Tensor ): A =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def _a ( self : Any , snake_case__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def _a ( self : Optional[Any] , snake_case__ : pa.Table ): """simple docstring""" A =self.numpy_arrow_extractor().extract_row(snake_case__ ) A =self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def _a ( self : Tuple , snake_case__ : pa.Table ): """simple docstring""" A =self.numpy_arrow_extractor().extract_column(snake_case__ ) A =self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) A =self.recursive_tensorize(snake_case__ ) A =self._consolidate(snake_case__ ) return column def _a ( self : Union[str, Any] , snake_case__ : pa.Table ): """simple docstring""" A =self.numpy_arrow_extractor().extract_batch(snake_case__ ) A =self.python_features_decoder.decode_batch(snake_case__ ) A =self.recursive_tensorize(snake_case__ ) for column_name in batch: A =self._consolidate(batch[column_name] ) return batch
700
def UpperCamelCase_ ( a_ , a_ ) ->list[int]: A =int(a_ ) # Initialize Result A =[] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __a = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def _a ( self : int ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A =DDPMScheduler() A =AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 ) A =output.audios[0] A =output.images[0] A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) A =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A =DDIMScheduler() A =self.dummy_vqvae_and_unet A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) A =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A =self.dummy_unet_condition A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =torch.rand((1, 1, 10) ) A =pipe(generator=snake_case__ , encoding=snake_case__ ) A =output.images[0] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A =torch_device A =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ ) A =output.audios[0] A =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
701
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = VideoToVideoSDPipeline _A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} _A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} _A = PipelineTesterMixin.required_optional_params - {"latents"} _A = False # No `output_type`. _A = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) A =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) A =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) A =CLIPTextModel(snake_case__ ) A =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _a ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple=0 ): """simple docstring""" A =floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): A =torch.manual_seed(snake_case__ ) else: A =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) A ={ "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _a ( self : Optional[Any] ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =self.get_dummy_components() A =VideoToVideoSDPipeline(**snake_case__ ) A =sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) A =self.get_dummy_inputs(snake_case__ ) A ="np" A =sd_pipe(**snake_case__ ).frames A =frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A =np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _a ( self : Optional[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A =VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A =torch.Generator(device="cpu" ).manual_seed(0 ) A =torch.randn((1, 10, 3, 10_24, 5_76) , generator=snake_case__ ) A =video.to("cuda" ) A ="Spiderman is surfing" A =pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type="pt" ).frames A =np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
702
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
689
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" A =tempfile.mkdtemp() # fmt: off A =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) A ={ "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } A =os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def _a ( self : Tuple , **snake_case__ : Any ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _a ( self : Optional[int] , **snake_case__ : Tuple ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _a ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Tuple ): """simple docstring""" A =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A =[Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Union[str, Any] ): """simple docstring""" A =self.get_tokenizer() A =self.get_image_processor() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) A =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" A =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A =self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) A =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _a ( self : int ): """simple docstring""" A =self.get_image_processor() A =self.get_tokenizer() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) A =self.prepare_image_inputs() A =image_processor(snake_case__ , return_tensors="np" ) A =processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[Any] ): """simple docstring""" A =self.get_image_processor() A =self.get_tokenizer() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) A ="lower newer" A =processor(text=snake_case__ ) A =tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : List[Any] ): """simple docstring""" A =self.get_image_processor() A =self.get_tokenizer() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) A ="lower newer" A =self.prepare_image_inputs() A =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def _a ( self : Optional[int] ): """simple docstring""" A =self.get_image_processor() A =self.get_tokenizer() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) A =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A =processor.batch_decode(snake_case__ ) A =tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.get_image_processor() A =self.get_tokenizer() A =VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) A ="lower newer" A =self.prepare_image_inputs() A =processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
704
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __a = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __a = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __a = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def _a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): """simple docstring""" A =len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A =[[refs[i] for refs in references] for i in range(snake_case__ )] A =CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
0
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["""A""", """B""", """C"""] generate_all_permutations(sequence_a)
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = DebertaVaTokenizer _A = DebertaVaTokenizerFast _A = True _A = True def _a ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A =DebertaVaTokenizer(snake_case__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : List[str] , snake_case__ : List[str] ): """simple docstring""" A ="this is a test" A ="this is a test" return input_text, output_text def _a ( self : Tuple ): """simple docstring""" A ="<pad>" A =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(snake_case__ ) , 3_00_01 ) def _a ( self : Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def _a ( self : Union[str, Any] ): """simple docstring""" A =" \tHeLLo!how \n Are yoU? " A =["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on A =DebertaVaTokenizer(snake_case__ , do_lower_case=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , do_lower_case=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _a ( self : int ): """simple docstring""" pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _a ( self : List[str] ): """simple docstring""" pass def _a ( self : Any ): """simple docstring""" A ="I was born in 92000, and this is falsé." A =["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A =DebertaVaTokenizer(snake_case__ , split_by_punct=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , split_by_punct=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : str ): """simple docstring""" A ="I was born in 92000, and this is falsé." A =["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A =DebertaVaTokenizer(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : Optional[int] ): """simple docstring""" A ="I was born in 92000, and this is falsé." A =["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on A =DebertaVaTokenizer(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : int ): """simple docstring""" A ="I was born in 92000, and this is falsé." A =["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A =DebertaVaTokenizer(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" A =" \tHeLLo!how \n Are yoU? " A =["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on A =DebertaVaTokenizer(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , do_lower_case=snake_case__ , split_by_punct=snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : Any ): """simple docstring""" A =self.get_tokenizer() A =self.get_rust_tokenizer() A ="I was born in 92000, and this is falsé." A =tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) A =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) self.assertListEqual(snake_case__ , snake_case__ ) A =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) A =rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =self.get_rust_tokenizer() A =tokenizer.encode(snake_case__ ) A =rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : int ): """simple docstring""" A ="This is a test" A =[13, 1, 43_98, 25, 21, 12_89] A =["▁", "T", "his", "▁is", "▁a", "▁test"] A =["▁", "<unk>", "his", "▁is", "▁a", "▁test"] A =DebertaVaTokenizer(snake_case__ , keep_accents=snake_case__ ) A =DebertaVaTokenizerFast(snake_case__ , keep_accents=snake_case__ ) A =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # fmt: off A ="I was born in 92000, and this is falsé." A =[13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] A =["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] A =["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on A =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =rust_tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : int ): """simple docstring""" A =DebertaVaTokenizer(snake_case__ ) A =tokenizer.encode("sequence builders" ) A =tokenizer.encode("multi-sequence build" ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case__ , ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" A ={"input_ids": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
706
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase__: """simple docstring""" def __init__( self : List[str] , snake_case__ : Optional[int] , ): """simple docstring""" A =parent A =13 A =7 A =True A =True A =True A =True A =True A =False A =False A =False A =2 A =99 A =0 A =32 A =2 A =4 A =0.1 A =0.1 A =5_12 A =16 A =2 A =0.02 A =3 A =4 A ="last" A =True A =None A =0 def _a ( self : Optional[Any] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A =None if self.use_input_lengths: A =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A =None if self.use_token_type_ids: A =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A =None A =None A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A =ids_tensor([self.batch_size] , self.num_choices ) A =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : Any , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , ): """simple docstring""" A =TFFlaubertModel(config=snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) A =[input_ids, input_mask] A =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertWithLMHeadModel(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , ): """simple docstring""" A =TFFlaubertForQuestionAnsweringSimple(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertForSequenceClassification(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , ): """simple docstring""" A =self.num_labels A =TFFlaubertForTokenClassification(config=snake_case__ ) A ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =self.num_choices A =TFFlaubertForMultipleChoice(config=snake_case__ ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) =config_and_inputs A ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Optional[int] ): """simple docstring""" A =TFFlaubertModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A =TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A =tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A =model(snake_case__ )[0] A =tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. A =tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
689
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a = logging.get_logger(__name__) __a = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _A = "nat" _A = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , snake_case__ : int=4 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Tuple=[3, 4, 6, 5] , snake_case__ : int=[2, 4, 8, 16] , snake_case__ : List[str]=7 , snake_case__ : Any=3.0 , snake_case__ : str=True , snake_case__ : List[str]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Any=0.1 , snake_case__ : List[Any]="gelu" , snake_case__ : List[Any]=0.02 , snake_case__ : List[Any]=1E-5 , snake_case__ : Any=0.0 , snake_case__ : str=None , snake_case__ : Union[str, Any]=None , **snake_case__ : int , ): """simple docstring""" super().__init__(**snake_case__ ) A =patch_size A =num_channels A =embed_dim A =depths A =len(snake_case__ ) A =num_heads A =kernel_size A =mlp_ratio A =qkv_bias A =hidden_dropout_prob A =attention_probs_dropout_prob A =drop_path_rate A =hidden_act A =layer_norm_eps A =initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A =int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) A =layer_scale_init_value A =["stem"] + [f'''stage{idx}''' for idx in range(1 , len(snake_case__ ) + 1 )] A , A =get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
707
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def _a ( self : int ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A =DDPMScheduler() A =AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 ) A =output.audios[0] A =output.images[0] A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) A =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A =DDIMScheduler() A =self.dummy_vqvae_and_unet A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) A =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A =self.dummy_unet_condition A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =torch.rand((1, 1, 10) ) A =pipe(generator=snake_case__ , encoding=snake_case__ ) A =output.images[0] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A =torch_device A =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ ) A =output.audios[0] A =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
689
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
709
