code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[Any] = sorted(numsa + numsa )
A, A : Dict = divmod(len(UpperCamelCase_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase : List[str] = [float(x) for x in input('Enter the elements of first array: ').split()]
lowercase : int = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 3 | def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
# Base Case
if index == len(UpperCamelCase_ ):
return True
# Recursive Step
for i in range(UpperCamelCase_ ):
if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ):
# Color current vertex
UpperCamelCase = i
# Validate coloring
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ):
return True
# Backtrack
UpperCamelCase = -1
return False
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]:
'''simple docstring'''
UpperCamelCase = [-1] * len(UpperCamelCase_ )
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ):
return colored_vertices
return []
| 343 | 0 |
'''simple docstring'''
from jiwer import compute_measures
import datasets
__lowercase : List[str] = '''\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
'''
__lowercase : Any = '''\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
'''
__lowercase : int = '''
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase ( datasets.Metric ):
def UpperCAmelCase__ (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def UpperCAmelCase__ (self , A=None , A=None , A=False ):
if concatenate_texts:
return compute_measures(lowerCamelCase_ , lowerCamelCase_ )["wer"]
else:
lowerCamelCase_ : Tuple = 0
lowerCamelCase_ : Dict = 0
for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_ ):
lowerCamelCase_ : Optional[int] = compute_measures(lowerCamelCase_ , lowerCamelCase_ )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 318 | import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
_SCREAMING_SNAKE_CASE = {
"""allenai/led-base-16384""": 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase( ) -> List[str]:
'''simple docstring'''
UpperCamelCase = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
UpperCamelCase = bs[:]
UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCamelCase_ )
cs.append(2**8 + n )
n += 1
UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs]
return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
return pairs
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = VOCAB_FILES_NAMES
__lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ):
"""simple docstring"""
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , )
with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle:
UpperCamelCase = json.load(lowerCamelCase_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = errors # how to handle errors in decoding
UpperCamelCase = bytes_to_unicode()
UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle:
UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
UpperCamelCase = {}
UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return len(self.encoder )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(lowerCamelCase_ ):
try:
UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCamelCase = get_pairs(lowerCamelCase_ )
UpperCamelCase = """ """.join(lowerCamelCase_ )
UpperCamelCase = word
return word
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = []
for token in re.findall(self.pat , lowerCamelCase_ ):
UpperCamelCase = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) )
return bpe_tokens
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
return self.decoder.get(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = """""".join(lowerCamelCase_ )
UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(lowerCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" )
UpperCamelCase = 0
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
UpperCamelCase = token_index
writer.write(""" """.join(lowerCamelCase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCamelCase = """ """ + text
return (text, kwargs)
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ):
"""simple docstring"""
UpperCamelCase = super()._pad(
encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
# Load from model defaults
if return_attention_mask is None:
UpperCamelCase = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCamelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCamelCase = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
UpperCamelCase = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 343 | 0 |
from typing import Any
import numpy as np
def __lowerCAmelCase ( a__ ) -> bool:
return np.array_equal(UpperCamelCase_ , matrix.conjugate().T )
def __lowerCAmelCase ( a__ , a__ ) -> Any:
__a = v.conjugate().T
__a = v_star.dot(UpperCamelCase_ )
assert isinstance(UpperCamelCase_ , np.ndarray )
return (v_star_dot.dot(UpperCamelCase_ )) / (v_star.dot(UpperCamelCase_ ))
def __lowerCAmelCase ( ) -> None:
__a = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
__a = np.array([[1], [2], [3]] )
assert is_hermitian(UpperCamelCase_ ), F"""{a} is not hermitian."""
print(rayleigh_quotient(UpperCamelCase_ , UpperCamelCase_ ) )
__a = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(UpperCamelCase_ ), F"""{a} is not hermitian."""
assert rayleigh_quotient(UpperCamelCase_ , UpperCamelCase_ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests() | 6 | import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_SCREAMING_SNAKE_CASE = (
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]),
("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 2_3),
("""JH 9H TH KH QH""", 2_2),
("""JC KH JS JD JH""", 2_1),
("""KH KC 3S 3H 3D""", 2_0),
("""8C 9C 5C 3C TC""", 1_9),
("""JS QS 9H TS KH""", 1_8),
("""7C 7S KH 2H 7H""", 1_7),
("""3C KH 5D 5S KH""", 1_6),
("""QH 8H KD JH 8S""", 1_5),
("""2D 6D 9D TH 7D""", 1_4),
)
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) )
UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowercase( UpperCamelCase_ = 100 ) -> List[Any]:
'''simple docstring'''
return (generate_random_hand() for _ in range(UpperCamelCase_ ))
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict:
'''simple docstring'''
UpperCamelCase = PokerHand(UpperCamelCase_ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS]
UpperCamelCase = poker_hands.copy()
shuffle(UpperCamelCase_ )
UpperCamelCase = chain(sorted(UpperCamelCase_ ) )
for index, hand in enumerate(UpperCamelCase_ ):
assert hand == poker_hands[index]
def lowercase( ) -> Union[str, Any]:
'''simple docstring'''
# Test that five high straights are compared correctly.
UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=UpperCamelCase_ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowercase( ) -> str:
'''simple docstring'''
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" )
UpperCamelCase = True
UpperCamelCase = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowercase( ) -> int:
'''simple docstring'''
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
UpperCamelCase = 0
UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" )
with open(UpperCamelCase_ ) as file_hand:
for line in file_hand:
UpperCamelCase = line[:14].strip()
UpperCamelCase = line[15:].strip()
UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ )
UpperCamelCase = player.compare_with(UpperCamelCase_ )
if output == "Win":
answer += 1
assert answer == 376
| 343 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
@staticmethod
def UpperCamelCase__ ( *__a : int , **__a : Optional[Any] ):
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
__a =MODEL_FOR_OBJECT_DETECTION_MAPPING
def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] , __a : int , __a : Union[str, Any] ):
_a = ObjectDetectionPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def UpperCamelCase__ ( self : Dict , __a : str , __a : Union[str, Any] ):
_a = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(lowerCamelCase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase_ , {
"score": ANY(lowerCamelCase_ ),
"label": ANY(lowerCamelCase_ ),
"box": {"xmin": ANY(lowerCamelCase_ ), "ymin": ANY(lowerCamelCase_ ), "xmax": ANY(lowerCamelCase_ ), "ymax": ANY(lowerCamelCase_ )},
} , )
import datasets
_a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
_a = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
_a = object_detector(lowerCamelCase_ , threshold=0.0 )
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCamelCase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase_ , {
"score": ANY(lowerCamelCase_ ),
"label": ANY(lowerCamelCase_ ),
"box": {"xmin": ANY(lowerCamelCase_ ), "ymin": ANY(lowerCamelCase_ ), "xmax": ANY(lowerCamelCase_ ), "ymax": ANY(lowerCamelCase_ )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def UpperCamelCase__ ( self : List[str] ):
pass
@require_torch
def UpperCamelCase__ ( self : List[str] ):
_a = "hf-internal-testing/tiny-detr-mobilenetsv3"
_a = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ )
_a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
_a = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
[
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : List[Any] ):
_a = "facebook/detr-resnet-50"
_a = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ )
_a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
_a = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = "facebook/detr-resnet-50"
_a = pipeline("object-detection" , model=lowerCamelCase_ )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
_a = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = 0.9985
_a = "facebook/detr-resnet-50"
_a = pipeline("object-detection" , model=lowerCamelCase_ )
_a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCamelCase_ )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def UpperCamelCase__ ( self : str ):
_a = "Narsil/layoutlmv3-finetuned-funsd"
_a = 0.9993
_a = pipeline("object-detection" , model=lowerCamelCase_ , threshold=lowerCamelCase_ )
_a = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(lowerCamelCase_ , decimals=4 ) , [
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
{"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
] , )
| 63 | import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """xlnet"""
__lowerCAmelCase = ["""mems"""]
__lowerCAmelCase = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = n_layer
UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
UpperCamelCase = d_model // n_head
UpperCamelCase = ff_activation
UpperCamelCase = d_inner
UpperCamelCase = untie_r
UpperCamelCase = attn_type
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = dropout
UpperCamelCase = mem_len
UpperCamelCase = reuse_len
UpperCamelCase = bi_data
UpperCamelCase = clamp_len
UpperCamelCase = same_length
UpperCamelCase = summary_type
UpperCamelCase = summary_use_proj
UpperCamelCase = summary_activation
UpperCamelCase = summary_last_dropout
UpperCamelCase = start_n_top
UpperCamelCase = end_n_top
UpperCamelCase = bos_token_id
UpperCamelCase = pad_token_id
UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , lowerCamelCase_ , )
UpperCamelCase = kwargs["""use_cache"""]
UpperCamelCase = use_mems_eval
UpperCamelCase = use_mems_train
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 343 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __lowerCAmelCase ,unittest.TestCase ):
__lowerCamelCase : Any = AudioLDMPipeline
__lowerCamelCase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS
__lowerCamelCase : Dict = TEXT_TO_AUDIO_BATCH_PARAMS
__lowerCamelCase : List[Any] = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
def _snake_case ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase_ , )
_lowerCAmelCase = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , )
torch.manual_seed(0 )
_lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
_lowerCAmelCase = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
_lowerCAmelCase = ClapTextModelWithProjection(lowerCamelCase_ )
_lowerCAmelCase = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 )
_lowerCAmelCase = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase_ , )
_lowerCAmelCase = SpeechTaHifiGan(lowerCamelCase_ )
_lowerCAmelCase = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"vocoder": vocoder,
}
return components
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Any:
if str(lowerCamelCase_ ).startswith("mps" ):
_lowerCAmelCase = torch.manual_seed(lowerCamelCase_ )
else:
_lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
_lowerCAmelCase = {
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def _snake_case ( self ) -> int:
_lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) == 256
_lowerCAmelCase = audio[:10]
_lowerCAmelCase = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = 3 * [inputs["prompt"]]
# forward
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = 3 * [inputs.pop("prompt" )]
_lowerCAmelCase = audioldm_pipe.tokenizer(
lowerCamelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="pt" , )
_lowerCAmelCase = text_inputs["input_ids"].to(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.text_encoder(
lowerCamelCase_ , )
_lowerCAmelCase = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
_lowerCAmelCase = F.normalize(lowerCamelCase_ , dim=-1 )
_lowerCAmelCase = prompt_embeds
# forward
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = 3 * ["this is a negative prompt"]
_lowerCAmelCase = negative_prompt
_lowerCAmelCase = 3 * [inputs["prompt"]]
# forward
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = 3 * [inputs.pop("prompt" )]
_lowerCAmelCase = []
for p in [prompt, negative_prompt]:
_lowerCAmelCase = audioldm_pipe.tokenizer(
lowerCamelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="pt" , )
_lowerCAmelCase = text_inputs["input_ids"].to(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.text_encoder(
lowerCamelCase_ , )
_lowerCAmelCase = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
_lowerCAmelCase = F.normalize(lowerCamelCase_ , dim=-1 )
embeds.append(lowerCamelCase_ )
_lowerCAmelCase , _lowerCAmelCase = embeds
# forward
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def _snake_case ( self ) -> int:
_lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = "egg cracking"
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) == 256
_lowerCAmelCase = audio[:10]
_lowerCAmelCase = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def _snake_case ( self ) -> str:
_lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = "A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
_lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
_lowerCAmelCase = 2
_lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
_lowerCAmelCase = 2
_lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
_lowerCAmelCase = 2
_lowerCAmelCase = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def _snake_case ( self ) -> int:
_lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.016
_lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **lowerCamelCase_ )
_lowerCAmelCase = output.audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.032
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = AudioLDMPipeline(**lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = ["hey"]
_lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 )
_lowerCAmelCase = output.audios.shape
assert audio_shape == (1, 256)
_lowerCAmelCase = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
_lowerCAmelCase = SpeechTaHifiGan(lowerCamelCase_ ).to(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 )
_lowerCAmelCase = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def _snake_case ( self ) -> List[str]:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase_ )
def _snake_case ( self ) -> Optional[Any]:
self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase_ )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=0 ) -> Dict:
_lowerCAmelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
_lowerCAmelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 8, 128, 16) )
_lowerCAmelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ )
_lowerCAmelCase = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def _snake_case ( self ) -> str:
_lowerCAmelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_inputs(lowerCamelCase_ )
_lowerCAmelCase = 25