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__: """simple docstring""" def __init__( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple=3 , snake_case__ : int=32 , snake_case__ : Optional[Any]=3 , snake_case__ : List[Any]=10 , snake_case__ : Optional[Any]=[10, 20, 30, 40] , snake_case__ : Dict=[1, 1, 2, 1] , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : str="relu" , snake_case__ : List[Any]=3 , snake_case__ : Dict=None , ): """simple docstring""" A =parent A =batch_size A =image_size A =num_channels A =embeddings_size A =hidden_sizes A =depths A =is_training A =use_labels A =hidden_act A =num_labels A =scope A =len(snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.num_labels ) A =self.get_config() return config, pixel_values, labels def _a ( self : List[str] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" A =RegNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() A =model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" A =self.num_labels A =RegNetForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() A =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict ): """simple docstring""" A =self.prepare_config_and_inputs() A , A , A =config_and_inputs A ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _A = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def _a ( self : List[str] ): """simple docstring""" A =RegNetModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : int ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _a ( self : List[str] ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A , A =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A =model_class(snake_case__ ) A =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A =[*signature.parameters.keys()] A =["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _a ( self : Optional[int] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A , A =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A =model_class(config=snake_case__ ) for name, module in model.named_modules(): if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _a ( self : Any ): """simple docstring""" def check_hidden_states_output(snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] ): A =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): A =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) A =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A =self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A , A =self.model_tester.prepare_config_and_inputs_for_common() A =["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: A =layer_type A =True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A =True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _a ( self : List[Any] ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =RegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase_ ( ) ->Tuple: A =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Any ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[int] ): """simple docstring""" A =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) A =self.default_image_processor A =prepare_img() A =image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): A =model(**snake_case__ ) # verify the logits A =torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) A =torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
710
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: """simple docstring""" _A = 42 _A = None _A = None __a = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase_ ( a_ ) ->int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A , A =get_distrib(node.left ) A , A =get_distrib(node.right ) A =1 - left_distrib_excess A =1 - right_distrib_excess A =( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) A =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
711
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
689
0
import re from filelock import FileLock try: import nltk __a = True except (ImportError, ModuleNotFoundError): __a = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def UpperCamelCase_ ( a_ ) ->str: re.sub("<n>" , "" , a_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a_ ) )
712
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
0
'''simple docstring''' from math import ceil, sqrt def UpperCamelCase_ ( a_ = 100_0000 ) ->int: A =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: A =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: A =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
713
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
689
0
def UpperCamelCase_ ( a_ = 5000_0000 ) ->int: A =set() A =int((limit - 24) ** (1 / 2) ) A =set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_ ) ) ) for primea in primes: A =primea * primea for primea in primes: A =primea * primea * primea if square + cube >= limit - 16: break for primea in primes: A =primea * primea * primea * primea A =square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
715
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
0
def UpperCamelCase_ ( a_ ) ->list: A =len(a_ ) for _ in range(a_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: A , A =arr[i + 1], arr[i] return arr if __name__ == "__main__": __a = list(range(1_0, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""MobileViTFeatureExtractor"""] __a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__: """simple docstring""" _A = BlenderbotSmallConfig _A = {} _A = "gelu" def __init__( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=13 , snake_case__ : Optional[int]=7 , snake_case__ : List[Any]=True , snake_case__ : Dict=False , snake_case__ : Union[str, Any]=99 , snake_case__ : Optional[Any]=32 , snake_case__ : str=2 , snake_case__ : Dict=4 , snake_case__ : Any=37 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[Any]=20 , snake_case__ : List[str]=2 , snake_case__ : Optional[int]=1 , snake_case__ : Optional[int]=0 , ): """simple docstring""" A =parent A =batch_size A =seq_length A =is_training A =use_labels A =vocab_size A =hidden_size A =num_hidden_layers A =num_attention_heads A =intermediate_size A =hidden_dropout_prob A =attention_probs_dropout_prob A =max_position_embeddings A =eos_token_id A =pad_token_id A =bos_token_id def _a ( self : List[str] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A =tf.concat([input_ids, eos_tensor] , axis=1 ) A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A =prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def _a ( self : Any , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" A =TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() A =inputs_dict["input_ids"] A =input_ids[:1, :] A =inputs_dict["attention_mask"][:1, :] A =inputs_dict["head_mask"] A =1 # first forward pass A =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) A , A =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A =ids_tensor((self.batch_size, 3) , config.vocab_size ) A =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A =tf.concat([input_ids, next_tokens] , axis=-1 ) A =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A =model(snake_case__ , attention_mask=snake_case__ )[0] A =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A =output_from_no_past[:, -3:, random_slice_idx] A =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def UpperCamelCase_ ( a_ , a_ , a_ , a_=None , a_=None , a_=None , a_=None , a_=None , ) ->Optional[Any]: if attention_mask is None: A =tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _A = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _A = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _A = True _A = False _A = False def _a ( self : Tuple ): """simple docstring""" A =TFBlenderbotSmallModelTester(self ) A =ConfigTester(self , config_class=snake_case__ ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class UpperCamelCase__( unittest.TestCase ): """simple docstring""" _A = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] _A = "facebook/blenderbot_small-90M" @cached_property def _a ( self : Optional[Any] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def _a ( self : str ): """simple docstring""" A =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _a ( self : List[str] ): """simple docstring""" A =self.tokenizer(self.src_text , return_tensors="tf" ) A =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) A =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
717
def UpperCamelCase_ ( a_ , a_ ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase_ ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
689
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __a = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __a = 1_0 __a = 2_5_6 def UpperCamelCase_ ( a_ ) ->Optional[MinHash]: if len(a_ ) < MIN_NUM_TOKENS: return None A =MinHash(num_perm=a_ ) for token in set(a_ ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase_ ( a_ ) ->Set[str]: return {t for t in NON_ALPHA.split(a_ ) if len(t.strip() ) > 0} class UpperCamelCase__: """simple docstring""" def __init__( self : Dict , *, snake_case__ : float = 0.85 , ): """simple docstring""" A =duplication_jaccard_threshold A =NUM_PERM A =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) A =defaultdict(snake_case__ ) def _a ( self : List[str] , snake_case__ : Tuple , snake_case__ : MinHash ): """simple docstring""" A =self._index.query(snake_case__ ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(snake_case__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(snake_case__ ) def _a ( self : Any ): """simple docstring""" A =[] for base, duplicates in self._duplicate_clusters.items(): A =[base] + list(snake_case__ ) # reformat the cluster to be a list of dict A =[{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(snake_case__ ) return duplicate_clusters def _a ( self : Any , snake_case__ : List[Any] ): """simple docstring""" A =self.get_duplicate_clusters() with open(snake_case__ , "w" ) as f: json.dump(snake_case__ , snake_case__ ) def UpperCamelCase_ ( a_ ) ->Dict: A , A =element A =get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase_ ( a_ ) ->Dict: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a_ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase_ ( a_ , a_ ) ->Dict: A =DuplicationIndex(duplication_jaccard_threshold=a_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a_ ) ) , max_queue_size=100 ) ): di.add(a_ , a_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase_ ( a_ , a_ ) ->float: A =get_tokens(a_ ) A =get_tokens(a_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __a = None def UpperCamelCase_ ( a_ , a_ ) ->Union[str, Any]: A =[] for elementa in cluster: A =_shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: A =_shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(a_ , a_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: A =1 extremes.append(a_ ) return extremes def UpperCamelCase_ ( a_ , a_ , a_ ) ->Tuple: global _shared_dataset A =dataset A =[] A =partial(_find_cluster_extremes_shared , jaccard_threshold=a_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a_ , a_ , ) , total=len(a_ ) , ): extremes_list.append(a_ ) return extremes_list def UpperCamelCase_ ( a_ , a_ = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: A =make_duplicate_clusters(a_ , a_ ) A ={x["base_index"] for cluster in duplicate_clusters for x in cluster} A ={} A =find_extremes(a_ , a_ , a_ ) for extremes in extremes_clusters: for element in extremes: A =element A =duplicate_indices - set(extreme_dict.keys() ) A =dataset.filter(lambda a_ , a_ : idx not in remove_indices , with_indices=a_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: A =element["base_index"] in extreme_dict if element["is_extreme"]: A =extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(a_ )}''' ) print(f'''Number of duplicate clusters: {len(a_ )}''' ) print(f'''Files in duplicate cluster: {len(a_ )}''' ) print(f'''Unique files in duplicate cluster: {len(a_ )}''' ) print(f'''Filtered dataset size: {len(a_ )}''' ) return ds_filter, duplicate_clusters
718
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = RoCBertTokenizer _A = None _A = False _A = True _A = filter_non_english def _a ( self : Any ): """simple docstring""" super().setUp() A =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] A ={} A ={} for i, value in enumerate(snake_case__ ): A =i A =i A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(snake_case__ , snake_case__ , ensure_ascii=snake_case__ ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(snake_case__ , snake_case__ , ensure_ascii=snake_case__ ) def _a ( self : str ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A =tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(snake_case__ , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(snake_case__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(snake_case__ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self : List[str] ): """simple docstring""" A =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _a ( self : Optional[int] ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _a ( self : List[str] ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _a ( self : Optional[int] ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _a ( self : Optional[Any] ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _a ( self : Tuple ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _a ( self : Dict ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _a ( self : Optional[int] ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _a ( self : int ): """simple docstring""" A =RoCBertBasicTokenizer(do_lower_case=snake_case__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _a ( self : Optional[Any] ): """simple docstring""" A =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A ={} for i, token in enumerate(snake_case__ ): A =i A =RoCBertWordpieceTokenizer(vocab=snake_case__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _a ( self : Optional[Any] ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _a ( self : List[str] ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _a ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _a ( self : Tuple ): """simple docstring""" A =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: A =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(snake_case__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def _a ( self : List[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A =self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) A =f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' A =tokenizer_r.encode_plus( snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ , ) A =tokenizer_r.do_lower_case if hasattr(snake_case__ , "do_lower_case" ) else False A =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _a ( self : Union[str, Any] ): """simple docstring""" A =["的", "人", "有"] A ="".join(snake_case__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A =True A =self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) A =self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) A =tokenizer_p.encode(snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer_r.encode(snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer_r.convert_ids_to_tokens(snake_case__ ) A =tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) A =False A =self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) A =self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) A =tokenizer_r.encode(snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer_p.encode(snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer_r.convert_ids_to_tokens(snake_case__ ) A =tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that only the first Chinese character is not preceded by "##". A =[ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(snake_case__ ) ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A =tokenizer.encode("你好" , add_special_tokens=snake_case__ ) A =tokenizer.encode("你是谁" , add_special_tokens=snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self : Dict ): """simple docstring""" A =self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A ="你好,你是谁" A =tokenizer.tokenize(snake_case__ ) A =tokenizer.convert_tokens_to_ids(snake_case__ ) A =tokenizer.convert_tokens_to_shape_ids(snake_case__ ) A =tokenizer.convert_tokens_to_pronunciation_ids(snake_case__ ) A =tokenizer.prepare_for_model( snake_case__ , snake_case__ , snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer.encode_plus(snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
def UpperCamelCase_ ( a_ , a_ ) ->float: if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(a_ ) * abs(a_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
720
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( a_ ) ->Any: # getting number of pixels in the image A , A =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_ ): for j in range(a_ ): A =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread("""image_data/lena.jpg""", 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
689
0
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase_ ( ) ->int: A =ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) A =parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(a_ ) # Let's go A =parser.parse_args() if not hasattr(a_ , "func" ): parser.print_help() exit(1 ) # Run A =args.func(a_ ) service.run() if __name__ == "__main__": main()
721
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a = { """ctrl""": 2_5_6, } __a = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def UpperCamelCase_ ( a_ ) ->List[str]: A =set() A =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A =char A =set(a_ ) return pairs class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]="<unk>" , **snake_case__ : List[str] ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: A =json.load(snake_case__ ) A ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: A =merges_handle.read().split("\n" )[1:-1] A =[tuple(merge.split() ) for merge in merges] A =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A ={} @property def _a ( self : str ): """simple docstring""" return len(self.encoder ) def _a ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] A =tuple(snake_case__ ) A =tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A =get_pairs(snake_case__ ) if not pairs: return token while True: A =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A , A =bigram A =[] A =0 while i < len(snake_case__ ): try: A =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A =tuple(snake_case__ ) A =new_word if len(snake_case__ ) == 1: break else: A =get_pairs(snake_case__ ) A ="@@ ".join(snake_case__ ) A =word[:-4] A =word return word def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" A =[] A =re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def _a ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : Any ): """simple docstring""" A =" ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def _a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) A =0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A =token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
0
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
700
def UpperCamelCase_ ( a_ , a_ ) ->list[int]: A =int(a_ ) # Initialize Result A =[] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __a = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
0
def UpperCamelCase_ ( a_ , a_ ) ->str: if not isinstance(a_ , a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_ , a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) A ="" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
701
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
702
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
689
0
from string import ascii_lowercase, ascii_uppercase def UpperCamelCase_ ( a_ ) ->str: if not sentence: return "" A =dict(zip(a_ , a_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase_ ( a_ , a_ , a_ , a_ , a_ , a_ ) ->np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: A =ksize + 1 A =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(a_ ): for x in range(a_ ): # distance from center A =x - ksize // 2 A =y - ksize // 2 # degree to radiant A =theta / 180 * np.pi A =np.cos(_theta ) A =np.sin(_theta ) # get kernel x A =cos_theta * px + sin_theta * py # get kernel y A =-sin_theta * px + cos_theta * py # fill kernel A =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __a = imread("""../image_data/lena.jpg""") # turn image in gray scale value __a = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __a = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: __a = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __a = out / out.max() * 2_5_5 __a = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
704
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __a = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __a = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __a = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def _a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): """simple docstring""" A =len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A =[[refs[i] for refs in references] for i in range(snake_case__ )] A =CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __a = logging.get_logger(__name__) __a = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__: """simple docstring""" _A = field( default=lowerCAmelCase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowerCAmelCase__ )} ) _A = field( default=lowerCAmelCase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) _A = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _A = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) _A = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) _A = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) _A = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _A = field( default=lowerCAmelCase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) _A = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) _A = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) _A = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) _A = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "train" _A = "dev" class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = 4_2 _A = 4_2 _A = 4_2 _A = 4_2 def __init__( self : Optional[Any] , snake_case__ : SquadDataTrainingArguments , snake_case__ : PreTrainedTokenizer , snake_case__ : Optional[int] = None , snake_case__ : Union[str, Split] = Split.train , snake_case__ : Optional[bool] = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = "pt" , ): """simple docstring""" A =args A =is_language_sensitive A =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case__ , snake_case__ ): try: A =Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) A =mode # Load data features from cache or dataset file A ="v2" if args.version_2_with_negative else "v1" A =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A =cached_features_file + ".lock" with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not args.overwrite_cache: A =time.time() A =torch.load(snake_case__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A =self.old_features["features"] A =self.old_features.get("dataset" , snake_case__ ) A =self.old_features.get("examples" , snake_case__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: A =self.processor.get_dev_examples(args.data_dir ) else: A =self.processor.get_train_examples(args.data_dir ) A , A =squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case__ , ) A =time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , snake_case__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : int ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , snake_case__ : Dict ): """simple docstring""" A =self.features[i] A =torch.tensor(feature.input_ids , dtype=torch.long ) A =torch.tensor(feature.attention_mask , dtype=torch.long ) A =torch.tensor(feature.token_type_ids , dtype=torch.long ) A =torch.tensor(feature.cls_index , dtype=torch.long ) A =torch.tensor(feature.p_mask , dtype=torch.float ) A =torch.tensor(feature.is_impossible , dtype=torch.float ) A ={ "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A =torch.tensor(feature.start_position , dtype=torch.long ) A =torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __a = logging.get_logger("""transformers.models.speecht5""") def UpperCamelCase_ ( a_ , a_ , a_ ) ->Any: hf_model.apply_weight_norm() A =checkpoint["input_conv.weight_g"] A =checkpoint["input_conv.weight_v"] A =checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): A =checkpoint[f'''upsamples.{i}.1.weight_g'''] A =checkpoint[f'''upsamples.{i}.1.weight_v'''] A =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): A =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] A =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] A =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] A =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] A =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] A =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] A =checkpoint["output_conv.1.weight_g"] A =checkpoint["output_conv.1.weight_v"] A =checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCamelCase_ ( a_ , a_ , a_ , a_=None , a_=None , ) ->str: if config_path is not None: A =SpeechTaHifiGanConfig.from_pretrained(a_ ) else: A =SpeechTaHifiGanConfig() A =SpeechTaHifiGan(a_ ) A =torch.load(a_ ) load_weights(orig_checkpoint["model"]["generator"] , a_ , a_ ) A =np.load(a_ ) A =stats[0].reshape(-1 ) A =stats[1].reshape(-1 ) A =torch.from_numpy(a_ ).float() A =torch.from_numpy(a_ ).float() model.save_pretrained(a_ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
706
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase__: """simple docstring""" def __init__( self : List[str] , snake_case__ : Optional[int] , ): """simple docstring""" A =parent A =13 A =7 A =True A =True A =True A =True A =True A =False A =False A =False A =2 A =99 A =0 A =32 A =2 A =4 A =0.1 A =0.1 A =5_12 A =16 A =2 A =0.02 A =3 A =4 A ="last" A =True A =None A =0 def _a ( self : Optional[Any] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A =None if self.use_input_lengths: A =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A =None if self.use_token_type_ids: A =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A =None A =None A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A =ids_tensor([self.batch_size] , self.num_choices ) A =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : Any , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , ): """simple docstring""" A =TFFlaubertModel(config=snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) A =[input_ids, input_mask] A =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertWithLMHeadModel(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , ): """simple docstring""" A =TFFlaubertForQuestionAnsweringSimple(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertForSequenceClassification(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , ): """simple docstring""" A =self.num_labels A =TFFlaubertForTokenClassification(config=snake_case__ ) A ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =self.num_choices A =TFFlaubertForMultipleChoice(config=snake_case__ ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) =config_and_inputs A ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Optional[int] ): """simple docstring""" A =TFFlaubertModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A =TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A =tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A =model(snake_case__ )[0] A =tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. A =tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
689
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 1_6 __a = 3_2 def UpperCamelCase_ ( a_ , a_ = 16 ) ->Dict: A =AutoTokenizer.from_pretrained("bert-base-cased" ) A =load_dataset("glue" , "mrpc" ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) A =tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A =datasets.map( a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A =tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A =16 elif accelerator.mixed_precision != "no": A =8 else: A =None return tokenizer.pad( a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , ) # Instantiate dataloaders. A =DataLoader( tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) A =DataLoader( tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( a_ , a_ ) ->List[str]: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1": A =2 # Initialize accelerator A =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A =config["lr"] A =int(config["num_epochs"] ) A =int(config["seed"] ) A =int(config["batch_size"] ) A =evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=a_ ) def inner_training_loop(a_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A =AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A =model.to(accelerator.device ) # Instantiate optimizer A =AdamW(params=model.parameters() , lr=a_ ) A , A =get_dataloaders(a_ , a_ ) # Instantiate scheduler A =get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A =accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A =model(**a_ ) A =outputs.loss accelerator.backward(a_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A =model(**a_ ) A =outputs.logits.argmax(dim=-1 ) A , A =accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=a_ , references=a_ , ) A =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , a_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_ ( ) ->Union[str, Any]: A =argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A =parser.parse_args() A ={"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
707
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
0
import datasets __a = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __a = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __a = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def UpperCamelCase_ ( a_ , a_ ) ->Optional[int]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _a ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): """simple docstring""" return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )}
708
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def _a ( self : int ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A =DDPMScheduler() A =AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 ) A =output.audios[0] A =output.images[0] A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) A =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A =DDIMScheduler() A =self.dummy_vqvae_and_unet A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) A =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A =self.dummy_unet_condition A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =torch.rand((1, 1, 10) ) A =pipe(generator=snake_case__ , encoding=snake_case__ ) A =output.images[0] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A =torch_device A =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ ) A =output.audios[0] A =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
689
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: """simple docstring""" _A = 42 _A = None _A = None __a = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase_ ( a_ ) ->int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A , A =get_distrib(node.left ) A , A =get_distrib(node.right ) A =1 - left_distrib_excess A =1 - right_distrib_excess A =( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) A =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
0
from scipy.stats import spearmanr import datasets __a = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __a = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __a = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _a ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any]=False ): """simple docstring""" A =spearmanr(snake_case__ , snake_case__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
711
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
689
0
def UpperCamelCase_ ( a_ ) ->List[Any]: A =1 A =2 while i * i <= n: A =0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCamelCase_ ( ) ->int: A =1 A =1 while True: i += 1 t_num += i if count_divisors(a_ ) > 500: break return t_num if __name__ == "__main__": print(solution())
712
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCamelCase__( nn.Module ): """simple docstring""" def __init__( self : int , snake_case__ : int = 16 , snake_case__ : int = 88 , snake_case__ : Optional[int] = None , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None , snake_case__ : str = "geglu" , snake_case__ : Optional[int] = None , ): """simple docstring""" super().__init__() A =nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case__ , attention_head_dim=snake_case__ , in_channels=snake_case__ , num_layers=snake_case__ , dropout=snake_case__ , norm_num_groups=snake_case__ , cross_attention_dim=snake_case__ , attention_bias=snake_case__ , sample_size=snake_case__ , num_vector_embeds=snake_case__ , activation_fn=snake_case__ , num_embeds_ada_norm=snake_case__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A =[77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A =[1, 0] def _a ( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[str]=None , snake_case__ : Tuple=None , snake_case__ : List[str]=None , snake_case__ : bool = True , ): """simple docstring""" A =hidden_states A =[] A =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A =self.transformer_index_for_condition[i] A =self.transformers[transformer_index]( snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ , cross_attention_kwargs=snake_case__ , return_dict=snake_case__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case__ )
713
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "encodec" def __init__( self : Optional[int] , snake_case__ : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , snake_case__ : Tuple=2_40_00 , snake_case__ : Union[str, Any]=1 , snake_case__ : Optional[Any]=False , snake_case__ : int=None , snake_case__ : Optional[Any]=None , snake_case__ : Any=1_28 , snake_case__ : Optional[Any]=32 , snake_case__ : Optional[Any]=1 , snake_case__ : List[Any]=[8, 5, 4, 2] , snake_case__ : Tuple="weight_norm" , snake_case__ : Optional[int]=7 , snake_case__ : Optional[Any]=7 , snake_case__ : List[str]=3 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=True , snake_case__ : Union[str, Any]="reflect" , snake_case__ : Dict=2 , snake_case__ : str=2 , snake_case__ : Any=1.0 , snake_case__ : Optional[Any]=10_24 , snake_case__ : Any=None , snake_case__ : Any=True , **snake_case__ : str , ): """simple docstring""" A =target_bandwidths A =sampling_rate A =audio_channels A =normalize A =chunk_length_s A =overlap A =hidden_size A =num_filters A =num_residual_layers A =upsampling_ratios A =norm_type A =kernel_size A =last_kernel_size A =residual_kernel_size A =dilation_growth_rate A =use_causal_conv A =pad_mode A =compress A =num_lstm_layers A =trim_right_ratio A =codebook_size A =codebook_dim if codebook_dim is not None else hidden_size A =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**snake_case__ ) @property def _a ( self : Tuple ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _a ( self : str ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _a ( self : List[Any] ): """simple docstring""" A =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _a ( self : Dict ): """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