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) == 81920
_lowerCAmelCase = audio[77230:77240]
_lowerCAmelCase = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
_lowerCAmelCase = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1E-2
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
_lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
_lowerCAmelCase = audioldm_pipe.to(lowerCamelCase_ )
audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
_lowerCAmelCase = self.get_inputs(lowerCamelCase_ )
_lowerCAmelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0]
assert audio.ndim == 1
assert len(lowerCamelCase_ ) == 81920
_lowerCAmelCase = audio[27780:27790]
_lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
_lowerCAmelCase = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3E-2
| 158 | import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""")
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = 0
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ )
# save in new folder
model_config.save_pretrained(lowerCamelCase_ )
config.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
# make sure private variable is not incorrectly saved
UpperCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = True
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# If remote code is not set, the default is to use local
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 343 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@property
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = ort.SessionOptions()
lowercase_ = False
return options
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""")
lowercase_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""")
lowercase_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""")
# using the PNDM scheduler by default
lowercase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase_)
lowercase_ = """A red cat sitting on a park bench"""
lowercase_ = np.random.RandomState(0)
lowercase_ = pipe(
prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=lowerCamelCase_ , output_type="""np""" , )
lowercase_ = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image).max() < 1E-2
| 136 | import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X2_0000 and cp <= 0X2_A6DF) #
or (cp >= 0X2_A700 and cp <= 0X2_B73F) #
or (cp >= 0X2_B740 and cp <= 0X2_B81F) #
or (cp >= 0X2_B820 and cp <= 0X2_CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2_F800 and cp <= 0X2_FA1F) #
): #
return True
return False
def lowercase( UpperCamelCase_ ) -> Dict:
'''simple docstring'''
# word like '180' or '身高' or '神'
for char in word:
UpperCamelCase = ord(UpperCamelCase_ )
if not _is_chinese_char(UpperCamelCase_ ):
return 0
return 1
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = set()
for token in tokens:
UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ )
if chinese_word:
word_set.add(UpperCamelCase_ )
UpperCamelCase = list(UpperCamelCase_ )
return word_list
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] )
UpperCamelCase = bert_tokens
UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ )
while start < end:
UpperCamelCase = True
if is_chinese(bert_word[start] ):
UpperCamelCase = min(end - start , UpperCamelCase_ )
for i in range(UpperCamelCase_ , 1 , -1 ):
UpperCamelCase = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCamelCase = """##""" + bert_word[j]
UpperCamelCase = start + i
UpperCamelCase = False
break
if single_word:
start += 1
return bert_word
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
'''simple docstring'''
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res]
ltp_res.extend(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase = []
for id in input_ids:
UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ )
input_tokens.append(UpperCamelCase_ )
UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase_ ):
if token[:2] == "##":
UpperCamelCase = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ):
ref_id.append(UpperCamelCase_ )
ref_ids.append(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
return ref_ids
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCamelCase = LTP(args.ltp ) # faster in GPU device
UpperCamelCase = BertTokenizer.from_pretrained(args.bert )
UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids]
f.writelines(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_SCREAMING_SNAKE_CASE = parser.parse_args()
main(args)
| 343 | 0 |
"""simple docstring"""
def _snake_case ( _snake_case : Optional[int] = 10_00 ) -> int:
'''simple docstring'''
_A = 3
_A = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(F'''{solution() = }''')
| 315 | import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (self.image_size, self.image_size)
UpperCamelCase = (self.patch_size, self.patch_size)
UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = FlaxViTModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model_class(lowerCamelCase_ )
@jax.jit
def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ )
with self.subTest("""JIT Enabled""" ):
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
UpperCamelCase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 343 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 199 | import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = range_bbox
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCamelCase = bbox[i, j, 3]
UpperCamelCase = bbox[i, j, 1]
UpperCamelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCamelCase = bbox[i, j, 2]
UpperCamelCase = bbox[i, j, 0]
UpperCamelCase = t
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCAmelCase = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ):
"""simple docstring"""
return True
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = LiltModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase = type
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@require_torch
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ )
UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ )
UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ )
UpperCamelCase = torch.Size([1, 2, 768] )
UpperCamelCase = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
| 343 | 0 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = OrderedDict(
[
# Base model mapping
("""albert""", """FlaxAlbertModel"""),
("""bart""", """FlaxBartModel"""),
("""beit""", """FlaxBeitModel"""),
("""bert""", """FlaxBertModel"""),
("""big_bird""", """FlaxBigBirdModel"""),
("""blenderbot""", """FlaxBlenderbotModel"""),
("""blenderbot-small""", """FlaxBlenderbotSmallModel"""),
("""clip""", """FlaxCLIPModel"""),
("""distilbert""", """FlaxDistilBertModel"""),
("""electra""", """FlaxElectraModel"""),
("""gpt-sw3""", """FlaxGPT2Model"""),
("""gpt2""", """FlaxGPT2Model"""),
("""gpt_neo""", """FlaxGPTNeoModel"""),
("""gptj""", """FlaxGPTJModel"""),
("""longt5""", """FlaxLongT5Model"""),
("""marian""", """FlaxMarianModel"""),
("""mbart""", """FlaxMBartModel"""),
("""mt5""", """FlaxMT5Model"""),
("""opt""", """FlaxOPTModel"""),
("""pegasus""", """FlaxPegasusModel"""),
("""regnet""", """FlaxRegNetModel"""),
("""resnet""", """FlaxResNetModel"""),
("""roberta""", """FlaxRobertaModel"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""),
("""roformer""", """FlaxRoFormerModel"""),
("""t5""", """FlaxT5Model"""),
("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""),
("""vit""", """FlaxViTModel"""),
("""wav2vec2""", """FlaxWav2Vec2Model"""),
("""whisper""", """FlaxWhisperModel"""),
("""xglm""", """FlaxXGLMModel"""),
("""xlm-roberta""", """FlaxXLMRobertaModel"""),
]
)
SCREAMING_SNAKE_CASE : Any = OrderedDict(
[
# Model for pre-training mapping
("""albert""", """FlaxAlbertForPreTraining"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForPreTraining"""),
("""big_bird""", """FlaxBigBirdForPreTraining"""),
("""electra""", """FlaxElectraForPreTraining"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
SCREAMING_SNAKE_CASE : Any = OrderedDict(
[
# Model for Masked LM mapping
("""albert""", """FlaxAlbertForMaskedLM"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForMaskedLM"""),
("""big_bird""", """FlaxBigBirdForMaskedLM"""),
("""distilbert""", """FlaxDistilBertForMaskedLM"""),
("""electra""", """FlaxElectraForMaskedLM"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
SCREAMING_SNAKE_CASE : Any = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("""bart""", """FlaxBartForConditionalGeneration"""),
("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""),
("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""),
("""encoder-decoder""", """FlaxEncoderDecoderModel"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""marian""", """FlaxMarianMTModel"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""pegasus""", """FlaxPegasusForConditionalGeneration"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
]
)
SCREAMING_SNAKE_CASE : Optional[Any] = OrderedDict(
[
# Model for Image-classsification
("""beit""", """FlaxBeitForImageClassification"""),
("""regnet""", """FlaxRegNetForImageClassification"""),
("""resnet""", """FlaxResNetForImageClassification"""),
("""vit""", """FlaxViTForImageClassification"""),
]
)
SCREAMING_SNAKE_CASE : Dict = OrderedDict(
[
("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""),
]
)
SCREAMING_SNAKE_CASE : str = OrderedDict(
[
# Model for Causal LM mapping
("""bart""", """FlaxBartForCausalLM"""),
("""bert""", """FlaxBertForCausalLM"""),
("""big_bird""", """FlaxBigBirdForCausalLM"""),
("""electra""", """FlaxElectraForCausalLM"""),
("""gpt-sw3""", """FlaxGPT2LMHeadModel"""),
("""gpt2""", """FlaxGPT2LMHeadModel"""),
("""gpt_neo""", """FlaxGPTNeoForCausalLM"""),
("""gptj""", """FlaxGPTJForCausalLM"""),
("""opt""", """FlaxOPTForCausalLM"""),
("""roberta""", """FlaxRobertaForCausalLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""),
("""xglm""", """FlaxXGLMForCausalLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""),
]
)
SCREAMING_SNAKE_CASE : List[Any] = OrderedDict(
[
# Model for Sequence Classification mapping
("""albert""", """FlaxAlbertForSequenceClassification"""),
("""bart""", """FlaxBartForSequenceClassification"""),
("""bert""", """FlaxBertForSequenceClassification"""),
("""big_bird""", """FlaxBigBirdForSequenceClassification"""),
("""distilbert""", """FlaxDistilBertForSequenceClassification"""),
("""electra""", """FlaxElectraForSequenceClassification"""),
("""mbart""", """FlaxMBartForSequenceClassification"""),
("""roberta""", """FlaxRobertaForSequenceClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""),
("""roformer""", """FlaxRoFormerForSequenceClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""),
]
)
SCREAMING_SNAKE_CASE : Any = OrderedDict(
[
# Model for Question Answering mapping
("""albert""", """FlaxAlbertForQuestionAnswering"""),
("""bart""", """FlaxBartForQuestionAnswering"""),
("""bert""", """FlaxBertForQuestionAnswering"""),
("""big_bird""", """FlaxBigBirdForQuestionAnswering"""),
("""distilbert""", """FlaxDistilBertForQuestionAnswering"""),
("""electra""", """FlaxElectraForQuestionAnswering"""),
("""mbart""", """FlaxMBartForQuestionAnswering"""),
("""roberta""", """FlaxRobertaForQuestionAnswering"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""),
("""roformer""", """FlaxRoFormerForQuestionAnswering"""),
("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""),
]
)
SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict(
[
# Model for Token Classification mapping
("""albert""", """FlaxAlbertForTokenClassification"""),
("""bert""", """FlaxBertForTokenClassification"""),
("""big_bird""", """FlaxBigBirdForTokenClassification"""),
("""distilbert""", """FlaxDistilBertForTokenClassification"""),
("""electra""", """FlaxElectraForTokenClassification"""),
("""roberta""", """FlaxRobertaForTokenClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""),
("""roformer""", """FlaxRoFormerForTokenClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""),
]
)
SCREAMING_SNAKE_CASE : str = OrderedDict(
[
# Model for Multiple Choice mapping
("""albert""", """FlaxAlbertForMultipleChoice"""),
("""bert""", """FlaxBertForMultipleChoice"""),
("""big_bird""", """FlaxBigBirdForMultipleChoice"""),
("""distilbert""", """FlaxDistilBertForMultipleChoice"""),
("""electra""", """FlaxElectraForMultipleChoice"""),
("""roberta""", """FlaxRobertaForMultipleChoice"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""),
("""roformer""", """FlaxRoFormerForMultipleChoice"""),
("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""),
]
)
SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict(
[
("""bert""", """FlaxBertForNextSentencePrediction"""),
]
)
SCREAMING_SNAKE_CASE : str = OrderedDict(
[
("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
]
)
SCREAMING_SNAKE_CASE : List[Any] = OrderedDict(
[
("""whisper""", """FlaxWhisperForAudioClassification"""),
]
)
SCREAMING_SNAKE_CASE : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
SCREAMING_SNAKE_CASE : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
SCREAMING_SNAKE_CASE : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_MAPPING
SCREAMING_SNAKE_CASE : str = auto_class_update(FlaxAutoModel)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_PRETRAINING_MAPPING
SCREAMING_SNAKE_CASE : Any = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE : List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE : int = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base"""
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE : Dict = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="""sequence classification"""
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
SCREAMING_SNAKE_CASE : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE : str = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="""token classification"""
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
SCREAMING_SNAKE_CASE : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
SCREAMING_SNAKE_CASE : str = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction"""
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
SCREAMING_SNAKE_CASE : Tuple = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="""image classification"""
)
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""")
class _UpperCAmelCase ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling"""
)
| 102 | import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
UpperCamelCase = size if size is not None else {"""shortest_edge""": 30}
UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize_and_center_crop
UpperCamelCase = size
UpperCamelCase = crop_pct
UpperCamelCase = crop_size
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = PoolFormerImageProcessingTester(self )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 343 | 0 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def UpperCamelCase_( lowerCamelCase_ ) -> Dict:
# word like '180' or '身高' or '神'
for char in word:
_lowercase : int = ord(UpperCamelCase_ )
if not _is_chinese_char(UpperCamelCase_ ):
return 0
return 1
def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]:
_lowercase : Tuple = set()
for token in tokens:
_lowercase : Tuple = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ )
if chinese_word:
word_set.add(UpperCamelCase_ )
_lowercase : Dict = list(UpperCamelCase_ )
return word_list
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]:
if not chinese_word_set:
return bert_tokens
_lowercase : Any = max([len(UpperCamelCase_ ) for w in chinese_word_set] )
_lowercase : str = bert_tokens
_lowercase , _lowercase : Any = 0, len(UpperCamelCase_ )
while start < end:
_lowercase : Any = True
if is_chinese(bert_word[start] ):
_lowercase : List[Any] = min(end - start , UpperCamelCase_ )
for i in range(UpperCamelCase_ , 1 , -1 ):
_lowercase : int = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowercase : Tuple = '##' + bert_word[j]
_lowercase : Tuple = start + i
_lowercase : List[str] = False
break
if single_word:
start += 1
return bert_word
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str:
_lowercase : int = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
_lowercase : Any = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowercase : Tuple = [get_chinese_word(UpperCamelCase_ ) for r in res]