714
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
689
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
0
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( a_ ) ->Any: # getting number of pixels in the image A , A =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_ ): for j in range(a_ ): A =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread("""image_data/lena.jpg""", 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""MobileViTFeatureExtractor"""] __a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "naver-clova-ix/donut-base-finetuned-docvqa" _A = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _A = "document_qa" _A = AutoProcessor _A = VisionEncoderDecoderModel _A = ["image", "text"] _A = ["text"] def __init__( self : Union[str, Any] , *snake_case__ : int , **snake_case__ : List[Any] ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , snake_case__ : "Image" , snake_case__ : str ): """simple docstring""" A ="<s_docvqa><s_question>{user_input}</s_question><s_answer>" A =task_prompt.replace("{user_input}" , snake_case__ ) A =self.pre_processor.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors="pt" ).input_ids A =self.pre_processor(snake_case__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Tuple , snake_case__ : List[str] ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case__ , ).sequences def _a ( self : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" A =self.pre_processor.batch_decode(snake_case__ )[0] A =sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) A =sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) A =re.sub(R"<.*?>" , "" , snake_case__ , count=1 ).strip() # remove first task start token A =self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
717
def UpperCamelCase_ ( a_ , a_ ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase_ ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
689
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
718
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __a = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") __a = get_tests_dir("""fixtures/vocab.json""") __a = get_tests_dir("""fixtures""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" _A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _a ( self : Optional[int] ): """simple docstring""" A =0 def _a ( self : Optional[int] ): """simple docstring""" A =AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A =WavaVecaConfig() A =AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A =WavaVecaFeatureExtractor() A =AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) A =WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: A =json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A =WavaVecaFeatureExtractor() A =AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) A =WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: A =json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A =WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write("{}" ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : Dict ): """simple docstring""" with self.assertRaises(snake_case__ ): A =AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): A =AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) A =AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) A =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) A =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version A =AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) A =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _a ( self : Tuple ): """simple docstring""" try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API A =CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: A =os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A =CustomTokenizer(snake_case__ ) A =CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) A =AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ): """simple docstring""" class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = False class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = False class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "AutoFeatureExtractor" _A = "AutoTokenizer" _A = False try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. A =AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A =AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A =AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : Optional[Any] ): """simple docstring""" A =AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def _a ( self : Dict ): """simple docstring""" A =AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class UpperCamelCase__( unittest.TestCase ): """simple docstring""" _A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _a ( cls : Optional[Any] ): """simple docstring""" A =TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _a ( cls : Dict ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def _a ( self : Optional[int] ): """simple docstring""" A =WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) A =WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _a ( self : Optional[Any] ): """simple docstring""" A =WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor-org" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="valid_org" , ) A =WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _a ( self : Optional[int] ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A =CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: A =os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A =CustomTokenizer(snake_case__ ) A =CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) A =Repository(snake_case__ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , "tokenizer_config.json" ) ) as f: A =json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_processing.py" ) ) ) repo.push_to_hub() A =AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
def UpperCamelCase_ ( a_ ) ->list[list[float]]: A =[] for data in source_data: for i, el in enumerate(a_ ): if len(a_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a_ ) ) return data_lists def UpperCamelCase_ ( a_ , a_ ) ->list[list[float]]: A =[] for dlist, weight in zip(a_ , a_ ): A =min(a_ ) A =max(a_ ) A =[] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A =f'''Invalid weight of {weight:f} provided''' raise ValueError(a_ ) score_lists.append(a_ ) return score_lists def UpperCamelCase_ ( a_ ) ->list[float]: A =[0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a_ ): A =final_scores[j] + ele return final_scores def UpperCamelCase_ ( a_ , a_ ) ->list[list[float]]: A =get_data(a_ ) A =calculate_each_score(a_ , a_ ) A =generate_final_scores(a_ ) # append scores to source data for i, ele in enumerate(a_ ): source_data[i].append(a_ ) return source_data
720
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( a_ ) ->Any: # getting number of pixels in the image A , A =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_ ): for j in range(a_ ): A =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread("""image_data/lena.jpg""", 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
689
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase__: """simple docstring""" def __init__( self : List[str] , snake_case__ : Optional[int] , ): """simple docstring""" A =parent A =13 A =7 A =True A =True A =True A =True A =True A =False A =False A =False A =2 A =99 A =0 A =32 A =2 A =4 A =0.1 A =0.1 A =5_12 A =16 A =2 A =0.02 A =3 A =4 A ="last" A =True A =None A =0 def _a ( self : Optional[Any] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A =None if self.use_input_lengths: A =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A =None if self.use_token_type_ids: A =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A =None A =None A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A =ids_tensor([self.batch_size] , self.num_choices ) A =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : Any , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , ): """simple docstring""" A =TFFlaubertModel(config=snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) A =[input_ids, input_mask] A =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertWithLMHeadModel(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , ): """simple docstring""" A =TFFlaubertForQuestionAnsweringSimple(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertForSequenceClassification(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , ): """simple docstring""" A =self.num_labels A =TFFlaubertForTokenClassification(config=snake_case__ ) A ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =self.num_choices A =TFFlaubertForMultipleChoice(config=snake_case__ ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) =config_and_inputs A ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Optional[int] ): """simple docstring""" A =TFFlaubertModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A =TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A =tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A =model(snake_case__ )[0] A =tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. A =tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
721
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a = { """ctrl""": 2_5_6, } __a = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def UpperCamelCase_ ( a_ ) ->List[str]: A =set() A =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A =char A =set(a_ ) return pairs class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]="<unk>" , **snake_case__ : List[str] ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: A =json.load(snake_case__ ) A ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: A =merges_handle.read().split("\n" )[1:-1] A =[tuple(merge.split() ) for merge in merges] A =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A ={} @property def _a ( self : str ): """simple docstring""" return len(self.encoder ) def _a ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] A =tuple(snake_case__ ) A =tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A =get_pairs(snake_case__ ) if not pairs: return token while True: A =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A , A =bigram A =[] A =0 while i < len(snake_case__ ): try: A =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A =tuple(snake_case__ ) A =new_word if len(snake_case__ ) == 1: break else: A =get_pairs(snake_case__ ) A ="@@ ".join(snake_case__ ) A =word[:-4] A =word return word def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" A =[] A =re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def _a ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : Any ): """simple docstring""" A =" ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def _a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) A =0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A =token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
0
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->int: if not nums: return 0 A =nums[0] A =0 for num in nums[1:]: A , A =( max_excluding + num, max(a_ , a_ ), ) return max(a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod()
700
def UpperCamelCase_ ( a_ , a_ ) ->list[int]: A =int(a_ ) # Initialize Result A =[] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __a = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __a = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
689
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __a = parser.parse_args() if args.model_type == "bert": __a = BertForMaskedLM.from_pretrained(args.model_name) __a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") __a = model.state_dict() __a = {} for w in ["word_embeddings", "position_embeddings"]: __a = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __a = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] __a = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __a = state_dict["""cls.predictions.decoder.weight"""] __a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: __a = state_dict[F'''cls.predictions.transform.dense.{w}'''] __a = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
701
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __get__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : int=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) A ="__cached_" + self.fget.__name__ A =getattr(snake_case__ , snake_case__ , snake_case__ ) if cached is None: A =self.fget(snake_case__ ) setattr(snake_case__ , snake_case__ , snake_case__ ) return cached def UpperCamelCase_ ( a_ ) ->Any: A =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def UpperCamelCase_ ( a_ ) ->List[str]: if is_torch_fx_proxy(a_ ): return True if is_torch_available(): import torch if isinstance(a_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(a_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(a_ , (jnp.ndarray, Tracer) ): return True return isinstance(a_ , np.ndarray ) def UpperCamelCase_ ( a_ ) ->List[Any]: return isinstance(a_ , np.ndarray ) def UpperCamelCase_ ( a_ ) ->List[str]: return _is_numpy(a_ ) def UpperCamelCase_ ( a_ ) ->Optional[int]: import torch return isinstance(a_ , torch.Tensor ) def UpperCamelCase_ ( a_ ) ->int: return False if not is_torch_available() else _is_torch(a_ ) def UpperCamelCase_ ( a_ ) ->str: import torch return isinstance(a_ , torch.device ) def UpperCamelCase_ ( a_ ) ->int: return False if not is_torch_available() else _is_torch_device(a_ ) def UpperCamelCase_ ( a_ ) ->Optional[Any]: import torch if isinstance(a_ , a_ ): if hasattr(a_ , a_ ): A =getattr(a_ , a_ ) else: return False return isinstance(a_ , torch.dtype ) def UpperCamelCase_ ( a_ ) ->Dict: return False if not is_torch_available() else _is_torch_dtype(a_ ) def UpperCamelCase_ ( a_ ) ->Any: import tensorflow as tf return isinstance(a_ , tf.Tensor ) def UpperCamelCase_ ( a_ ) ->List[str]: return False if not is_tf_available() else _is_tensorflow(a_ ) def UpperCamelCase_ ( a_ ) ->Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(a_ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(a_ ) return type(a_ ) == tf.Tensor def UpperCamelCase_ ( a_ ) ->List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(a_ ) def UpperCamelCase_ ( a_ ) ->Optional[Any]: import jax.numpy as jnp # noqa: F811 return isinstance(a_ , jnp.ndarray ) def UpperCamelCase_ ( a_ ) ->Any: return False if not is_flax_available() else _is_jax(a_ ) def UpperCamelCase_ ( a_ ) ->List[Any]: if isinstance(a_ , (dict, UserDict) ): return {k: to_py_obj(a_ ) for k, v in obj.items()} elif isinstance(a_ , (list, tuple) ): return [to_py_obj(a_ ) for o in obj] elif is_tf_tensor(a_ ): return obj.numpy().tolist() elif is_torch_tensor(a_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(a_ ): return np.asarray(a_ ).tolist() elif isinstance(a_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCamelCase_ ( a_ ) ->List[str]: if isinstance(a_ , (dict, UserDict) ): return {k: to_numpy(a_ ) for k, v in obj.items()} elif isinstance(a_ , (list, tuple) ): return np.array(a_ ) elif is_tf_tensor(a_ ): return obj.numpy() elif is_torch_tensor(a_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(a_ ): return np.asarray(a_ ) else: return obj class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A =fields(self ) # Safety and consistency checks if not len(snake_case__ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) A =getattr(self , class_fields[0].name ) A =all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(snake_case__ ): if isinstance(snake_case__ , snake_case__ ): A =first_field.items() A =True else: try: A =iter(snake_case__ ) A =True except TypeError: A =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case__ ): if ( not isinstance(snake_case__ , (list, tuple) ) or not len(snake_case__ ) == 2 or not isinstance(element[0] , snake_case__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A =element[1] elif first_field is not None: A =first_field else: for field in class_fields: A =getattr(self , field.name ) if v is not None: A =v def __delitem__( self : int , *snake_case__ : int , **snake_case__ : List[str] ): """simple docstring""" raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _a ( self : int , *snake_case__ : int , **snake_case__ : List[str] ): """simple docstring""" raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _a ( self : Any , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ): """simple docstring""" raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _a ( self : List[str] , *snake_case__ : str , **snake_case__ : List[Any] ): """simple docstring""" raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[Any] , snake_case__ : List[str] ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): A =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case__ , snake_case__ ) super().__setattr__(snake_case__ , snake_case__ ) def __setitem__( self : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] ): """simple docstring""" super().__setitem__(snake_case__ , snake_case__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case__ , snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" @classmethod def _a ( cls : Optional[int] , snake_case__ : str ): """simple docstring""" raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "longest" _A = "max_length" _A = "do_not_pad" class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "pt" _A = "tf" _A = "np" _A = "jax" class UpperCamelCase__: """simple docstring""" def __init__( self : int , snake_case__ : List[ContextManager] ): """simple docstring""" A =context_managers A =ExitStack() def __enter__( self : str ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(snake_case__ ) def __exit__( self : Dict , *snake_case__ : List[Any] , **snake_case__ : List[str] ): """simple docstring""" self.stack.__exit__(*snake_case__ , **snake_case__ ) def UpperCamelCase_ ( a_ ) ->Dict: A =infer_framework(a_ ) if framework == "tf": A =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A =inspect.signature(model_class.forward ) # PyTorch models else: A =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCamelCase_ ( a_ ) ->Optional[Any]: A =model_class.__name__ A =infer_framework(a_ ) if framework == "tf": A =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A =inspect.signature(model_class.forward ) # PyTorch models else: A =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCamelCase_ ( a_ , a_ = "" , a_ = "." ) ->Optional[Any]: def _flatten_dict(a_ , a_="" , a_="." ): for k, v in d.items(): A =str(a_ ) + delimiter + str(a_ ) if parent_key else k if v and isinstance(a_ , a_ ): yield from flatten_dict(a_ , a_ , delimiter=a_ ).items() else: yield key, v return dict(_flatten_dict(a_ , a_ , a_ ) ) @contextmanager def UpperCamelCase_ ( a_ , a_ = False ) ->str: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCamelCase_ ( a_ , a_=None ) ->Union[str, Any]: if is_numpy_array(a_ ): return np.transpose(a_ , axes=a_ ) elif is_torch_tensor(a_ ): return array.T if axes is None else array.permute(*a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.transpose(a_ , perm=a_ ) elif is_jax_tensor(a_ ): return jnp.transpose(a_ , axes=a_ ) else: raise ValueError(f'''Type not supported for transpose: {type(a_ )}.''' ) def UpperCamelCase_ ( a_ , a_ ) ->Optional[Any]: if is_numpy_array(a_ ): return np.reshape(a_ , a_ ) elif is_torch_tensor(a_ ): return array.reshape(*a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.reshape(a_ , a_ ) elif is_jax_tensor(a_ ): return jnp.reshape(a_ , a_ ) else: raise ValueError(f'''Type not supported for reshape: {type(a_ )}.''' ) def UpperCamelCase_ ( a_ , a_=None ) ->List[Any]: if is_numpy_array(a_ ): return np.squeeze(a_ , axis=a_ ) elif is_torch_tensor(a_ ): return array.squeeze() if axis is None else array.squeeze(dim=a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.squeeze(a_ , axis=a_ ) elif is_jax_tensor(a_ ): return jnp.squeeze(a_ , axis=a_ ) else: raise ValueError(f'''Type not supported for squeeze: {type(a_ )}.''' ) def UpperCamelCase_ ( a_ , a_ ) ->List[Any]: if is_numpy_array(a_ ): return np.expand_dims(a_ , a_ ) elif is_torch_tensor(a_ ): return array.unsqueeze(dim=a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.expand_dims(a_ , axis=a_ ) elif is_jax_tensor(a_ ): return jnp.expand_dims(a_ , axis=a_ ) else: raise ValueError(f'''Type not supported for expand_dims: {type(a_ )}.''' ) def UpperCamelCase_ ( a_ ) ->Any: if is_numpy_array(a_ ): return np.size(a_ ) elif is_torch_tensor(a_ ): return array.numel() elif is_tf_tensor(a_ ): import tensorflow as tf return tf.size(a_ ) elif is_jax_tensor(a_ ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(a_ )}.''' ) def UpperCamelCase_ ( a_ , a_ ) ->Any: for key, value in auto_map.items(): if isinstance(a_ , (tuple, list) ): A =[f'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: A =f'''{repo_id}--{value}''' return auto_map def UpperCamelCase_ ( a_ ) ->str: for base_class in inspect.getmro(a_ ): A =base_class.__module__ A =base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
702
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
689
0
from __future__ import annotations import os from typing import Any import requests __a = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __a = BASE_URL + """/user""" # https://github.com/settings/tokens __a = os.environ.get("""USER_TOKEN""", """""") def UpperCamelCase_ ( a_ ) ->dict[Any, Any]: A ={ "Authorization": f'''token {auth_token}''', "Accept": "application/vnd.github.v3+json", } return requests.get(a_ , headers=a_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def UpperCamelCase_ ( a_ , a_=False , a_=False ) ->List[str]: A ="backbone." if is_semantic else "" A =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', "beit.embeddings.cls_token"), (f'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"), (f'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"), (f'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCamelCase_ ( a_ , a_ , a_=False , a_=False ) ->str: for i in range(config.num_hidden_layers ): A ="backbone." if is_semantic else "" # queries, keys and values A =state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A =state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A =state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A =in_proj_weight[ : config.hidden_size, : ] A =q_bias A =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A =in_proj_weight[ -config.hidden_size :, : ] A =v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A =state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A =state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A =gamma_a A =gamma_a def UpperCamelCase_ ( a_ , a_ , a_ ) ->str: A =dct.pop(a_ ) A =val def UpperCamelCase_ ( ) ->List[Any]: A ="http://images.cocodataset.org/val2017/000000039769.jpg" A =Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( a_ , a_ , a_=False ) ->List[Any]: A =False if "rvlcdip" in checkpoint_url else True A =BeitConfig(use_absolute_position_embeddings=a_ , use_mask_token=a_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A =1024 A =4096 A =24 A =16 # labels if "rvlcdip" in checkpoint_url: A =16 A ="huggingface/label-files" A ="rvlcdip-id2label.json" A =json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) A ={int(a_ ): v for k, v in idalabel.items()} A =idalabel A ={v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A =torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["model"] A =create_rename_keys(a_ , has_lm_head=a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ , has_lm_head=a_ ) # load HuggingFace model A =BeitForMaskedImageModeling(a_ ) if has_lm_head else BeitForImageClassification(a_ ) model.eval() model.load_state_dict(a_ ) # Check outputs on an image A =BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=a_ ) A =prepare_img() A =image_processor(images=a_ , return_tensors="pt" ) A =encoding["pixel_values"] A =model(a_ ) A =outputs.logits # verify logits A =[1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(a_ ), "Shape of logits not as expected" Path(a_ ).mkdir(exist_ok=a_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) if push_to_hub: if has_lm_head: A ="dit-base" if "base" in checkpoint_url else "dit-large" else: A ="dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=a_ , ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=a_ , ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) __a = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
704
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __a = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __a = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __a = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def _a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): """simple docstring""" A =len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A =[[refs[i] for refs in references] for i in range(snake_case__ )] A =CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
from __future__ import annotations import math class UpperCamelCase__: """simple docstring""" def __init__( self : Dict , snake_case__ : int ): """simple docstring""" A =size # approximate the overall size of segment tree with given value A =[0 for i in range(0 , 4 * size )] # create array to store lazy update A =[0 for i in range(0 , 4 * size )] A =[0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" return idx * 2 def _a ( self : Any , snake_case__ : int ): """simple docstring""" return idx * 2 + 1 def _a ( self : Tuple , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : list[int] ): """simple docstring""" if left_element == right_element: A =a[left_element - 1] else: A =(left_element + right_element) // 2 self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ ) A =max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) def _a ( self : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" if self.flag[idx] is True: A =self.lazy[idx] A =False if left_element != right_element: A =self.lazy[idx] A =self.lazy[idx] A =True A =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: A =val if left_element != right_element: A =val A =val A =True A =True return True A =(left_element + right_element) // 2 self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) return True def _a ( self : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" if self.flag[idx] is True: A =self.lazy[idx] A =False if left_element != right_element: A =self.lazy[idx] A =self.lazy[idx] A =True A =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] A =(left_element + right_element) // 2 A =self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ ) return max(snake_case__ , snake_case__ ) def __str__( self : Any ): """simple docstring""" return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __a = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] __a = 1_5 __a = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
706
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase__: """simple docstring""" def __init__( self : List[str] , snake_case__ : Optional[int] , ): """simple docstring""" A =parent A =13 A =7 A =True A =True A =True A =True A =True A =False A =False A =False A =2 A =99 A =0 A =32 A =2 A =4 A =0.1 A =0.1 A =5_12 A =16 A =2 A =0.02 A =3 A =4 A ="last" A =True A =None A =0 def _a ( self : Optional[Any] ): """simple docstring""" A =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A =None if self.use_input_lengths: A =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A =None if self.use_token_type_ids: A =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A =None A =None A =None if self.use_labels: A =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A =ids_tensor([self.batch_size] , self.num_choices ) A =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self : Any , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , ): """simple docstring""" A =TFFlaubertModel(config=snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) A =[input_ids, input_mask] A =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertWithLMHeadModel(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , ): """simple docstring""" A =TFFlaubertForQuestionAnsweringSimple(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , ): """simple docstring""" A =TFFlaubertForSequenceClassification(snake_case__ ) A ={"input_ids": input_ids, "lengths": input_lengths} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , ): """simple docstring""" A =self.num_labels A =TFFlaubertForTokenClassification(config=snake_case__ ) A ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , ): """simple docstring""" A =self.num_choices A =TFFlaubertForMultipleChoice(config=snake_case__ ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A =tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) A ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) =config_and_inputs A ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self : Optional[int] ): """simple docstring""" A =TFFlaubertModelTester(self ) A =ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def _a ( self : List[Any] ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def _a ( self : Tuple ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A =TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A =TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A =tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A =model(snake_case__ )[0] A =tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. A =tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
689
0
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase_ ( a_ ) ->Optional[int]: if hor == 128: A =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") A =(32, 128, 256) A =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: A =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") A =(32, 64, 128, 256) A =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") A =torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A =model.state_dict() A ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } A =UNetaDModel(**a_ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A =state_dict.pop(a_ ) hf_value_function.load_state_dict(a_ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w" ) as f: json.dump(a_ , a_ ) def UpperCamelCase_ ( ) ->Optional[int]: A ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } A =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) A =model A =UNetaDModel(**a_ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A =state_dict.pop(a_ ) hf_value_function.load_state_dict(a_ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(a_ , a_ ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
707
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
708
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A =AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) A =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def _a ( self : int ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) A =DDPMScheduler() A =AudioDiffusionPipeline(vqvae=snake_case__ , unet=self.dummy_unet , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 ) A =output.audios[0] A =output.images[0] A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ , steps=4 , return_dict=snake_case__ ) A =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] A =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 A =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) A =DDIMScheduler() A =self.dummy_vqvae_and_unet A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(raw_audio=snake_case__ , generator=snake_case__ , start_step=5 , steps=10 ) A =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 A =self.dummy_unet_condition A =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=snake_case__ , mel=snake_case__ , scheduler=snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) np.random.seed(0 ) A =torch.rand((1, 1, 10) ) A =pipe(generator=snake_case__ , encoding=snake_case__ ) A =output.images[0] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A =torch_device A =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.Generator(device=snake_case__ ).manual_seed(42 ) A =pipe(generator=snake_case__ ) A =output.audios[0] A =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] A =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] A =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
689