ltp_res.extend(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
_lowercase : int = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
_lowercase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
_lowercase : Union[str, Any] = []
for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[str] = []
for id in input_ids:
_lowercase : Optional[Any] = bert_tokenizer._convert_id_to_token(UpperCamelCase_ )
input_tokens.append(UpperCamelCase_ )
_lowercase : Union[str, Any] = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase_ ):
if token[:2] == "##":
_lowercase : List[str] = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ):
ref_id.append(UpperCamelCase_ )
ref_ids.append(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
return ref_ids
def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowercase : List[Any] = f.readlines()
_lowercase : List[str] = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowercase : Optional[Any] = LTP(args.ltp ) # faster in GPU device
_lowercase : Optional[Any] = BertTokenizer.from_pretrained(args.bert )
_lowercase : Dict = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowercase : Any = [json.dumps(UpperCamelCase_ ) + '\n' for ref in ref_ids]
f.writelines(UpperCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
SCREAMING_SNAKE_CASE : int = parser.parse_args()
main(args)
| 21 | def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 343 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class UpperCamelCase ( unittest.TestCase ):
def __init__(self : List[str] , _A : Union[str, Any] , _A : List[str]=13 , _A : Any=7 , _A : Any=True , _A : List[str]=True , _A : Union[str, Any]=True , _A : Optional[int]=True , _A : List[Any]=99 , _A : Dict=32 , _A : Optional[int]=5 , _A : Tuple=4 , _A : Any=37 , _A : Any="gelu" , _A : Optional[int]=0.1 , _A : Any=0.1 , _A : List[Any]=5_12 , _A : str=16 , _A : Any=2 , _A : int=0.02 , _A : Union[str, Any]=4 , ) -> Optional[Any]:
__snake_case : int = parent
__snake_case : Optional[Any] = batch_size
__snake_case : Optional[int] = seq_length
__snake_case : List[str] = is_training
__snake_case : Optional[int] = use_attention_mask
__snake_case : Optional[int] = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : int = vocab_size
__snake_case : int = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : Optional[Any] = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Any = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Tuple = initializer_range
__snake_case : Dict = num_choices
def _lowercase (self : List[str]) -> Dict:
__snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case : str = None
if self.use_attention_mask:
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length])
__snake_case : Tuple = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case : List[str] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowercase (self : Tuple) -> List[str]:
__snake_case : str = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : int = config_and_inputs
__snake_case : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class UpperCamelCase ( __lowerCAmelCase , unittest.TestCase ):
UpperCAmelCase : Any = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowercase (self : List[Any]) -> Tuple:
__snake_case : List[str] = FlaxAlbertModelTester(self)
@slow
def _lowercase (self : str) -> Tuple:
for model_class_name in self.all_model_classes:
__snake_case : int = model_class_name.from_pretrained('albert-base-v2')
__snake_case : Optional[Any] = model(np.ones((1, 1)))
self.assertIsNotNone(lowerCamelCase_)
@require_flax
class UpperCamelCase ( unittest.TestCase ):
@slow
def _lowercase (self : Dict) -> Tuple:
__snake_case : Union[str, Any] = FlaxAlbertModel.from_pretrained('albert-base-v2')
__snake_case : Union[str, Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]])
__snake_case : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
__snake_case : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0]
__snake_case : str = (1, 11, 7_68)
self.assertEqual(output.shape , lowerCamelCase_)
__snake_case : List[Any] = np.array(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]])
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1E-4))
| 172 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """trocr"""
__lowerCAmelCase = ["""past_key_values"""]
__lowerCAmelCase = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_attention_heads
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = activation_function
UpperCamelCase = max_position_embeddings
UpperCamelCase = dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = init_std
UpperCamelCase = decoder_layerdrop
UpperCamelCase = use_cache
UpperCamelCase = scale_embedding
UpperCamelCase = use_learned_position_embeddings
UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
| 343 | 0 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Any = None
if token is not None:
A : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'Bearer {token}'}
A : Optional[int] = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
A : int = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json()
A : Tuple = {}
try:
job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
A : Any = math.ceil((result['''total_count'''] - 100) / 100 )
for i in range(UpperCamelCase_ ):
A : Any = requests.get(url + F'&page={i + 2}' , headers=UpperCamelCase_ ).json()
job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
return job_links
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Optional[Any] = None
if token is not None:
A : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'Bearer {token}'}
A : Tuple = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'
A : int = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json()
A : str = {}
try:
artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} )
A : List[str] = math.ceil((result['''total_count'''] - 100) / 100 )
for i in range(UpperCamelCase_ ):
A : str = requests.get(url + F'&page={i + 2}' , headers=UpperCamelCase_ ).json()
artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} )
return artifacts
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = None
if token is not None:
A : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'Bearer {token}'}
A : Any = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ , allow_redirects=UpperCamelCase_ )
A : Any = result.headers['''Location''']
A : Any = requests.get(UpperCamelCase_ , allow_redirects=UpperCamelCase_ )
A : Union[str, Any] = os.path.join(UpperCamelCase_ , F'{artifact_name}.zip' )
with open(UpperCamelCase_ , '''wb''' ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Optional[int] = []
A : Dict = []
A : Any = None
with zipfile.ZipFile(UpperCamelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(UpperCamelCase_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(UpperCamelCase_ ) as f:
for line in f:
A : List[str] = line.decode('''UTF-8''' ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
A : Optional[Any] = line[: line.index(''': ''' )]
A : List[Any] = line[line.index(''': ''' ) + len(''': ''' ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ):
# `test` is the test method that failed
A : int = line[len('''FAILED ''' ) :]
failed_tests.append(UpperCamelCase_ )
elif filename == "job_name.txt":
A : Optional[Any] = line
if len(UpperCamelCase_ ) != len(UpperCamelCase_ ):
raise ValueError(
F'`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase_ )} for `errors` '
F'and {len(UpperCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'
''' problem.''' )
A : List[str] = None
if job_name and job_links:
A : Union[str, Any] = job_links.get(UpperCamelCase_ , UpperCamelCase_ )
# A list with elements of the form (line of error, error, failed test)
A : str = [x + [y] + [job_link] for x, y in zip(UpperCamelCase_ , UpperCamelCase_ )]
return result
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Optional[Any] = []
A : Optional[Any] = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for p in os.listdir(UpperCamelCase_ ) if p.endswith('''.zip''' )]
for p in paths:
errors.extend(get_errors_from_single_artifact(UpperCamelCase_ , job_links=UpperCamelCase_ ) )
return errors
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Optional[int] = Counter()
counter.update([x[1] for x in logs] )
A : int = counter.most_common()
A : List[str] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
A : List[str] = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]}
A : Tuple = dict(sorted(r.items() , key=lambda snake_case__ : item[1]["count"] , reverse=UpperCamelCase_ ) )
return r
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = test.split('''::''' )[0]
if test.startswith('''tests/models/''' ):
A : Tuple = test.split('''/''' )[2]
else:
A : Any = None
return test
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
A : List[str] = [x for x in logs if x[2] is not None]
A : Union[str, Any] = {x[2] for x in logs}
A : Optional[int] = {}
for test in tests:
A : Union[str, Any] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
A : List[str] = counter.most_common()
A : Tuple = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
A : int = sum(error_counts.values() )
if n_errors > 0:
A : Union[str, Any] = {'''count''': n_errors, '''errors''': error_counts}
A : Union[str, Any] = dict(sorted(r.items() , key=lambda snake_case__ : item[1]["count"] , reverse=UpperCamelCase_ ) )
return r
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = '''| no. | error | status |'''
A : Dict = '''|-:|:-|:-|'''
A : Tuple = [header, sep]
for error in reduced_by_error:
A : Optional[int] = reduced_by_error[error]['''count''']
A : Optional[Any] = F'| {count} | {error[:100]} | |'
lines.append(UpperCamelCase_ )
return "\n".join(UpperCamelCase_ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = '''| model | no. of errors | major error | count |'''
A : List[str] = '''|-:|-:|-:|-:|'''
A : int = [header, sep]
for model in reduced_by_model:
A : Optional[int] = reduced_by_model[model]['''count''']
A, A : List[str] = list(reduced_by_model[model]['''errors'''].items() )[0]
A : str = F'| {model} | {count} | {error[:60]} | {_count} |'
lines.append(UpperCamelCase_ )
return "\n".join(UpperCamelCase_ )
if __name__ == "__main__":
lowercase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowercase : Optional[int] = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowercase : List[Any] = get_job_links(args.workflow_run_id, token=args.token)
lowercase : List[str] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowercase : int = k.find(' / ')
lowercase : str = k[index + len(' / ') :]
lowercase : Union[str, Any] = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowercase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowercase : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowercase : Optional[int] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowercase : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowercase : Dict = reduce_by_error(errors)
lowercase : str = reduce_by_model(errors)
lowercase : str = make_github_table(reduced_by_error)
lowercase : Optional[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 3 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ):
__lowerCAmelCase = """swin"""
__lowerCAmelCase = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
super().__init__(**lowerCamelCase_ )
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = embed_dim
UpperCamelCase = depths
UpperCamelCase = len(lowerCamelCase_ )
UpperCamelCase = num_heads
UpperCamelCase = window_size
UpperCamelCase = mlp_ratio
UpperCamelCase = qkv_bias
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = drop_path_rate
UpperCamelCase = hidden_act
UpperCamelCase = use_absolute_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )]
UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = version.parse("""1.11""" )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return 1E-4
| 343 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
__lowercase : int = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : List[Any] = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
lowerCamelCase_ : List[str] = get_sagemaker_input()
else:
lowerCamelCase_ : Optional[int] = get_cluster_input()
return config
def lowercase_ ( _lowercase=None ) -> Dict:
'''simple docstring'''
if subparsers is not None:
lowerCamelCase_ : List[str] = subparsers.add_parser('''config''' , description=UpperCamelCase_ )
else:
lowerCamelCase_ : str = argparse.ArgumentParser('''Accelerate config command''' , description=UpperCamelCase_ )
parser.add_argument(
'''--config_file''' , default=UpperCamelCase_ , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=UpperCamelCase_ )
return parser
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : List[str] = get_user_input()
if args.config_file is not None:
lowerCamelCase_ : List[str] = args.config_file
else:
if not os.path.isdir(UpperCamelCase_ ):
os.makedirs(UpperCamelCase_ )
lowerCamelCase_ : List[Any] = default_yaml_config_file
if config_file.endswith('''.json''' ):
config.to_json_file(UpperCamelCase_ )
else:
config.to_yaml_file(UpperCamelCase_ )
print(F"""accelerate configuration saved at {config_file}""" )
def lowercase_ ( ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : List[Any] = config_command_parser()
lowerCamelCase_ : List[str] = parser.parse_args()
config_command(UpperCamelCase_ )
if __name__ == "__main__":
main()
| 318 | import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_SCREAMING_SNAKE_CASE = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
_SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
_SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(6_4, 6_4)
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image)
_SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0)
_SCREAMING_SNAKE_CASE = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_SCREAMING_SNAKE_CASE = """Normal"""
if result[0][0] == 1:
_SCREAMING_SNAKE_CASE = """Abnormality detected"""
| 343 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A : Optional[Any] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
pass
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = data
UpperCamelCase = None
def __iter__( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self
UpperCamelCase = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(lowerCamelCase_ )
yield node.data
UpperCamelCase = node.next_node
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = Node(1)
_SCREAMING_SNAKE_CASE = Node(2)
_SCREAMING_SNAKE_CASE = Node(3)
_SCREAMING_SNAKE_CASE = Node(4)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = root_node.next_node
print(root_node.has_loop) # True
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = Node(1)
print(root_node.has_loop) # False
| 343 | 0 |
'''simple docstring'''
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
lowerCAmelCase_ : str = 'bert-base-cased'
lowerCAmelCase_ : List[str] = 'google/pegasus-xsum'
lowerCAmelCase_ : Optional[Any] = [' Sam ate lunch today.', 'Sams lunch ingredients.']
lowerCAmelCase_ : int = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee']
lowerCAmelCase_ : int = 'patrickvonplaten/t5-tiny-random'
lowerCAmelCase_ : Tuple = 'sshleifer/bart-tiny-random'
lowerCAmelCase_ : str = 'sshleifer/tiny-mbart'
lowerCAmelCase_ : int = 'sshleifer/tiny-marian-en-de'
def _lowerCamelCase ( lowercase : int , lowercase : str ) -> List[str]:
_a = "\n".join(UpperCamelCase_ )
Path(UpperCamelCase_ ).open("w" ).writelines(UpperCamelCase_ )
def _lowerCamelCase ( lowercase : str ) -> List[str]:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(UpperCamelCase_ , F'{split}.source' ) , UpperCamelCase_ )
_dump_articles(os.path.join(UpperCamelCase_ , F'{split}.target' ) , UpperCamelCase_ )
return tmp_dir
class __SCREAMING_SNAKE_CASE (__lowerCAmelCase ):
"""simple docstring"""
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def UpperCamelCase__ ( self : Optional[int] , __a : Tuple ):
_a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
_a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_a = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES )
_a = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES )
_a = 4
_a = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
_a , _a = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error.