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = BertJapaneseTokenizer _A = False _A = True def _a ( self : Optional[int] ): """simple docstring""" super().setUp() A =[ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _a ( self : Dict , snake_case__ : Dict ): """simple docstring""" A ="こんにちは、世界。 \nこんばんは、世界。" A ="こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def _a ( self : Union[str, Any] , snake_case__ : Tuple ): """simple docstring""" A , A =self.get_input_output_texts(snake_case__ ) A =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) A =tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def _a ( self : int ): """simple docstring""" pass # TODO add if relevant def _a ( self : List[Any] ): """simple docstring""" pass # TODO add if relevant def _a ( self : Dict ): """simple docstring""" pass # TODO add if relevant def _a ( self : Optional[int] ): """simple docstring""" A =self.tokenizer_class(self.vocab_file ) A =tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(snake_case__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _a ( self : Tuple ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(snake_case__ ) A ="こんにちは、世界。\nこんばんは、世界。" A =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(snake_case__ , "wb" ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , "rb" ) as handle: A =pickle.load(snake_case__ ) A =tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _a ( self : Optional[int] ): """simple docstring""" A =MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _a ( self : str ): """simple docstring""" try: A =MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _a ( self : Union[str, Any] ): """simple docstring""" try: A =MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _a ( self : Optional[int] ): """simple docstring""" A =MecabTokenizer(do_lower_case=snake_case__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _a ( self : List[str] ): """simple docstring""" try: A =MecabTokenizer( do_lower_case=snake_case__ , normalize_text=snake_case__ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _a ( self : str ): """simple docstring""" A =MecabTokenizer(normalize_text=snake_case__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _a ( self : Tuple ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(snake_case__ ) A ="こんにちは、世界。\nこんばんは、世界。" A =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(snake_case__ , "wb" ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , "rb" ) as handle: A =pickle.load(snake_case__ ) A =tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @require_sudachi def _a ( self : Optional[int] ): """simple docstring""" A =SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _a ( self : Any ): """simple docstring""" A =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def _a ( self : str ): """simple docstring""" A =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def _a ( self : List[Any] ): """simple docstring""" A =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def _a ( self : Any ): """simple docstring""" A =SudachiTokenizer(do_lower_case=snake_case__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _a ( self : Optional[int] ): """simple docstring""" A =SudachiTokenizer(normalize_text=snake_case__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _a ( self : Optional[int] ): """simple docstring""" A =SudachiTokenizer(trim_whitespace=snake_case__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _a ( self : List[str] ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(snake_case__ ) A ="こんにちは、世界。\nこんばんは、世界。" A =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(snake_case__ , "wb" ) as handle: pickle.dump(snake_case__ , snake_case__ ) with open(snake_case__ , "rb" ) as handle: A =pickle.load(snake_case__ ) A =tokenizer_new.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @require_jumanpp def _a ( self : List[Any] ): """simple docstring""" A =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _a ( self : int ): """simple docstring""" A =JumanppTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _a ( self : Tuple ): """simple docstring""" A =JumanppTokenizer(normalize_text=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _a ( self : Any ): """simple docstring""" A =JumanppTokenizer(trim_whitespace=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _a ( self : List[str] ): """simple docstring""" A =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _a ( self : List[Any] ): """simple docstring""" A =["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] A ={} for i, token in enumerate(snake_case__ ): A =i A =WordpieceTokenizer(vocab=snake_case__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def _a ( self : str ): """simple docstring""" A =BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) A =tokenizer.subword_tokenizer A =subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(snake_case__ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) A =subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(snake_case__ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def _a ( self : Optional[Any] ): """simple docstring""" A =self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) A =tokenizer.encode("ありがとう。" , add_special_tokens=snake_case__ ) A =tokenizer.encode("どういたしまして。" , add_special_tokens=snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = BertJapaneseTokenizer _A = False def _a ( self : List[str] ): """simple docstring""" super().setUp() A =["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _a ( self : str , **snake_case__ : Optional[int] ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **snake_case__ ) def _a ( self : Dict , snake_case__ : int ): """simple docstring""" A ="こんにちは、世界。 \nこんばんは、世界。" A ="こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def _a ( self : Dict ): """simple docstring""" pass # TODO add if relevant def _a ( self : Optional[int] ): """simple docstring""" pass # TODO add if relevant def _a ( self : int ): """simple docstring""" pass # TODO add if relevant def _a ( self : Union[str, Any] ): """simple docstring""" A =self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) A =tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( snake_case__ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _a ( self : Any ): """simple docstring""" A =["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] A ={} for i, token in enumerate(snake_case__ ): A =i A =CharacterTokenizer(vocab=snake_case__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def _a ( self : List[Any] ): """simple docstring""" A =self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) A =tokenizer.encode("ありがとう。" , add_special_tokens=snake_case__ ) A =tokenizer.encode("どういたしまして。" , add_special_tokens=snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ ) A =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A ="cl-tohoku/bert-base-japanese" A =AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A ="cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(snake_case__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) A ="bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(snake_case__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
709
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
0
import numpy as np def UpperCamelCase_ ( a_ ) ->np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
710
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: """simple docstring""" _A = 42 _A = None _A = None __a = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase_ ( a_ ) ->int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A , A =get_distrib(node.left ) A , A =get_distrib(node.right ) A =1 - left_distrib_excess A =1 - right_distrib_excess A =( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) A =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
0
from collections import deque from .hash_table import HashTable class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , *snake_case__ : Optional[int] , **snake_case__ : str ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" A =deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(snake_case__ ) A =self.values[key] def _a ( self : Dict ): """simple docstring""" return ( sum(self.charge_factor - len(snake_case__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def _a ( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any]=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(snake_case__ ) == 0 ): return key return super()._collision_resolution(snake_case__ , snake_case__ )
711
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.txt"""} __a = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __a = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def UpperCamelCase_ ( a_ ) ->List[Any]: A =collections.OrderedDict() with open(a_ , "r" , encoding="utf-8" ) as reader: A =reader.readlines() for index, token in enumerate(a_ ): A =token.rstrip("\n" ) A =index return vocab class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ): """simple docstring""" A =vocab A =unk_token A =max_input_chars_per_word def _a ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" A =list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] A =0 A =[] while start < len(snake_case__ ): A =len(snake_case__ ) A =None while start < end: A ="".join(chars[start:end] ) if substr in self.vocab: A =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) A =end return sub_tokens class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] _A = False def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) A =bod_token A =eod_token A =load_vocab(snake_case__ ) A =self.encoder[space_token] A =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) A ={v: k for k, v in self.encoder.items()} A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _a ( self : Dict ): """simple docstring""" return self.encoder[self.bod_token] @property def _a ( self : List[str] ): """simple docstring""" return self.encoder[self.eod_token] @property def _a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def _a ( self : List[str] ): """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =[] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ): """simple docstring""" A =[i for i in token_ids if i >= 0] A =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def _a ( self : List[Any] , snake_case__ : int ): """simple docstring""" return token in self.encoder def _a ( self : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" return "".join(snake_case__ ) def _a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if os.path.isdir(snake_case__ ): A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A =(filename_prefix + "-" if filename_prefix else "") + save_directory A =0 if " " in self.encoder: A =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A =self.encoder["\n"] del self.encoder["\n"] A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
689
0
def UpperCamelCase_ ( a_ ) ->list: if len(a_ ) < 2: return collection def circle_sort_util(a_ , a_ , a_ ) -> bool: A =False if low == high: return swapped A =low A =high while left < right: if collection[left] > collection[right]: A , A =( collection[right], collection[left], ) A =True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: A , A =( collection[right + 1], collection[left], ) A =True A =low + int((high - low) / 2 ) A =circle_sort_util(a_ , a_ , a_ ) A =circle_sort_util(a_ , mid + 1 , a_ ) return swapped or left_swap or right_swap A =True while is_not_sorted is True: A =circle_sort_util(a_ , 0 , len(a_ ) - 1 ) return collection if __name__ == "__main__": __a = input("""Enter numbers separated by a comma:\n""").strip() __a = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
712
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
0
'''simple docstring''' __a = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCamelCase_ ( a_ ) ->int: A ={"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} A =Stack() A =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a_ ) ) elif i in operators: # RULE 2 operator_stack.push(a_ ) elif i == ")": # RULE 4 A =operator_stack.peek() operator_stack.pop() A =operand_stack.peek() operand_stack.pop() A =operand_stack.peek() operand_stack.pop() A =operators[opr](a_ , a_ ) operand_stack.push(a_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __a = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
713
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = DanceDiffusionPipeline _A = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _A = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _A = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _A = False _A = False def _a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case__ , use_timestep_embedding=snake_case__ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) A =IPNDMScheduler() A ={ "unet": unet, "scheduler": scheduler, } return components def _a ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): A =torch.manual_seed(snake_case__ ) else: A =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) A ={ "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def _a ( self : List[Any] ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =self.get_dummy_components() A =DanceDiffusionPipeline(**snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =self.get_dummy_inputs(snake_case__ ) A =pipe(**snake_case__ ) A =output.audios A =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) A =np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a ( self : str ): """simple docstring""" return super().test_save_load_local() @skip_mps def _a ( self : str ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _a ( self : Optional[int] ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : Dict ): """simple docstring""" return super().test_attention_slicing_forward_pass() def _a ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): """simple docstring""" A =torch_device A =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.manual_seed(0 ) A =pipe(generator=snake_case__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) A =output.audios A =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A =np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self : List[str] ): """simple docstring""" A =torch_device A =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =torch.manual_seed(0 ) A =pipe(generator=snake_case__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) A =output.audios A =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A =np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
714
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
689
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __a = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase__( datasets.BuilderConfig ): """simple docstring""" _A = None def UpperCamelCase_ ( a_ , a_ , ) ->Optional[Any]: import pyspark def generate_fn(): A =df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: A =df_with_partition_id.select("*" ).where(f'''part_id = {partition_id}''' ).drop("part_id" ) A =partition_df.collect() A =0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class UpperCamelCase__( _BaseExamplesIterable ): """simple docstring""" def __init__( self : List[str] , snake_case__ : "pyspark.sql.DataFrame" , snake_case__ : List[Any]=None , ): """simple docstring""" A =df A =partition_order or range(self.df.rdd.getNumPartitions() ) A =_generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Dict ): """simple docstring""" yield from self.generate_examples_fn() def _a ( self : Union[str, Any] , snake_case__ : np.random.Generator ): """simple docstring""" A =list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) def _a ( self : str , snake_case__ : int , snake_case__ : int ): """simple docstring""" A =self.split_shard_indices_by_worker(snake_case__ , snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) @property def _a ( self : List[Any] ): """simple docstring""" return len(self.partition_order ) class UpperCamelCase__( datasets.DatasetBuilder ): """simple docstring""" _A = SparkConfig def __init__( self : List[str] , snake_case__ : "pyspark.sql.DataFrame" , snake_case__ : str = None , snake_case__ : str = None , **snake_case__ : List[str] , ): """simple docstring""" import pyspark A =pyspark.sql.SparkSession.builder.getOrCreate() A =df A =working_dir super().__init__( cache_dir=snake_case__ , config_name=str(self.df.semanticHash() ) , **snake_case__ , ) def _a ( self : Dict ): """simple docstring""" def create_cache_and_write_probe(snake_case__ : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case__ ) A =os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case__ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: A =( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _a ( self : Dict ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _a ( self : List[str] , snake_case__ : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _a ( self : Any , snake_case__ : Optional[int] ): """simple docstring""" import pyspark def get_arrow_batch_size(snake_case__ : Optional[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) A =self.df.count() A =df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. A =( self.df.limit(snake_case__ ) .repartition(1 ) .mapInArrow(snake_case__ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) A =approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. A =min(snake_case__ , int(approx_total_size / max_shard_size ) ) A =self.df.repartition(snake_case__ ) def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : int , ): """simple docstring""" import pyspark A =ParquetWriter if file_format == "parquet" else ArrowWriter A =os.path.join(self._working_dir , os.path.basename(snake_case__ ) ) if self._working_dir else fpath A =file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. A =self.config.features A =self._writer_batch_size A =self._fs.storage_options def write_arrow(snake_case__ : Union[str, Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. A =pyspark.TaskContext().taskAttemptId() A =next(snake_case__ , snake_case__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) A =0 A =writer_class( features=snake_case__ , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) A =pa.Table.from_batches([first_batch] ) writer.write_table(snake_case__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: A , A =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 A =writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) A =pa.Table.from_batches([batch] ) writer.write_table(snake_case__ ) if writer._num_bytes > 0: A , A =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case__ ) ): A =os.path.join(os.path.dirname(snake_case__ ) , os.path.basename(snake_case__ ) ) shutil.move(snake_case__ , snake_case__ ) A =( self.df.mapInArrow(snake_case__ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _a ( self : List[str] , snake_case__ : "datasets.SplitGenerator" , snake_case__ : str = "arrow" , snake_case__ : Optional[Union[str, int]] = None , snake_case__ : Optional[int] = None , **snake_case__ : Optional[Any] , ): """simple docstring""" self._validate_cache_dir() A =convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case__ ) A =not is_remote_filesystem(self._fs ) A =os.path.join if is_local else posixpath.join A ="-TTTTT-SSSSS-of-NNNNN" A =f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' A =path_join(self._output_dir , snake_case__ ) A =0 A =0 A =0 A =[] A =[] for task_id, content in self._prepare_split_single(snake_case__ , snake_case__ , snake_case__ ): ( ( A ) , ( A ) , ( A ) , ( A ) , ) =content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case__ ) A =total_num_examples A =total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: A =all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. A =self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case__ : int , snake_case__ : int , snake_case__ : int , ): rename( snake_case__ , fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace("TTTTT-SSSSS" , f'''{global_shard_id:05d}''' ).replace("NNNNN" , f'''{total_shards:05d}''' ) , ) A =[] A =0 for i in range(len(snake_case__ ) ): A , A =task_id_and_num_shards[i] for shard_id in range(snake_case__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case__ , len(snake_case__ ) ).map(lambda snake_case__ : _rename_shard(*snake_case__ ) ).collect() else: # don't use any pattern A =0 A =task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace(snake_case__ , "" ) , ) def _a ( self : Union[str, Any] , snake_case__ : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
715
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __a = logging.get_logger(__name__) __a = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "gptj" _A = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , snake_case__ : str=5_04_00 , snake_case__ : List[str]=20_48 , snake_case__ : List[str]=40_96 , snake_case__ : Optional[int]=28 , snake_case__ : Dict=16 , snake_case__ : Tuple=64 , snake_case__ : str=None , snake_case__ : Optional[Any]="gelu_new" , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : Any=1E-5 , snake_case__ : str=0.02 , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=5_02_56 , snake_case__ : List[str]=5_02_56 , snake_case__ : str=False , **snake_case__ : int , ): """simple docstring""" A =vocab_size A =n_positions A =n_embd A =n_layer A =n_head A =n_inner A =rotary_dim A =activation_function A =resid_pdrop A =embd_pdrop A =attn_pdrop A =layer_norm_epsilon A =initializer_range A =use_cache A =bos_token_id A =eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , snake_case__ : PretrainedConfig , snake_case__ : str = "default" , snake_case__ : List[PatchingSpec] = None , snake_case__ : bool = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? A =0 @property def _a ( self : Tuple ): """simple docstring""" A =OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) A ={0: "batch", 1: "past_sequence + sequence"} else: A ={0: "batch", 1: "sequence"} return common_inputs @property def _a ( self : int ): """simple docstring""" return self._config.n_layer @property def _a ( self : List[str] ): """simple docstring""" return self._config.n_head def _a ( self : Dict , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): """simple docstring""" A =super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() A =OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A , A =common_inputs["input_ids"].shape # Not using the same length for past_key_values A =seqlen + 2 A =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A =[ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] A =common_inputs["attention_mask"] if self.use_past: A =ordered_inputs["attention_mask"].dtype A =torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def _a ( self : Dict ): """simple docstring""" return 13
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""MobileViTFeatureExtractor"""] __a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __a = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" A =0 def _a ( self : int ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _a ( self : Optional[int] ): """simple docstring""" A =AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : Union[str, Any] ): """simple docstring""" A =AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : Dict ): """simple docstring""" A =AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : Dict ): """simple docstring""" A =AutoConfig.for_model("roberta" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _a ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A =os.path.join(snake_case__ , "fake-roberta" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(os.path.join(snake_case__ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) A =AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(type(snake_case__ ) , snake_case__ ) def _a ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom" , snake_case__ ) # Wrong model type will raise an error with self.assertRaises(snake_case__ ): AutoConfig.register("model" , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoConfig.register("bert" , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API A =CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) A =AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _a ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): A =AutoConfig.from_pretrained("bert-base" ) def _a ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): A =AutoConfig.from_pretrained(snake_case__ , revision="aaaaaa" ) def _a ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): A =AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _a ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(snake_case__ ): A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=snake_case__ ) A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) A =AutoConfig.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _a ( self : Union[str, Any] ): """simple docstring""" class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "new-model" try: AutoConfig.register("new-model" , snake_case__ ) # If remote code is not set, the default is to use local A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub A =AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=snake_case__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
717
def UpperCamelCase_ ( a_ , a_ ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase_ ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
689
0
from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class UpperCamelCase__: """simple docstring""" def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=None ): """simple docstring""" A =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , snake_case__ , getattr(snake_case__ , snake_case__ ) ) A =module._original_module if isinstance(snake_case__ , _PatchedModuleObj ) else module class UpperCamelCase__: """simple docstring""" _A = [] def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=None ): """simple docstring""" A =obj A =target A =new A =target.split("." )[0] A ={} A =attrs or [] def __enter__( self : int ): """simple docstring""" *A , A =self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case__ ) ): try: A =import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): A =getattr(self.obj , snake_case__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): A =obj_attr # patch at top level setattr(self.obj , snake_case__ , _PatchedModuleObj(snake_case__ , attrs=self.attrs ) ) A =getattr(self.obj , snake_case__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case__ , snake_case__ , _PatchedModuleObj(getattr(snake_case__ , snake_case__ , snake_case__ ) , attrs=self.attrs ) ) A =getattr(snake_case__ , snake_case__ ) # finally set the target attribute setattr(snake_case__ , snake_case__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: A =getattr(import_module(".".join(snake_case__ ) ) , snake_case__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case__ ) is attr_value: A =getattr(self.obj , snake_case__ ) setattr(self.obj , snake_case__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" A =globals()["__builtins__"][target_attr] setattr(self.obj , snake_case__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : Any , *snake_case__ : Tuple ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , snake_case__ , self.original.pop(snake_case__ ) ) def _a ( self : Dict ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def _a ( self : Optional[int] ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
718
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations(a_ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: def count_of_possible_combinations_with_dp_array( a_ , a_ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A =sum( count_of_possible_combinations_with_dp_array(target - item , a_ ) for item in array ) A =answer return answer A =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a_ , a_ ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: A =[0] * (target + 1) A =1 for i in range(1 , target + 1 ): for j in range(a_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __a = 3 __a = 5 __a = [1, 2, 5] print(combination_sum_iv(n, array, target))
689
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 1_6 __a = 3_2 def UpperCamelCase_ ( a_ , a_ = 16 ) ->Dict: A =AutoTokenizer.from_pretrained("bert-base-cased" ) A =load_dataset("glue" , "mrpc" ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) A =tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A =datasets.map( a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A =tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A =16 elif accelerator.mixed_precision != "no": A =8 else: A =None return tokenizer.pad( a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , ) # Instantiate dataloaders. A =DataLoader( tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) A =DataLoader( tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( a_ , a_ ) ->Dict: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1": A =2 # Initialize accelerator A =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A =config["lr"] A =int(config["num_epochs"] ) A =int(config["seed"] ) A =int(config["batch_size"] ) A =evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A =batch_size // MAX_GPU_BATCH_SIZE A =MAX_GPU_BATCH_SIZE set_seed(a_ ) A , A =get_dataloaders(a_ , a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A =AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A =model.to(accelerator.device ) # Instantiate optimizer A =AdamW(params=model.parameters() , lr=a_ ) # Instantiate scheduler A =get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A =accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A =model(**a_ ) A =outputs.loss A =loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A =0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A =model(**a_ ) A =outputs.logits.argmax(dim=-1 ) A , A =accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(a_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A =predictions[: len(eval_dataloader.dataset ) - samples_seen] A =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=a_ , references=a_ , ) A =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , a_ ) def UpperCamelCase_ ( ) ->List[str]: A =argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A =parser.parse_args() A ={"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
def UpperCamelCase_ ( a_ , a_ ) ->List[str]: A =0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCamelCase_ ( a_ , a_ , a_ ) ->Optional[Any]: A =0 while b > 0: if b & 1: A =((res % c) + (a % c)) % c a += a b >>= 1 return res
720
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase_ ( a_ ) ->Any: # getting number of pixels in the image A , A =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_ ): for j in range(a_ ): A =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread("""image_data/lena.jpg""", 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
689
0
import re import string import numpy as np import datasets __a = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ __a = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ __a = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _a ( self : str , snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=False , snake_case__ : Any=False , snake_case__ : Optional[int]=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: A =np.array([re.sub(snake_case__ , "" , snake_case__ ) for x in predictions] ) A =np.array([re.sub(snake_case__ , "" , snake_case__ ) for x in references] ) else: A =np.asarray(snake_case__ ) A =np.asarray(snake_case__ ) if ignore_case: A =np.char.lower(snake_case__ ) A =np.char.lower(snake_case__ ) if ignore_punctuation: A =string.punctuation.maketrans("" , "" , string.punctuation ) A =np.char.translate(snake_case__ , table=snake_case__ ) A =np.char.translate(snake_case__ , table=snake_case__ ) if ignore_numbers: A =string.digits.maketrans("" , "" , string.digits ) A =np.char.translate(snake_case__ , table=snake_case__ ) A =np.char.translate(snake_case__ , table=snake_case__ ) A =predictions == references return {"exact_match": np.mean(snake_case__ ) * 1_00}
721