_a = SeqaSeqDataset(
lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="train" , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , )
_a = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(lowerCamelCase_ , lowerCamelCase_ )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
_a = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def UpperCamelCase__ ( self : Dict , __a : Tuple ):
_a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
_a = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_a = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES )
_a = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES )
_a = 4
_a = LegacySeqaSeqDataset(
lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="train" , max_source_length=20 , max_target_length=lowerCamelCase_ , )
_a = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def UpperCamelCase__ ( self : Optional[Any] ):
_a = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" )
_a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
_a = tmp_dir.joinpath("train.source" ).open().readlines()
_a = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ )
_a = {x.name for x in tmp_dir.iterdir()}
_a = {x.name for x in save_dir.iterdir()}
_a = save_dir.joinpath("train.source" ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(lowerCamelCase_ ) < len(lowerCamelCase_ )
assert len(lowerCamelCase_ ) == 1
assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" )
def UpperCamelCase__ ( self : Union[str, Any] ):
if not FAIRSEQ_AVAILABLE:
return
_a , _a , _a = self._get_dataset(max_len=64 )
_a = 64
_a = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ )
_a = [len(lowerCamelCase_ ) for x in batch_sampler]
assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples
_a = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 )
_a = []
_a = []
for batch in data_loader:
_a = batch["input_ids"].shape
_a = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
_a = np.product(batch["input_ids"].shape )
num_src_per_batch.append(lowerCamelCase_ )
if num_src_tokens > (max_tokens * 1.1):
failures.append(lowerCamelCase_ )
assert num_src_per_batch[0] == max(lowerCamelCase_ )
if failures:
raise AssertionError(f'too many tokens in {len(lowerCamelCase_ )} batches' )
def UpperCamelCase__ ( self : Any ):
_a , _a , _a = self._get_dataset(max_len=5_12 )
_a = 2
_a = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ )
_a = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 )
_a = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ )
_a = tokenizer.pad_token_id
def count_pad_tokens(__a : List[Any] , __a : str="input_ids" ):
return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(lowerCamelCase_ , k="labels" ) ) < sum(count_pad_tokens(lowerCamelCase_ , k="labels" ) )
assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) )
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
def UpperCamelCase__ ( self : Optional[int] , __a : Union[str, Any]=10_00 , __a : Optional[Any]=1_28 ):
if os.getenv("USE_REAL_DATA" , lowerCamelCase_ ):
_a = "examples/seq2seq/wmt_en_ro"
_a = max_len * 2 * 64
if not Path(lowerCamelCase_ ).joinpath("train.len" ).exists():
save_len_file(lowerCamelCase_ , lowerCamelCase_ )
else:
_a = "examples/seq2seq/test_data/wmt_en_ro"
_a = max_len * 4
save_len_file(lowerCamelCase_ , lowerCamelCase_ )
_a = AutoTokenizer.from_pretrained(lowerCamelCase_ )
_a = SeqaSeqDataset(
lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="train" , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , )
return ds, max_tokens, tokenizer
def UpperCamelCase__ ( self : Optional[Any] ):
_a , _a , _a = self._get_dataset()
_a = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) )
_a = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) )
assert idsa.intersection(lowerCamelCase_ ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def UpperCamelCase__ ( self : Tuple , __a : str ):
_a = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ )
if tok_name == MBART_TINY:
_a = SeqaSeqDataset(
lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , )
_a = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
_a = SeqaSeqDataset(
lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , )
_a = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
| 63 | import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , )
assert hasattr(self , """env""" )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ):
"""simple docstring"""
UpperCamelCase = {
"""enabled""": True,
"""processes_per_host""": 8,
}
UpperCamelCase = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ):
"""simple docstring"""
TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCamelCase = self.create_estimator(lowerCamelCase_ )
# run training
estimator.fit()
# result dataframe
UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
| 343 | 0 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
create_state_space_tree(UpperCamelCase_ , [] , 0 , [0 for i in range(len(UpperCamelCase_ ) )] )
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , ):
'''simple docstring'''
if index == len(UpperCamelCase_ ):
print(UpperCamelCase_ )
return
for i in range(len(UpperCamelCase_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_lowerCAmelCase = True
create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 , UpperCamelCase_ )
current_sequence.pop()
_lowerCAmelCase = False
_SCREAMING_SNAKE_CASE = [3, 1, 2, 4]
generate_all_permutations(sequence)
_SCREAMING_SNAKE_CASE = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 158 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {
"""configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvNextForImageClassification""",
"""ConvNextModel""",
"""ConvNextPreTrainedModel""",
"""ConvNextBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""TFConvNextForImageClassification""",
"""TFConvNextModel""",
"""TFConvNextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 343 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : Tuple=1_6 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Tuple=4 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_attention_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_choices
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_attention_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = True
lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , unittest.TestCase ):
lowercase__ = True
lowercase__ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = FlaxRobertaPreLayerNormModelTester(self)
@slow
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_)
lowercase_ = model(np.ones((1, 1)))
self.assertIsNotNone(lowerCamelCase_)
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_)
lowercase_ = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa)
lowercase_ = model(lowerCamelCase_)[0]
lowercase_ = [1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape) , lowerCamelCase_)
# compare the actual values for a slice.
lowercase_ = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_367], [-1.8_877, -4.0_885, 1_0.7_0_8_5], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4))
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_)
lowercase_ = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa)
lowercase_ = model(lowerCamelCase_)[0]
# compare the actual values for a slice.
lowercase_ = np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4))
| 136 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = ShapEPipeline
__lowerCAmelCase = ["""prompt"""]
__lowerCAmelCase = ["""prompt"""]
__lowerCAmelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
__lowerCAmelCase = False
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return 8
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
UpperCamelCase = PriorTransformer(**lowerCamelCase_ )
return model
@property
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
UpperCamelCase = ShapERenderer(**lowerCamelCase_ )
return model
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.dummy_prior
UpperCamelCase = self.dummy_text_encoder
UpperCamelCase = self.dummy_tokenizer
UpperCamelCase = self.dummy_renderer
UpperCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , )
UpperCamelCase = {
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ):
"""simple docstring"""
if str(lowerCamelCase_ ).startswith("""mps""" ):
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
else:
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
UpperCamelCase = {
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = """cpu"""
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = self.pipeline_class(**lowerCamelCase_ )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) )
UpperCamelCase = output.images[0]
UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
UpperCamelCase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = torch_device == """cpu"""
UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = self.pipeline_class(**lowerCamelCase_ )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = 1
UpperCamelCase = 2
UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
UpperCamelCase = batch_size * [inputs[key]]
UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = pipe(
"""a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
| 343 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=lowerCamelCase_ , )
assert hasattr(self , 'env' )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Dict=1 ):
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ):
TrainingJobAnalytics(lowerCamelCase_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.create_estimator()
# run training
estimator.fit()
# result dataframe
_A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
_A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowerCamelCase_ )
| 315 | from __future__ import annotations
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCamelCase = result + left + right
return input_list
def lowercase( UpperCamelCase_ ) -> list:
'''simple docstring'''
if len(UpperCamelCase_ ) <= 1:
return input_list
UpperCamelCase = list(UpperCamelCase_ )
# iteration for two-way merging
UpperCamelCase = 2
while p <= len(UpperCamelCase_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ):
UpperCamelCase = i
UpperCamelCase = i + p - 1
UpperCamelCase = (low + high + 1) // 2
UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# final merge of last two parts
if p * 2 >= len(UpperCamelCase_ ):
UpperCamelCase = i
UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
_SCREAMING_SNAKE_CASE = []
else:
_SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 343 | 0 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( __lowerCAmelCase , unittest.TestCase ):
UpperCamelCase__ : int =MgpstrTokenizer
UpperCamelCase__ : Optional[int] =False
UpperCamelCase__ : List[str] ={}
UpperCamelCase__ : str =False
def lowerCamelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# fmt: off
_lowerCamelCase : Dict =['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
_lowerCamelCase : str =dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
_lowerCamelCase : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowerCamelCase_ ) + '\n' )
def lowerCamelCase ( self : str , **lowercase_ : int ) -> Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ )
def lowerCamelCase ( self : List[Any] , lowercase_ : List[Any] ) -> Any:
"""simple docstring"""
_lowerCamelCase : int ='tester'
_lowerCamelCase : Dict ='tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def lowerCamelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
pass
def lowerCamelCase ( self : Any ) -> Dict:
"""simple docstring"""
_lowerCamelCase : Dict =self.get_tokenizers(do_lower_case=lowerCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowerCamelCase : List[Any] ='[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
_lowerCamelCase : Optional[int] =tokenizer.encode([special_token] , add_special_tokens=lowerCamelCase_ )
self.assertEqual(len(lowerCamelCase_ ) , 1 )
_lowerCamelCase : Optional[Any] =tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowerCamelCase , _lowerCamelCase : Dict =self.get_input_output_texts(lowerCamelCase_ )
_lowerCamelCase : Tuple =tokenizer.tokenize(lowerCamelCase_ )
_lowerCamelCase : Tuple =tokenizer.convert_tokens_to_ids(lowerCamelCase_ )
_lowerCamelCase : List[str] =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
_lowerCamelCase : List[Any] =tokenizer.convert_ids_to_tokens(lowerCamelCase_ )
self.assertNotEqual(len(lowerCamelCase_ ) , 0 )
_lowerCamelCase : str =tokenizer.decode(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(text_a.replace(' ' , '' ) , lowerCamelCase_ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def lowerCamelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def lowerCamelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
pass
| 199 | import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(lowerCamelCase_ )
UpperCamelCase = out_features
UpperCamelCase = out_indices
UpperCamelCase = num_groups
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ):
"""simple docstring"""
UpperCamelCase = BitModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = BitForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCamelCase = BitBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase = None
UpperCamelCase = BitBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowerCAmelCase = (
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = BitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
return
@unittest.skip(reason="""Bit does not output attentions""" )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=lowerCamelCase_ )
for name, module in model.named_modules():
if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ):
UpperCamelCase = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase = layer_type
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**lowerCamelCase_ )
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (BitBackbone,) if is_torch_available() else ()
__lowerCAmelCase = BitConfig
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = BitModelTester(self )
| 343 | 0 |
"""simple docstring"""
from math import ceil, sqrt
def lowercase ( _snake_case : int = 1_000_000 ) ->int:
"""simple docstring"""
__snake_case : List[Any] = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
__snake_case : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
__snake_case : Optional[int] = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F'{solution() = }')
| 102 | from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = TFResNetModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__lowerCAmelCase = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = TFResNetModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""" )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""" )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ):
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase = layer_type
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" )
# forward pass
UpperCamelCase = model(**lowerCamelCase_ )
# verify the logits
UpperCamelCase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
| 343 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class _lowerCamelCase( __lowerCAmelCase ):
lowercase_ : Dict = """audio-spectrogram-transformer"""
def __init__( self, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=16, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=10, lowerCamelCase=10_24, lowerCamelCase=1_28, **lowerCamelCase, ) -> Dict:
"""simple docstring"""
super().__init__(**lowerCamelCase_)
_lowercase : List[str] = hidden_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : Any = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : int = hidden_act
_lowercase : str = hidden_dropout_prob
_lowercase : List[Any] = attention_probs_dropout_prob
_lowercase : List[Any] = initializer_range
_lowercase : Any = layer_norm_eps
_lowercase : List[str] = patch_size
_lowercase : Dict = qkv_bias
_lowercase : int = frequency_stride
_lowercase : Dict = time_stride
_lowercase : int = max_length
_lowercase : Optional[Any] = num_mel_bins
| 21 | import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_SCREAMING_SNAKE_CASE = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
def lowercase( UpperCamelCase_ ) -> Any:
'''simple docstring'''
UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCamelCase = value
else:
UpperCamelCase = value
return new_state_dict
def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = """"""
if is_panoptic:
UpperCamelCase = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase = in_proj_weight[:256, :]
UpperCamelCase = in_proj_bias[:256]
UpperCamelCase = in_proj_weight[256:512, :]
UpperCamelCase = in_proj_bias[256:512]
UpperCamelCase = in_proj_weight[-256:, :]
UpperCamelCase = in_proj_bias[-256:]
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any:
'''simple docstring'''
UpperCamelCase = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCamelCase = """resnet101"""
if "dc5" in model_name:
UpperCamelCase = True
UpperCamelCase = """panoptic""" in model_name
if is_panoptic:
UpperCamelCase = 250
else:
UpperCamelCase = 91
UpperCamelCase = """huggingface/label-files"""
UpperCamelCase = """coco-detection-id2label.json"""
UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
# load image processor
UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ )
# prepare image
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" )
UpperCamelCase = encoding["""pixel_values"""]
logger.info(f"""Converting model {model_name}...""" )
# load original model from torch hub
UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval()
UpperCamelCase = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCamelCase = """conditional_detr.""" + src
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = rename_backbone_keys(UpperCamelCase_ )
# query, key and value matrices need special treatment
read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
# finally, create HuggingFace model and load state dict
UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCamelCase = conditional_detr(UpperCamelCase_ )
UpperCamelCase = model(UpperCamelCase_ )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 )
# Save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 343 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class UpperCamelCase ( unittest.TestCase ):
def _lowercase (self : Tuple) -> Optional[Any]:
if self.framework == "pytorch":
subprocess.run(
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=lowerCamelCase_ , )
assert hasattr(self , 'env')
def _lowercase (self : Any , _A : List[str]) -> str:
__snake_case : List[str] = {
'enabled': True,
'processes_per_host': 8,
}
__snake_case : Tuple = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
__snake_case : Optional[Any] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
__snake_case : Union[str, Any] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 5_00,
} , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version='py36' , )
def _lowercase (self : List[str] , _A : List[Any]) -> Dict:
TrainingJobAnalytics(lowerCamelCase_).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")
@parameterized.expand([(1,)])
def _lowercase (self : Union[str, Any] , _A : int) -> str:
__snake_case : Optional[int] = self.create_estimator(lowerCamelCase_)
# run training
estimator.fit()
# result dataframe
__snake_case : int = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
__snake_case : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'])
__snake_case : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__snake_case : int = (
Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy)
assert all(t <= self.results['eval_loss'] for t in eval_loss)
# dump tests result into json file to share in PR
with open(f"{estimator.latest_training_job.name}.json" , 'w') as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowerCamelCase_)
| 172 | from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = mask_ratio
UpperCamelCase = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
# expected sequence length = num_patches
UpperCamelCase = (self.image_size // self.patch_size) ** 2
UpperCamelCase = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
UpperCamelCase = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = outputs_dict[0].numpy()
UpperCamelCase = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ):
UpperCamelCase = {}
for k, v in inputs_dict.items():
if tf.is_tensor(lowerCamelCase_ ):
UpperCamelCase = v.numpy()
else:
UpperCamelCase = np.array(lowerCamelCase_ )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCamelCase = tf.constant(lowerCamelCase_ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCamelCase = tf_noise
super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(lowerCamelCase_ )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),)
if isinstance(lowerCamelCase_ , lowerCamelCase_ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ )
}
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
UpperCamelCase = main_layer_class(lowerCamelCase_ )
UpperCamelCase = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) )
UpperCamelCase = model(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" )
model.save(lowerCamelCase_ )
UpperCamelCase = tf.keras.models.load_model(
lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(lowerCamelCase_ , tf.keras.Model )
UpperCamelCase = model(lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
if model_class.__name__ == "TFViTMAEModel":
UpperCamelCase = outputs.last_hidden_state.numpy()
UpperCamelCase = 0
else:
UpperCamelCase = outputs.logits.numpy()
UpperCamelCase = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ )
UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
if model_class.__name__ == "TFViTMAEModel":
UpperCamelCase = after_outputs["""last_hidden_state"""].numpy()
UpperCamelCase = 0
else:
UpperCamelCase = after_outputs["""logits"""].numpy()
UpperCamelCase = 0
UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCamelCase_ , 1E-5 )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(lowerCamelCase_ )
UpperCamelCase = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCamelCase = model_class.from_config(model.config )
UpperCamelCase = new_model(lowerCamelCase_ ) # Build model
new_model.set_weights(model.get_weights() )
UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
pass
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> int:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCamelCase = ViTMAEConfig()
UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
# verify the logits
UpperCamelCase = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
| 343 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
A : str = F'Input value of [number={number}] must be an integer'
raise TypeError(UpperCamelCase_ )
if number < 0:
return False
A : Optional[Any] = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
# Base Case
if index == len(UpperCamelCase_ ):
return True
# Recursive Step
for i in range(UpperCamelCase_ ):
if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ):
# Color current vertex
UpperCamelCase = i
# Validate coloring
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ):
return True
# Backtrack
UpperCamelCase = -1
return False
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]:
'''simple docstring'''
UpperCamelCase = [-1] * len(UpperCamelCase_ )
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ):
return colored_vertices
return []
| 343 | 0 |
'''simple docstring'''
import math
from collections.abc import Callable
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float:
'''simple docstring'''
lowerCamelCase_ : Dict = xa
lowerCamelCase_ : Tuple = xa
while True:
if x_n == x_na or function(UpperCamelCase_ ) == function(UpperCamelCase_ ):
raise ZeroDivisionError('''float division by zero, could not find root''' )
lowerCamelCase_ : List[str] = x_na - (
function(UpperCamelCase_ ) / ((function(UpperCamelCase_ ) - function(UpperCamelCase_ )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
lowerCamelCase_ : List[str] = x_na
lowerCamelCase_ : str = x_na
def lowercase_ ( _lowercase ) -> float:
'''simple docstring'''
return math.pow(UpperCamelCase_ , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 318 | import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
_SCREAMING_SNAKE_CASE = {
"""allenai/led-base-16384""": 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase( ) -> List[str]:
'''simple docstring'''
UpperCamelCase = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
UpperCamelCase = bs[:]
UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCamelCase_ )
cs.append(2**8 + n )
n += 1
UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs]
return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
return pairs
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = VOCAB_FILES_NAMES
__lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ):
"""simple docstring"""
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , )
with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle:
UpperCamelCase = json.load(lowerCamelCase_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = errors # how to handle errors in decoding
UpperCamelCase = bytes_to_unicode()
UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle:
UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
UpperCamelCase = {}
UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return len(self.encoder )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(lowerCamelCase_ ):
try:
UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCamelCase = get_pairs(lowerCamelCase_ )
UpperCamelCase = """ """.join(lowerCamelCase_ )
UpperCamelCase = word
return word
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = []
for token in re.findall(self.pat , lowerCamelCase_ ):
UpperCamelCase = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) )
return bpe_tokens
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
return self.decoder.get(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = """""".join(lowerCamelCase_ )
UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(lowerCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" )
UpperCamelCase = 0
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
UpperCamelCase = token_index
writer.write(""" """.join(lowerCamelCase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCamelCase = """ """ + text
return (text, kwargs)
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ):
"""simple docstring"""
UpperCamelCase = super()._pad(
encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
# Load from model defaults
if return_attention_mask is None:
UpperCamelCase = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCamelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCamelCase = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
UpperCamelCase = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 343 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
A : Dict = get_tests_dir('fixtures')
A : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json')
A : List[str] = get_tests_dir('fixtures/dummy-config.json')
class __A( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
__a = 0
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
__a = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__a = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict()
config_dict.pop('''feature_extractor_type''' )
__a = WavaVecaFeatureExtractor(**lowerCamelCase_ )
# save in new folder
model_config.save_pretrained(lowerCamelCase_ )
config.save_pretrained(lowerCamelCase_ )
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
# make sure private variable is not incorrectly saved
__a = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ):
__a = AutoFeatureExtractor.from_pretrained('''bert-base''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple:
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
lowerCamelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__a = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCamelCase_ ):
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ )
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__a = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
__a = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]:
'''simple docstring'''
class __A( __lowerCAmelCase ):
snake_case_ = True
try:
AutoConfig.register('''custom''' , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# If remote code is not set, the default is to use local
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__a = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(not hasattr(lowerCamelCase_ , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | 6 | import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_SCREAMING_SNAKE_CASE = (
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]),
("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 2_3),
("""JH 9H TH KH QH""", 2_2),
("""JC KH JS JD JH""", 2_1),
("""KH KC 3S 3H 3D""", 2_0),
("""8C 9C 5C 3C TC""", 1_9),
("""JS QS 9H TS KH""", 1_8),
("""7C 7S KH 2H 7H""", 1_7),
("""3C KH 5D 5S KH""", 1_6),
("""QH 8H KD JH 8S""", 1_5),
("""2D 6D 9D TH 7D""", 1_4),
)
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) )
UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowercase( UpperCamelCase_ = 100 ) -> List[Any]:
'''simple docstring'''
return (generate_random_hand() for _ in range(UpperCamelCase_ ))
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict:
'''simple docstring'''
UpperCamelCase = PokerHand(UpperCamelCase_ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS]
UpperCamelCase = poker_hands.copy()
shuffle(UpperCamelCase_ )
UpperCamelCase = chain(sorted(UpperCamelCase_ ) )
for index, hand in enumerate(UpperCamelCase_ ):
assert hand == poker_hands[index]
def lowercase( ) -> Union[str, Any]:
'''simple docstring'''
# Test that five high straights are compared correctly.
UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=UpperCamelCase_ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowercase( ) -> str:
'''simple docstring'''
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" )
UpperCamelCase = True
UpperCamelCase = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowercase( ) -> int:
'''simple docstring'''
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
UpperCamelCase = 0
UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" )
with open(UpperCamelCase_ ) as file_hand:
for line in file_hand:
UpperCamelCase = line[:14].strip()
UpperCamelCase = line[15:].strip()
UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ )
UpperCamelCase = player.compare_with(UpperCamelCase_ )
if output == "Win":
answer += 1
assert answer == 376
| 343 | 0 |
'''simple docstring'''
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : Tuple , __a : Dict , __a : Optional[int]=13 , __a : Union[str, Any]=3 , __a : List[str]=True , __a : Dict=True , __a : str=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[Any]=2_24 , __a : List[Any]=10_00 , __a : Dict=[3, 3, 6, 4] , __a : Optional[int]=[48, 56, 1_12, 2_20] , ):
_a = parent
_a = batch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = num_labels
_a = image_size
_a = layer_depths
_a = embed_dims
def UpperCamelCase__ ( self : List[str] ):
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.num_labels )
_a = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self : Optional[int] ):
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCamelCase_ , layer_scale_init_value=1e-5 , )
def UpperCamelCase__ ( self : str , __a : Tuple , __a : Union[str, Any] , __a : Tuple ):
_a = SwiftFormerModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
_a = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : List[Any] , __a : Dict ):
_a = self.num_labels
_a = SwiftFormerForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
_a = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
_a = SwiftFormerForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : Dict ):
((_a) , (_a) , (_a)) = self.prepare_config_and_inputs()
_a = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__a =(SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__a =(
{'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__a =False
__a =False
__a =False
__a =False
__a =False
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = SwiftFormerModelTester(self )
_a = ConfigTester(
self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def UpperCamelCase__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="SwiftFormer does not use inputs_embeds" )
def UpperCamelCase__ ( self : Tuple ):
pass
def UpperCamelCase__ ( self : Dict ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(lowerCamelCase_ )
_a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) )
def UpperCamelCase__ ( self : Optional[int] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(lowerCamelCase_ )
_a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def UpperCamelCase__ ( self : Dict ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def UpperCamelCase__ ( self : int ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def UpperCamelCase__ ( self : Tuple ):
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = SwiftFormerModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@unittest.skip(reason="SwiftFormer does not output attentions" )
def UpperCamelCase__ ( self : Union[str, Any] ):
pass
def UpperCamelCase__ ( self : List[str] ):
def check_hidden_states_output(__a : int , __a : List[str] , __a : int ):
_a = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
_a = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
_a = outputs.hidden_states
_a = 8
self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowerCamelCase_ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase__ ( self : str ):
def _config_zero_init(__a : List[Any] ):
_a = copy.deepcopy(lowerCamelCase_ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowerCamelCase_ , lowerCamelCase_ , 1e-1_0 )
if isinstance(getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ):
_a = _config_zero_init(getattr(lowerCamelCase_ , lowerCamelCase_ ) )
setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return configs_no_init
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = _config_zero_init(lowerCamelCase_ )
for model_class in self.all_model_classes:
_a = model_class(config=lowerCamelCase_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCamelCase__ ( self : Any ):
pass
def _lowerCamelCase ( ) -> Any:
_a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCamelCase__ ( self : Union[str, Any] ):
return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self : Optional[int] ):
_a = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCamelCase_ )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=lowerCamelCase_ , return_tensors="pt" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
_a = model(**lowerCamelCase_ )
# verify the logits
_a = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
_a = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
| 63 | import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """xlnet"""
__lowerCAmelCase = ["""mems"""]
__lowerCAmelCase = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = n_layer
UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
UpperCamelCase = d_model // n_head
UpperCamelCase = ff_activation
UpperCamelCase = d_inner
UpperCamelCase = untie_r
UpperCamelCase = attn_type
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = dropout
UpperCamelCase = mem_len
UpperCamelCase = reuse_len
UpperCamelCase = bi_data
UpperCamelCase = clamp_len
UpperCamelCase = same_length
UpperCamelCase = summary_type
UpperCamelCase = summary_use_proj
UpperCamelCase = summary_activation
UpperCamelCase = summary_last_dropout
UpperCamelCase = start_n_top
UpperCamelCase = end_n_top
UpperCamelCase = bos_token_id
UpperCamelCase = pad_token_id
UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , lowerCamelCase_ , )
UpperCamelCase = kwargs["""use_cache"""]
UpperCamelCase = use_mems_eval
UpperCamelCase = use_mems_train
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 343 | 0 |
'''simple docstring'''
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __lowerCAmelCase ):
__lowerCamelCase : Any = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = 8 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**lowerCamelCase_ )
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_pad
_lowerCAmelCase = pad_size
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ) -> List[str]:
return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None ) -> Any:
_lowerCAmelCase , _lowerCAmelCase = get_image_size(lowerCamelCase_ )
_lowerCAmelCase = (old_height // size + 1) * size - old_height
_lowerCAmelCase = (old_width // size + 1) * size - old_width
return pad(lowerCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=lowerCamelCase_ )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_pad if do_pad is not None else self.do_pad
_lowerCAmelCase = pad_size if pad_size is not None else self.pad_size
_lowerCAmelCase = make_list_of_images(lowerCamelCase_ )
if not valid_images(lowerCamelCase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(lowerCamelCase_ ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images]
if do_pad:
_lowerCAmelCase = [self.pad(lowerCamelCase_ , size=lowerCamelCase_ ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
| 158 | import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""")
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = 0
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ )
# save in new folder
model_config.save_pretrained(lowerCamelCase_ )
config.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
# make sure private variable is not incorrectly saved
UpperCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = True
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# If remote code is not set, the default is to use local
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 343 | 0 |
"""simple docstring"""
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = checkpoints.load_tax_checkpoint(UpperCamelCase_ )
lowercase_ = flatten_dict(UpperCamelCase_ )
return flax_params
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = {
"""token_embedder""": """embeddings""",
"""encoder_norm""": """layernorm""",
"""kernel""": """weight""",
""".out""": """.output""",
"""scale""": """weight""",
"""embedders_0.pos_embedding""": """row_embedder.weight""",
"""embedders_1.pos_embedding""": """column_embedder.weight""",
}
lowercase_ = {
"""query""": """attention.query""",
"""key""": """attention.key""",
"""value""": """attention.value""",
"""output.dense""": """output""",
"""encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""",
"""pre_self_attention_layer_norm""": """self_attention.layer_norm""",
"""pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""",
"""mlp.""": """mlp.DenseReluDense.""",
"""pre_mlp_layer_norm""": """mlp.layer_norm""",
"""self_attention.o""": """self_attention.attention.o""",
"""decoder.embeddings.embedding""": """decoder.embed_tokens.weight""",
"""decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""",
"""decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.logits_dense.weight""": """decoder.lm_head.weight""",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
lowercase_ = """.""".join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
lowercase_ = new_key.replace(UpperCamelCase_ , UpperCamelCase_ )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
lowercase_ = new_key.replace(UpperCamelCase_ , UpperCamelCase_ )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
lowercase_ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , UpperCamelCase_ )
lowercase_ = new_key.replace("""encoder""" , """encoder.encoder""" )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
lowercase_ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , UpperCamelCase_ )
lowercase_ = flax_dict[key]
lowercase_ = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
lowercase_ = torch.from_numpy(converted_dict[key].T )
else:
lowercase_ = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ) -> int:
'''simple docstring'''
lowercase_ = get_flax_param(UpperCamelCase_ )
if not use_large:
lowercase_ = PixaStructVisionConfig()
lowercase_ = PixaStructTextConfig()
else:
lowercase_ = PixaStructVisionConfig(
hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 )
lowercase_ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 )
lowercase_ = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=UpperCamelCase_ )
lowercase_ = PixaStructForConditionalGeneration(UpperCamelCase_ )
lowercase_ = rename_and_convert_flax_params(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
lowercase_ = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" )
lowercase_ = PixaStructImageProcessor()
lowercase_ = PixaStructProcessor(image_processor=UpperCamelCase_ , tokenizer=UpperCamelCase_ )
if use_large:
lowercase_ = 40_96
lowercase_ = True
# mkdir if needed
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
processor.save_pretrained(UpperCamelCase_ )
print("""Model saved in {}""".format(UpperCamelCase_ ) )
if __name__ == "__main__":
UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--use_large", action="store_true", help="Use large model.")
parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
UpperCAmelCase : Tuple = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 136 | import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X2_0000 and cp <= 0X2_A6DF) #
or (cp >= 0X2_A700 and cp <= 0X2_B73F) #
or (cp >= 0X2_B740 and cp <= 0X2_B81F) #
or (cp >= 0X2_B820 and cp <= 0X2_CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2_F800 and cp <= 0X2_FA1F) #
): #
return True
return False
def lowercase( UpperCamelCase_ ) -> Dict:
'''simple docstring'''
# word like '180' or '身高' or '神'
for char in word:
UpperCamelCase = ord(UpperCamelCase_ )
if not _is_chinese_char(UpperCamelCase_ ):
return 0
return 1
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = set()
for token in tokens:
UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ )
if chinese_word:
word_set.add(UpperCamelCase_ )
UpperCamelCase = list(UpperCamelCase_ )
return word_list
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] )
UpperCamelCase = bert_tokens
UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ )
while start < end:
UpperCamelCase = True
if is_chinese(bert_word[start] ):
UpperCamelCase = min(end - start , UpperCamelCase_ )
for i in range(UpperCamelCase_ , 1 , -1 ):
UpperCamelCase = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCamelCase = """##""" + bert_word[j]
UpperCamelCase = start + i
UpperCamelCase = False
break
if single_word:
start += 1
return bert_word
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
'''simple docstring'''
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res]
ltp_res.extend(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase = []
for id in input_ids:
UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ )
input_tokens.append(UpperCamelCase_ )
UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase_ ):
if token[:2] == "##":
UpperCamelCase = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ):
ref_id.append(UpperCamelCase_ )
ref_ids.append(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
return ref_ids
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCamelCase = LTP(args.ltp ) # faster in GPU device
UpperCamelCase = BertTokenizer.from_pretrained(args.bert )
UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids]
f.writelines(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_SCREAMING_SNAKE_CASE = parser.parse_args()
main(args)
| 343 | 0 |
"""simple docstring"""
def _snake_case ( ) -> int:
'''simple docstring'''
return [
a * b * (10_00 - a - b)
for a in range(1 , 9_99 )
for b in range(UpperCamelCase_ , 9_99 )
if (a * a + b * b == (10_00 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 315 | import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (self.image_size, self.image_size)
UpperCamelCase = (self.patch_size, self.patch_size)
UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = FlaxViTModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model_class(lowerCamelCase_ )
@jax.jit
def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ )
with self.subTest("""JIT Enabled""" ):
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
UpperCamelCase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 343 | 0 |
from datetime import datetime as dt
import os
from github import Github
lowerCamelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def a_ ( ):
'''simple docstring'''
_lowerCamelCase : Tuple =Github(os.environ['GITHUB_TOKEN'] )
_lowerCamelCase : Union[str, Any] =g.get_repo('huggingface/transformers' )
_lowerCamelCase : Union[str, Any] =repo.get_issues(state='open' )
for issue in open_issues:
_lowerCamelCase : Any =sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE__ : i.created_at , reverse=UpperCamelCase_ )
_lowerCamelCase : List[str] =comments[0] if len(UpperCamelCase_ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='closed' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
if __name__ == "__main__":
main()
| 199 | import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = range_bbox
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCamelCase = bbox[i, j, 3]
UpperCamelCase = bbox[i, j, 1]
UpperCamelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCamelCase = bbox[i, j, 2]
UpperCamelCase = bbox[i, j, 0]
UpperCamelCase = t
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCAmelCase = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ):
"""simple docstring"""
return True
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = LiltModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase = type
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@require_torch
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ )
UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ )
UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ )
UpperCamelCase = torch.Size([1, 2, 768] )
UpperCamelCase = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
| 343 | 0 |
"""simple docstring"""
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__)
def lowercase ( _snake_case : int=2 , _snake_case : Dict=3 , _snake_case : Optional[Any]=16 , _snake_case : List[str] = 10 , _snake_case : Optional[Any] = 2 ) ->str:
"""simple docstring"""
def get_dataset(_snake_case : Optional[Any] ):
__snake_case : Optional[Any] = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(UpperCamelCase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__snake_case : Tuple = get_dataset(UpperCamelCase_ )
__snake_case : Tuple = get_dataset(UpperCamelCase_ )
__snake_case : Any = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 )
__snake_case : List[str] = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 )
return (train_dataloader, valid_dataloader)
def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str , _snake_case : Dict , _snake_case : Tuple=None ) ->str:
"""simple docstring"""
__snake_case : Dict = []
for epoch in range(UpperCamelCase_ ):
# Train quickly
model.train()
for batch in dataloader:
__snake_case , __snake_case : Any = batch
__snake_case : Optional[int] = model(UpperCamelCase_ )
__snake_case : Optional[int] = torch.nn.functional.mse_loss(UpperCamelCase_ , UpperCamelCase_ )
accelerator.backward(UpperCamelCase_ )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class _UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
super().__init__()
__snake_case : Union[str, Any] = nn.Parameter(torch.randn(1 ) )
__snake_case : Optional[int] = nn.Parameter(torch.randn(1 ) )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return x * self.a + self.b
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Optional[Any] = DummyModel()
__snake_case : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case , __snake_case : Union[str, Any] = dummy_dataloaders()
__snake_case : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase_ , automatic_checkpoint_naming=lowerCamelCase_ )
# Train baseline
__snake_case : List[str] = Accelerator(project_config=lowerCamelCase_ )
__snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : Any = DummyModel()
__snake_case : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case , __snake_case : Optional[int] = dummy_dataloaders()
# Train baseline
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save initial
__snake_case : Any = os.path.join(lowerCamelCase_ , '''initial''' )
accelerator.save_state(lowerCamelCase_ )
((__snake_case) , (__snake_case)) : List[str] = model.a.item(), model.b.item()
__snake_case : List[Any] = optimizer.state_dict()
__snake_case : Optional[int] = train(3 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
((__snake_case) , (__snake_case)) : Optional[Any] = model.a.item(), model.b.item()
__snake_case : Tuple = optimizer.state_dict()
# Train partially
set_seed(42 )
__snake_case : Optional[int] = DummyModel()
__snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case , __snake_case : int = dummy_dataloaders()
__snake_case : Dict = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
accelerator.load_state(lowerCamelCase_ )
((__snake_case) , (__snake_case)) : Dict = model.a.item(), model.b.item()
__snake_case : Any = optimizer.state_dict()
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
__snake_case : Any = train(2 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save everything
__snake_case : List[Any] = os.path.join(lowerCamelCase_ , '''checkpoint''' )
accelerator.save_state(lowerCamelCase_ )
# Load everything back in and make sure all states work
accelerator.load_state(lowerCamelCase_ )
test_rands += train(1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
((__snake_case) , (__snake_case)) : Dict = model.a.item(), model.b.item()
__snake_case : str = optimizer.state_dict()
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : str = DummyModel()
__snake_case : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case , __snake_case : List[Any] = dummy_dataloaders()
__snake_case : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase_ )
# Train baseline
__snake_case : List[str] = Accelerator(project_dir=lowerCamelCase_ , project_config=lowerCamelCase_ )
__snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save initial
accelerator.save_state()
((__snake_case) , (__snake_case)) : Optional[int] = model.a.item(), model.b.item()
__snake_case : List[str] = optimizer.state_dict()
__snake_case : Optional[Any] = train(3 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
((__snake_case) , (__snake_case)) : int = model.a.item(), model.b.item()
__snake_case : Any = optimizer.state_dict()
# Train partially
set_seed(42 )
__snake_case : str = DummyModel()
__snake_case : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case , __snake_case : List[Any] = dummy_dataloaders()
__snake_case : List[str] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase_ )
__snake_case : str = Accelerator(project_dir=lowerCamelCase_ , project_config=lowerCamelCase_ )
__snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
accelerator.load_state(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) )
((__snake_case) , (__snake_case)) : Optional[int] = model.a.item(), model.b.item()
__snake_case : List[Any] = optimizer.state_dict()
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
__snake_case : List[Any] = train(2 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_1''' ) )
test_rands += train(1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
((__snake_case) , (__snake_case)) : str = model.a.item(), model.b.item()
__snake_case : Tuple = optimizer.state_dict()
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = torch.tensor([1, 2, 3] )
__snake_case : int = torch.tensor([2, 3, 4] )
__snake_case : List[Any] = DummyModel()
__snake_case : Optional[Any] = torch.optim.Adam(net.parameters() )
__snake_case : Any = Accelerator()
with self.assertRaises(lowerCamelCase_ ) as ve:
accelerator.register_for_checkpointing(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
__snake_case : Optional[int] = str(ve.exception )
self.assertTrue('''Item at index 0''' in message )
self.assertTrue('''Item at index 1''' in message )
self.assertFalse('''Item at index 2''' in message )
self.assertFalse('''Item at index 3''' in message )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : List[Any] = DummyModel()
__snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__snake_case : List[str] = torch.optim.lr_scheduler.StepLR(lowerCamelCase_ , step_size=1 , gamma=0.99 )
__snake_case , __snake_case : int = dummy_dataloaders()
__snake_case : str = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase_ )
# Train baseline
__snake_case : Tuple = Accelerator(project_dir=lowerCamelCase_ , project_config=lowerCamelCase_ )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Save initial
accelerator.save_state()
__snake_case : Tuple = scheduler.state_dict()
train(3 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
self.assertNotEqual(lowerCamelCase_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) )
self.assertEqual(lowerCamelCase_ , scheduler.state_dict() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__snake_case : int = DummyModel()
__snake_case : Any = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase_ , total_limit=2 )
# Train baseline
__snake_case : Optional[Any] = Accelerator(project_dir=lowerCamelCase_ , project_config=lowerCamelCase_ )
__snake_case : List[Any] = accelerator.prepare(lowerCamelCase_ )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_9''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCamelCase_ , '''checkpoints''' , '''checkpoint_10''' ) ) )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = """/tmp/accelerate/state_checkpointing"""
SCREAMING_SNAKE_CASE : Union[str, Any] = DummyModel()
SCREAMING_SNAKE_CASE : List[str] = torch.optim.Adam(params=model.parameters(), lr=1E-3)
SCREAMING_SNAKE_CASE : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dummy_dataloaders()
SCREAMING_SNAKE_CASE : int = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
SCREAMING_SNAKE_CASE : Tuple = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE : Tuple = group["""params"""][0].device
break
assert param_device.type == accelerator.device.type
SCREAMING_SNAKE_CASE : Optional[int] = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""")
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE : Optional[Any] = group["""params"""][0].device
break
assert (
param_device.type == torch.device("""cpu""").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""")
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE : Optional[int] = group["""params"""][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""):
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 102 | import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
UpperCamelCase = size if size is not None else {"""shortest_edge""": 30}
UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize_and_center_crop
UpperCamelCase = size
UpperCamelCase = crop_pct
UpperCamelCase = crop_size
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = PoolFormerImageProcessingTester(self )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 343 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 21 | def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 343 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> list[list[float]]:
'''simple docstring'''
__snake_case : Dict = []
for data in source_data:
for i, el in enumerate(UpperCamelCase_ ):
if len(UpperCamelCase_ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(UpperCamelCase_ ) )
return data_lists
def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> list[list[float]]:
'''simple docstring'''
__snake_case : str = []
for dlist, weight in zip(UpperCamelCase_ , UpperCamelCase_ ):
__snake_case : int = min(UpperCamelCase_ )
__snake_case : Tuple = max(UpperCamelCase_ )
__snake_case : List[str] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
__snake_case : Dict = F"Invalid weight of {weight:f} provided"
raise ValueError(UpperCamelCase_ )
score_lists.append(UpperCamelCase_ )
return score_lists
def __UpperCAmelCase ( UpperCAmelCase_ : Dict ) -> list[float]:
'''simple docstring'''
__snake_case : Optional[int] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(UpperCamelCase_ ):
__snake_case : Optional[int] = final_scores[j] + ele
return final_scores
def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> list[list[float]]:
'''simple docstring'''
__snake_case : Dict = get_data(UpperCamelCase_ )
__snake_case : Dict = calculate_each_score(UpperCamelCase_ , UpperCamelCase_ )
__snake_case : Tuple = generate_final_scores(UpperCamelCase_ )
# append scores to source data
for i, ele in enumerate(UpperCamelCase_ ):
source_data[i].append(UpperCamelCase_ )
return source_data
| 172 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """trocr"""
__lowerCAmelCase = ["""past_key_values"""]
__lowerCAmelCase = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_attention_heads
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = activation_function
UpperCamelCase = max_position_embeddings
UpperCamelCase = dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = init_std
UpperCamelCase = decoder_layerdrop
UpperCamelCase = use_cache
UpperCamelCase = scale_embedding
UpperCamelCase = use_learned_position_embeddings
UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
| 343 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A ( __lowerCAmelCase , unittest.TestCase ):
__magic_name__ = LDMTextToImagePipeline
__magic_name__ = TEXT_TO_IMAGE_PARAMS - {
'''negative_prompt''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
'''prompt_embeds''',
}
__magic_name__ = PipelineTesterMixin.required_optional_params - {
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
__magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS
__magic_name__ = False
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
A : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
A : Any = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , )
torch.manual_seed(0 )
A : Dict = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , )
torch.manual_seed(0 )
A : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
A : Union[str, Any] = CLIPTextModel(lowerCamelCase_ )
A : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A : Tuple = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vqvae''': vae,
'''bert''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Dict:
"""simple docstring"""
if str(lowerCamelCase_ ).startswith('''mps''' ):
A : Dict = torch.manual_seed(lowerCamelCase_ )
else:
A : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
A : Tuple = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : str = self.get_dummy_components()
A : Tuple = LDMTextToImagePipeline(**lowerCamelCase_ )
pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
A : List[str] = self.get_dummy_inputs(lowerCamelCase_ )
A : Tuple = pipe(**lowerCamelCase_ ).images
A : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
A : Tuple = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=torch.floataa , SCREAMING_SNAKE_CASE=0 ) -> List[Any]:
"""simple docstring"""
A : Union[str, Any] = torch.manual_seed(lowerCamelCase_ )
A : Any = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 32, 32) )
A : str = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ )
A : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
A : str = self.get_inputs(lowerCamelCase_ )
A : Any = pipe(**lowerCamelCase_ ).images
A : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
A : Optional[int] = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] )
A : List[Any] = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=torch.floataa , SCREAMING_SNAKE_CASE=0 ) -> int:
"""simple docstring"""
A : Optional[Any] = torch.manual_seed(lowerCamelCase_ )
A : Union[str, Any] = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 32, 32) )
A : Union[str, Any] = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ )
A : str = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 50,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
A : Any = self.get_inputs(lowerCamelCase_ )
A : Any = pipe(**lowerCamelCase_ ).images[0]
A : Tuple = load_numpy(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' )
A : Dict = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 3 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ):
__lowerCAmelCase = """swin"""
__lowerCAmelCase = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
super().__init__(**lowerCamelCase_ )
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = embed_dim
UpperCamelCase = depths
UpperCamelCase = len(lowerCamelCase_ )
UpperCamelCase = num_heads
UpperCamelCase = window_size
UpperCamelCase = mlp_ratio
UpperCamelCase = qkv_bias
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = drop_path_rate
UpperCamelCase = hidden_act
UpperCamelCase = use_absolute_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )]
UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = version.parse("""1.11""" )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return 1E-4
| 343 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowercase : Union[str, Any] = {
'''configuration_blenderbot_small''': [
'''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotSmallConfig''',
'''BlenderbotSmallOnnxConfig''',
],
'''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[str] = ['''BlenderbotSmallTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : str = [
'''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotSmallForCausalLM''',
'''BlenderbotSmallForConditionalGeneration''',
'''BlenderbotSmallModel''',
'''BlenderbotSmallPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : int = [
'''TFBlenderbotSmallForConditionalGeneration''',
'''TFBlenderbotSmallModel''',
'''TFBlenderbotSmallPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Union[str, Any] = [
'''FlaxBlenderbotSmallForConditionalGeneration''',
'''FlaxBlenderbotSmallModel''',
'''FlaxBlenderbotSmallPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
__lowercase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 318 | import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_SCREAMING_SNAKE_CASE = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
_SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
_SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(6_4, 6_4)
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image)
_SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0)
_SCREAMING_SNAKE_CASE = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_SCREAMING_SNAKE_CASE = """Normal"""
if result[0][0] == 1:
_SCREAMING_SNAKE_CASE = """Abnormality detected"""
| 343 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A : str = logging.get_logger(__name__)
A : Dict = {'vocab_file': 'spiece.model'}
A : int = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
A : int = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
A : Optional[int] = 0
A : Union[str, Any] = 1
A : Tuple = 2
A : Dict = 3
A : str = 4
class __A( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = '''left'''
def __init__( self , _snake_case , _snake_case=False , _snake_case=True , _snake_case=False , _snake_case="<s>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<sep>" , _snake_case="<pad>" , _snake_case="<cls>" , _snake_case="<mask>" , _snake_case=["<eop>", "<eod>"] , _snake_case = None , **_snake_case , ) -> Tuple:
'''simple docstring'''
__a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token
__a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , )
__a = 3
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCamelCase_ )
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
__a = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> List[str]:
'''simple docstring'''
__a = self.__dict__.copy()
__a = None
return state
def __setstate__( self , _snake_case ) -> Dict:
'''simple docstring'''
__a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__a = {}
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]:
'''simple docstring'''
if self.remove_space:
__a = ''' '''.join(inputs.strip().split() )
else:
__a = inputs
__a = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' )
if not self.keep_accents:
__a = unicodedata.normalize('''NFKD''' , lowerCamelCase_ )
__a = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] )
if self.do_lower_case:
__a = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
__a = self.preprocess_text(lowerCamelCase_ )
__a = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ )
__a = []
for piece in pieces:
if len(lowerCamelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
__a = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__a = cur_pieces[1:]
else:
__a = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowerCamelCase_ )
else:
new_pieces.append(lowerCamelCase_ )
return new_pieces
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
return self.sp_model.PieceToId(lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
return self.sp_model.IdToPiece(lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
__a = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False , _snake_case = None , _snake_case = True , **_snake_case , ) -> Optional[Any]:
'''simple docstring'''
__a = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_ )
__a = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__a = []
__a = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) )
__a = []
sub_texts.append(lowerCamelCase_ )
else:
current_sub_text.append(lowerCamelCase_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
__a = ''''''.join(lowerCamelCase_ )
__a = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__a = self.clean_up_tokenization(lowerCamelCase_ )
return clean_text
else:
return text
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> int:
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> Optional[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is not None:
return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1]
return ([0] * len(lowerCamelCase_ )) + [1, 1]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> int:
'''simple docstring'''
__a = [self.sep_token_id]
__a = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> List[Any]:
'''simple docstring'''
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__a = os.path.join(
lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase_ , '''wb''' ) as fi:
__a = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase_ )
return (out_vocab_file,) | 6 | from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
pass
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = data
UpperCamelCase = None
def __iter__( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self
UpperCamelCase = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(lowerCamelCase_ )
yield node.data
UpperCamelCase = node.next_node
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = Node(1)
_SCREAMING_SNAKE_CASE = Node(2)
_SCREAMING_SNAKE_CASE = Node(3)
_SCREAMING_SNAKE_CASE = Node(4)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = root_node.next_node
print(root_node.has_loop) # True
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = Node(1)
print(root_node.has_loop) # False
| 343 | 0 |
'''simple docstring'''
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
pass
| 63 | import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , )
assert hasattr(self , """env""" )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ):
"""simple docstring"""
UpperCamelCase = {
"""enabled""": True,
"""processes_per_host""": 8,
}
UpperCamelCase = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ):
"""simple docstring"""
TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCamelCase = self.create_estimator(lowerCamelCase_ )
# run training
estimator.fit()
# result dataframe
UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
| 343 | 0 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
_SCREAMING_SNAKE_CASE = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
_SCREAMING_SNAKE_CASE = dataset.iloc[:, 1:2].values
_SCREAMING_SNAKE_CASE = dataset.iloc[:, 2].values
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_test_split(X, y, test_size=0.2, random_state=0)
_SCREAMING_SNAKE_CASE = PolynomialFeatures(degree=4)
_SCREAMING_SNAKE_CASE = poly_reg.fit_transform(X)
_SCREAMING_SNAKE_CASE = LinearRegression()
pol_reg.fit(X_poly, y)
def __a():
'''simple docstring'''
plt.scatter(UpperCamelCase_ , UpperCamelCase_ , color="red" )
plt.plot(UpperCamelCase_ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase_ ) ) , color="blue" )
plt.title("Truth or Bluff (Linear Regression)" )
plt.xlabel("Position level" )
plt.ylabel("Salary" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 158 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {
"""configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvNextForImageClassification""",
"""ConvNextModel""",
"""ConvNextPreTrainedModel""",
"""ConvNextBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""TFConvNextForImageClassification""",
"""TFConvNextModel""",
"""TFConvNextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 343 | 0 |
"""simple docstring"""
import torch
from diffusers import DiffusionPipeline
class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ):
def __init__( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict):
"""simple docstring"""
super().__init__()
self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_)
def __call__( self : Tuple):
"""simple docstring"""
lowercase_ = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowercase_ = 1
lowercase_ = self.unet(lowerCamelCase_ , lowerCamelCase_).sample
lowercase_ = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample
lowercase_ = scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase_)
return result
| 136 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = ShapEPipeline
__lowerCAmelCase = ["""prompt"""]
__lowerCAmelCase = ["""prompt"""]
__lowerCAmelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
__lowerCAmelCase = False
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
return 32
@property
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return 8
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
UpperCamelCase = PriorTransformer(**lowerCamelCase_ )
return model
@property
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
UpperCamelCase = ShapERenderer(**lowerCamelCase_ )
return model
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.dummy_prior
UpperCamelCase = self.dummy_text_encoder
UpperCamelCase = self.dummy_tokenizer
UpperCamelCase = self.dummy_renderer
UpperCamelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , )
UpperCamelCase = {
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ):
"""simple docstring"""
if str(lowerCamelCase_ ).startswith("""mps""" ):
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
else:
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
UpperCamelCase = {
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = """cpu"""
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = self.pipeline_class(**lowerCamelCase_ )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) )
UpperCamelCase = output.images[0]
UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
UpperCamelCase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = torch_device == """cpu"""
UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = self.pipeline_class(**lowerCamelCase_ )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = 1
UpperCamelCase = 2
UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ )
for key in inputs.keys():
if key in self.batch_params:
UpperCamelCase = batch_size * [inputs[key]]
UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" )
UpperCamelCase = pipe.to(lowerCamelCase_ )
pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = pipe(
"""a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
| 343 | 0 |
"""simple docstring"""
def _snake_case ( _snake_case : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_A = [0] * len(UpperCamelCase_ )
_A = []
_A = []
_A = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(UpperCamelCase_ ) ):
if indegree[i] == 0:
queue.append(UpperCamelCase_ )
while queue:
_A = queue.pop(0 )
cnt += 1
topo.append(UpperCamelCase_ )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(UpperCamelCase_ )
if cnt != len(UpperCamelCase_ ):
print('Cycle exists' )
else:
print(UpperCamelCase_ )
# Adjacency List of Graph
a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 315 | from __future__ import annotations
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCamelCase = result + left + right
return input_list
def lowercase( UpperCamelCase_ ) -> list:
'''simple docstring'''
if len(UpperCamelCase_ ) <= 1:
return input_list
UpperCamelCase = list(UpperCamelCase_ )
# iteration for two-way merging
UpperCamelCase = 2
while p <= len(UpperCamelCase_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ):
UpperCamelCase = i
UpperCamelCase = i + p - 1
UpperCamelCase = (low + high + 1) // 2
UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# final merge of last two parts
if p * 2 >= len(UpperCamelCase_ ):
UpperCamelCase = i
UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
_SCREAMING_SNAKE_CASE = []
else:
_SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 343 | 0 |
def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] =[0] * len(UpperCamelCase_ )
for i in range(1 , len(UpperCamelCase_ ) ):
# use last results for better performance - dynamic programming
_lowerCamelCase : Optional[int] =prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_lowerCamelCase : Union[str, Any] =prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_lowerCamelCase : Optional[int] =j
return prefix_result
def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
return max(prefix_function(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 199 | import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(lowerCamelCase_ )
UpperCamelCase = out_features
UpperCamelCase = out_indices
UpperCamelCase = num_groups
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ):
"""simple docstring"""
UpperCamelCase = BitModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = BitForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCamelCase = BitBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase = None
UpperCamelCase = BitBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowerCAmelCase = (
{"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = BitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
return
@unittest.skip(reason="""Bit does not output attentions""" )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=lowerCamelCase_ )
for name, module in model.named_modules():
if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ):
UpperCamelCase = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase = layer_type
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**lowerCamelCase_ )
# verify the logits
UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (BitBackbone,) if is_torch_available() else ()
__lowerCAmelCase = BitConfig
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = BitModelTester(self )
| 343 | 0 |
"""simple docstring"""
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"""The `inpainting.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionInpaintPipeline` instead."""