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a = { """ctrl""": 2_5_6, } __a = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def UpperCamelCase_ ( a_ ) ->List[str]: A =set() A =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A =char A =set(a_ ) return pairs class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]="<unk>" , **snake_case__ : List[str] ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: A =json.load(snake_case__ ) A ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: A =merges_handle.read().split("\n" )[1:-1] A =[tuple(merge.split() ) for merge in merges] A =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A ={} @property def _a ( self : str ): """simple docstring""" return len(self.encoder ) def _a ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] A =tuple(snake_case__ ) A =tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A =get_pairs(snake_case__ ) if not pairs: return token while True: A =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A , A =bigram A =[] A =0 while i < len(snake_case__ ): try: A =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A =tuple(snake_case__ ) A =new_word if len(snake_case__ ) == 1: break else: A =get_pairs(snake_case__ ) A ="@@ ".join(snake_case__ ) A =word[:-4] A =word return word def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" A =[] A =re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def _a ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : Any ): """simple docstring""" A =" ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def _a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) A =0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A =token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ ={ "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _a ( UpperCAmelCase__ ) -> Optional[int]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if args.student_type == "roberta": __SCREAMING_SNAKE_CASE = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE = False def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: if args.student_type == "roberta": __SCREAMING_SNAKE_CASE = False def _a ( ) -> Tuple: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=UpperCAmelCase__ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=UpperCAmelCase__ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=UpperCAmelCase__ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=UpperCAmelCase__ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=UpperCAmelCase__ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=UpperCAmelCase__ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=UpperCAmelCase__ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=UpperCAmelCase__ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=UpperCAmelCase__ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=UpperCAmelCase__ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=UpperCAmelCase__ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=UpperCAmelCase__ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=UpperCAmelCase__ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=UpperCAmelCase__ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=UpperCAmelCase__ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=UpperCAmelCase__ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=UpperCAmelCase__ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=UpperCAmelCase__ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=UpperCAmelCase__ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=UpperCAmelCase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=UpperCAmelCase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=UpperCAmelCase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=UpperCAmelCase__ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=UpperCAmelCase__ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=UpperCAmelCase__ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=UpperCAmelCase__ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=UpperCAmelCase__ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=UpperCAmelCase__ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=UpperCAmelCase__ , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=UpperCAmelCase__ , default=40_00 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE = parser.parse_args() sanity_checks(UpperCAmelCase__ ) # ARGS # init_gpu_params(UpperCAmelCase__ ) set_seed(UpperCAmelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(UpperCAmelCase__ ) , UpperCAmelCase__ , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE = tokenizer.all_special_tokens.index(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) __SCREAMING_SNAKE_CASE = special_tok_ids __SCREAMING_SNAKE_CASE = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE = pickle.load(UpperCAmelCase__ ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE = pickle.load(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.maximum(UpperCAmelCase__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = LmSeqsDataset(params=UpperCAmelCase__ , data=UpperCAmelCase__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) __SCREAMING_SNAKE_CASE = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) __SCREAMING_SNAKE_CASE = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = student_model_class(UpperCAmelCase__ ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCAmelCase__ ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCAmelCase__ , UpperCAmelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCAmelCase__ , UpperCAmelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE = Distiller( params=UpperCAmelCase__ , dataset=UpperCAmelCase__ , token_probs=UpperCAmelCase__ , student=UpperCAmelCase__ , teacher=UpperCAmelCase__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ =200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> tuple[str, float]: __SCREAMING_SNAKE_CASE = len([g for position, g in enumerate(UpperCAmelCase__ ) if g == main_target[position]] ) return (item, float(UpperCAmelCase__ )) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> tuple[str, str]: __SCREAMING_SNAKE_CASE = random.randint(0 , len(UpperCAmelCase__ ) - 1 ) __SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] __SCREAMING_SNAKE_CASE = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __SCREAMING_SNAKE_CASE = random.choice(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> list[str]: __SCREAMING_SNAKE_CASE = [] # Generate more children proportionally to the fitness score. __SCREAMING_SNAKE_CASE = int(parent_a[1] * 1_00 ) + 1 __SCREAMING_SNAKE_CASE = 10 if child_n >= 10 else child_n for _ in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = population_score[random.randint(0 , UpperCAmelCase__ )][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = crossover(parent_a[0] , UpperCAmelCase__ ) # Append new string to the population list. pop.append(mutate(UpperCAmelCase__ , UpperCAmelCase__ ) ) pop.append(mutate(UpperCAmelCase__ , UpperCAmelCase__ ) ) return pop def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __SCREAMING_SNAKE_CASE = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(UpperCAmelCase__ ) # Verify that the target contains no genes besides the ones inside genes variable. __SCREAMING_SNAKE_CASE = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __SCREAMING_SNAKE_CASE = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(UpperCAmelCase__ ) # Generate random starting population. __SCREAMING_SNAKE_CASE = [] for _ in range(UpperCAmelCase__ ): population.append(''''''.join([random.choice(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) )] ) ) # Just some logs to know what the algorithms is doing. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCAmelCase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __SCREAMING_SNAKE_CASE = [evaluate(UpperCAmelCase__ , UpperCAmelCase__ ) for item in population] # Check if there is a matching evolution. __SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x[1] , reverse=UpperCAmelCase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __SCREAMING_SNAKE_CASE = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCAmelCase__ ) # Normalize population score to be between 0 and 1. __SCREAMING_SNAKE_CASE = [ (item, score / len(UpperCAmelCase__ )) for item, score in population_score ] # This is selection for i in range(UpperCAmelCase__ ): population.extend(select(population_score[int(UpperCAmelCase__ )] , UpperCAmelCase__ , UpperCAmelCase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCAmelCase__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCAmelCase__ =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
690
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
1
"""simple docstring""" def _a ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 while len(UpperCAmelCase__ ) < 1E6: constant.append(str(UpperCAmelCase__ ) ) i += 1 __SCREAMING_SNAKE_CASE = ''''''.join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
690
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _a ( UpperCAmelCase__ = "laptop" ) -> DataFrame: __SCREAMING_SNAKE_CASE = f"""https://www.amazon.in/laptop/s?k={product}""" __SCREAMING_SNAKE_CASE = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(UpperCAmelCase__ , headers=UpperCAmelCase__ ).text ) # Initialize a Pandas dataframe with the column titles __SCREAMING_SNAKE_CASE = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: __SCREAMING_SNAKE_CASE = item.ha.text __SCREAMING_SNAKE_CASE = '''https://www.amazon.in/''' + item.ha.a['''href'''] __SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: __SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: __SCREAMING_SNAKE_CASE = '''Not available''' try: __SCREAMING_SNAKE_CASE = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: __SCREAMING_SNAKE_CASE = '''''' try: __SCREAMING_SNAKE_CASE = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: __SCREAMING_SNAKE_CASE = float('''nan''' ) except AttributeError: pass __SCREAMING_SNAKE_CASE = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __SCREAMING_SNAKE_CASE = ''' ''' __SCREAMING_SNAKE_CASE = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase__ ="headphones" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
690
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ =8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, float]: __SCREAMING_SNAKE_CASE = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE = abs(UpperCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> list[int]: __SCREAMING_SNAKE_CASE = [0 for i in range(len(UpperCAmelCase__ ) )] # initialize interval's left pointer and right pointer __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 for i in range(1 , len(UpperCAmelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: __SCREAMING_SNAKE_CASE = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __SCREAMING_SNAKE_CASE = min_edge while go_next(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = i, i + z_result[i] - 1 return z_result def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: return i + z_result[i] < len(UpperCAmelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __SCREAMING_SNAKE_CASE = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCAmelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A__: def __init__( self : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None class A__: def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Node ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = tree def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Any ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCAmelCase__ =logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) lowerCAmelCase__ =parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCAmelCase__ =pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCAmelCase__ =Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase__ =[0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase__ =v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
690
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__( unittest.TestCase ): @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _a ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__( unittest.TestCase ): def _a ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''google/ncsnpp-celebahq-256''' __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
690
1
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = IFImgaImgSuperResolutionPipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self._get_superresolution_dummy_components() def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _a ( self : Tuple ) -> Any: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _a ( self : str ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self : List[Any] ) -> Any: """simple docstring""" self._test_save_load_local() def _a ( self : List[Any] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A__( unittest.TestCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Any=18 , __SCREAMING_SNAKE_CASE : Optional[int]=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4_00 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size if size is not None else {'''height''': 18, '''width''': 20} __SCREAMING_SNAKE_CASE = do_thumbnail __SCREAMING_SNAKE_CASE = do_align_axis __SCREAMING_SNAKE_CASE = do_pad __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std def _a ( self : str ) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _a ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DonutImageProcessingTester(self ) @property def _a ( self : str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) def _a ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _a ( self : Dict ) -> int: """simple docstring""" pass @is_flaky() def _a ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _a ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
690
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ ="platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Tuple: if attention_mask is None: __SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A__: def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int]=13 , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = initializer_range def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __SCREAMING_SNAKE_CASE = shift_tokens_right(__SCREAMING_SNAKE_CASE , 1 , 2 ) __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A__( unittest.TestCase ): lowerCAmelCase = 99 def _a ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._get_config_and_data() __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = lm_model(input_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = lm_model(input_ids=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = shift_tokens_right(__SCREAMING_SNAKE_CASE , 1 , 2 ) __SCREAMING_SNAKE_CASE = np.equal(__SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() __SCREAMING_SNAKE_CASE = np.equal(__SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__SCREAMING_SNAKE_CASE , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A__( __magic_name__ , unittest.TestCase , __magic_name__ ): lowerCAmelCase = True lowerCAmelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _a ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxBlenderbotModelTester(self ) def _a ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Optional[int] ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __SCREAMING_SNAKE_CASE = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) * model.config.eos_token_id __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def _a ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} __SCREAMING_SNAKE_CASE = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __SCREAMING_SNAKE_CASE = ['''Sam'''] __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''jax''' ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''Sam is a great name. It means "sun" in Gaelic.''' __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) assert generated_txt[0].strip() == tgt_text
690
"""simple docstring""" def _a ( UpperCAmelCase__ = 10**9 ) -> int: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
690
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__( __magic_name__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : "Image" , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE = task_prompt.replace('''{user_input}''' , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE = self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ).sequences def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE = re.sub(r'''<.*?>''' , '''''' , __SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(__SCREAMING_SNAKE_CASE ) return sequence["answer"]
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase__ =dataset.iloc[:, 1:2].values lowerCAmelCase__ =dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ =train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ =PolynomialFeatures(degree=4) lowerCAmelCase__ =poly_reg.fit_transform(X) lowerCAmelCase__ =LinearRegression() pol_reg.fit(X_poly, y) def _a ( ) -> List[Any]: plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _a ( UpperCAmelCase__ ) -> List[Any]: if not is_accelerate_available(): return method __SCREAMING_SNAKE_CASE = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCAmelCase__ ) < version.parse('''0.17.0''' ): return method def wrapper(self , *UpperCAmelCase__ , **UpperCAmelCase__ ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCAmelCase__ , **UpperCAmelCase__ ) return wrapper
690
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__: lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=99 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=20 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Optional[int]: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class A__( unittest.TestCase ): lowerCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
690
1