)
| 102 | from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = num_channels
UpperCamelCase = embeddings_size
UpperCamelCase = hidden_sizes
UpperCamelCase = depths
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_act
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = len(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = TFResNetModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__lowerCAmelCase = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = TFResNetModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""" )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""" )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ):
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase = layer_type
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" )
# forward pass
UpperCamelCase = model(**lowerCamelCase_ )
# verify the logits
UpperCamelCase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
| 343 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
class _lowerCamelCase( __lowerCAmelCase ):
lowercase_ : Union[str, Any] = ["""pixel_values"""]
def __init__( self, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = PIL.Image.BICUBIC, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = 1 / 2_55, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> Tuple:
"""simple docstring"""
super().__init__(**lowerCamelCase_)
_lowercase : Tuple = size if size is not None else {'height': 2_56, 'width': 2_56}
_lowercase : int = get_size_dict(lowerCamelCase_)
_lowercase : int = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
_lowercase : str = get_size_dict(lowerCamelCase_, param_name='crop_size')
_lowercase : Tuple = do_resize
_lowercase : List[Any] = size
_lowercase : str = resample
_lowercase : Any = do_center_crop
_lowercase : Optional[Any] = crop_size
_lowercase : List[Any] = do_rescale
_lowercase : Dict = rescale_factor
_lowercase : Optional[int] = do_normalize
_lowercase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowercase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = PIL.Image.BICUBIC, lowerCamelCase = None, **lowerCamelCase, ) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Tuple = get_size_dict(lowerCamelCase_)
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''')
return resize(
lowerCamelCase_, size=(size['height'], size['width']), resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> Any:
"""simple docstring"""
_lowercase : Tuple = get_size_dict(lowerCamelCase_)
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''')
return center_crop(lowerCamelCase_, size=(size['height'], size['width']), data_format=lowerCamelCase_, **lowerCamelCase_)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> List[Any]:
"""simple docstring"""
return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> List[Any]:
"""simple docstring"""
return normalize(lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_)
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase=None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = ChannelDimension.FIRST, **lowerCamelCase, ) -> Any:
"""simple docstring"""
_lowercase : Any = do_resize if do_resize is not None else self.do_resize
_lowercase : Dict = resample if resample is not None else self.resample
_lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : Optional[Any] = image_mean if image_mean is not None else self.image_mean
_lowercase : Optional[int] = image_std if image_std is not None else self.image_std
_lowercase : str = size if size is not None else self.size
_lowercase : Dict = get_size_dict(lowerCamelCase_)
_lowercase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowercase : Union[str, Any] = get_size_dict(lowerCamelCase_, param_name='crop_size')
_lowercase : Optional[int] = make_list_of_images(lowerCamelCase_)
if not valid_images(lowerCamelCase_):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# All transformations expect numpy arrays.
_lowercase : str = [to_numpy_array(lowerCamelCase_) for image in images]
if do_resize:
_lowercase : Optional[int] = [self.resize(image=lowerCamelCase_, size=lowerCamelCase_, resample=lowerCamelCase_) for image in images]
if do_center_crop:
_lowercase : Union[str, Any] = [self.center_crop(image=lowerCamelCase_, size=lowerCamelCase_) for image in images]
if do_rescale:
_lowercase : List[Any] = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_) for image in images]
if do_normalize:
_lowercase : List[Any] = [self.normalize(image=lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_) for image in images]
_lowercase : List[str] = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_) for image in images]
_lowercase : Optional[int] = {'pixel_values': images}
return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_)
| 21 | import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_SCREAMING_SNAKE_CASE = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
def lowercase( UpperCamelCase_ ) -> Any:
'''simple docstring'''
UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCamelCase = value
else:
UpperCamelCase = value
return new_state_dict
def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = """"""
if is_panoptic:
UpperCamelCase = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase = in_proj_weight[:256, :]
UpperCamelCase = in_proj_bias[:256]
UpperCamelCase = in_proj_weight[256:512, :]
UpperCamelCase = in_proj_bias[256:512]
UpperCamelCase = in_proj_weight[-256:, :]
UpperCamelCase = in_proj_bias[-256:]
def lowercase( ) -> Any:
'''simple docstring'''
UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any:
'''simple docstring'''
UpperCamelCase = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
UpperCamelCase = """resnet101"""
if "dc5" in model_name:
UpperCamelCase = True
UpperCamelCase = """panoptic""" in model_name
if is_panoptic:
UpperCamelCase = 250
else:
UpperCamelCase = 91
UpperCamelCase = """huggingface/label-files"""
UpperCamelCase = """coco-detection-id2label.json"""
UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
# load image processor
UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ )
# prepare image
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" )
UpperCamelCase = encoding["""pixel_values"""]
logger.info(f"""Converting model {model_name}...""" )
# load original model from torch hub
UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval()
UpperCamelCase = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
UpperCamelCase = """conditional_detr.""" + src
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = rename_backbone_keys(UpperCamelCase_ )
# query, key and value matrices need special treatment
read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCamelCase = state_dict.pop(UpperCamelCase_ )
UpperCamelCase = val
# finally, create HuggingFace model and load state dict
UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
UpperCamelCase = conditional_detr(UpperCamelCase_ )
UpperCamelCase = model(UpperCamelCase_ )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 )
# Save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 343 | 0 |
"""simple docstring"""
import baseaa
def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> bytes:
'''simple docstring'''
return baseaa.aaaencode(string.encode('utf-8' ) )
def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> str:
'''simple docstring'''
return baseaa.aaadecode(UpperCamelCase_ ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 172 | from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = mask_ratio
UpperCamelCase = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
# expected sequence length = num_patches
UpperCamelCase = (self.image_size // self.patch_size) ** 2
UpperCamelCase = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ )
UpperCamelCase = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) )
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = outputs_dict[0].numpy()
UpperCamelCase = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ):
UpperCamelCase = {}
for k, v in inputs_dict.items():
if tf.is_tensor(lowerCamelCase_ ):
UpperCamelCase = v.numpy()
else:
UpperCamelCase = np.array(lowerCamelCase_ )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCamelCase = tf.constant(lowerCamelCase_ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCamelCase = tf_noise
super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(lowerCamelCase_ )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),)
if isinstance(lowerCamelCase_ , lowerCamelCase_ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ )
}
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
UpperCamelCase = main_layer_class(lowerCamelCase_ )
UpperCamelCase = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) )
UpperCamelCase = model(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" )
model.save(lowerCamelCase_ )
UpperCamelCase = tf.keras.models.load_model(
lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(lowerCamelCase_ , tf.keras.Model )
UpperCamelCase = model(lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
if model_class.__name__ == "TFViTMAEModel":
UpperCamelCase = outputs.last_hidden_state.numpy()
UpperCamelCase = 0
else:
UpperCamelCase = outputs.logits.numpy()
UpperCamelCase = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ )
UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
if model_class.__name__ == "TFViTMAEModel":
UpperCamelCase = after_outputs["""last_hidden_state"""].numpy()
UpperCamelCase = 0
else:
UpperCamelCase = after_outputs["""logits"""].numpy()
UpperCamelCase = 0
UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCamelCase_ , 1E-5 )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = int((config.image_size // config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ )
UpperCamelCase = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(lowerCamelCase_ )
UpperCamelCase = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCamelCase = model_class.from_config(model.config )
UpperCamelCase = new_model(lowerCamelCase_ ) # Build model
new_model.set_weights(model.get_weights() )
UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ )
self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
pass
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(lowerCamelCase_ )
def lowercase( ) -> int:
'''simple docstring'''
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
np.random.seed(2 )
UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCamelCase = ViTMAEConfig()
UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCamelCase = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ )
# verify the logits
UpperCamelCase = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
UpperCamelCase = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
| 343 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase : int = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Any = DPTConfig()
if "large" in checkpoint_url:
A : str = 1024
A : Tuple = 4096
A : Union[str, Any] = 24
A : List[str] = 16
A : List[Any] = [5, 11, 17, 23]
A : Optional[Any] = [256, 512, 1024, 1024]
A : str = (1, 384, 384)
if "ade" in checkpoint_url:
A : Optional[int] = True
A : Optional[int] = 150
A : Optional[Any] = '''huggingface/label-files'''
A : Any = '''ade20k-id2label.json'''
A : Any = json.load(open(cached_download(hf_hub_url(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) ) , '''r''' ) )
A : List[Any] = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Any = {v: k for k, v in idalabel.items()}
A : int = [1, 150, 480, 480]
return config, expected_shape
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Tuple = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A : Any = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
A : Optional[Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
A : int = name.replace('''patch_embed''' , '''patch_embeddings''' )
if "pos_embed" in name:
A : Optional[int] = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
A : str = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
A : List[Any] = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
A : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
A : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name:
A : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : str = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
A : int = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
A : Optional[Any] = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
A : Any = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
A : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
A : Dict = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
A : List[Any] = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
A : Optional[Any] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A : Optional[int] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A : Union[str, Any] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
A : List[str] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
A : int = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
A : Any = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
A : List[Any] = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A : Optional[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
A : Optional[Any] = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
A : Tuple = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
A : int = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A : Any = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
A : int = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
A : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
A : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
A : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
A : str = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
A : str = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
A : Optional[Any] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
A : Union[str, Any] = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
A : Tuple = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
A : Union[str, Any] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
A : int = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A : Optional[int] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' )
A : str = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A : Tuple = in_proj_weight[: config.hidden_size, :]
A : Dict = in_proj_bias[: config.hidden_size]
A : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A : Any = in_proj_weight[
-config.hidden_size :, :
]
A : Any = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : List[str] = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : int = get_dpt_config(UpperCamelCase_ )
# load original state_dict from URL
A : int = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(UpperCamelCase_ )
# rename keys
for key in state_dict.copy().keys():
A : Dict = state_dict.pop(UpperCamelCase_ )
A : Tuple = val
# read in qkv matrices
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ )
# load HuggingFace model
A : Optional[int] = DPTForSemanticSegmentation(UpperCamelCase_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
# Check outputs on an image
A : Union[str, Any] = 480 if '''ade''' in checkpoint_url else 384
A : Dict = DPTImageProcessor(size=UpperCamelCase_ )
A : Union[str, Any] = prepare_img()
A : Tuple = image_processor(UpperCamelCase_ , return_tensors='''pt''' )
# forward pass
A : str = model(**UpperCamelCase_ ).logits if '''ade''' in checkpoint_url else model(**UpperCamelCase_ ).predicted_depth
# Assert logits
A : str = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] )
if "ade" in checkpoint_url:
A : Any = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] )
assert outputs.shape == torch.Size(UpperCamelCase_ )
assert (
torch.allclose(outputs[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , UpperCamelCase_ )
)
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCamelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCamelCase_ )
if push_to_hub:
print('''Pushing model to hub...''' )
model.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase_ , )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase_ , )
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
lowercase : Dict = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 3 | def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool:
'''simple docstring'''
# Base Case
if index == len(UpperCamelCase_ ):
return True
# Recursive Step
for i in range(UpperCamelCase_ ):
if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ):
# Color current vertex
UpperCamelCase = i
# Validate coloring
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ):
return True
# Backtrack
UpperCamelCase = -1
return False
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]:
'''simple docstring'''
UpperCamelCase = [-1] * len(UpperCamelCase_ )
if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ):
return colored_vertices
return []
| 343 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = BertConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
lowerCamelCase_ : int = BertForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_bert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , UpperCamelCase_ )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__lowercase : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 318 | import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
_SCREAMING_SNAKE_CASE = {
"""allenai/led-base-16384""": 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase( ) -> List[str]:
'''simple docstring'''
UpperCamelCase = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
UpperCamelCase = bs[:]
UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCamelCase_ )
cs.append(2**8 + n )
n += 1
UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs]
return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) )
def lowercase( UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
return pairs
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = VOCAB_FILES_NAMES
__lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ):
"""simple docstring"""
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , )
with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle:
UpperCamelCase = json.load(lowerCamelCase_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = errors # how to handle errors in decoding
UpperCamelCase = bytes_to_unicode()
UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle:
UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
UpperCamelCase = {}
UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return len(self.encoder )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(lowerCamelCase_ ):
try:
UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(lowerCamelCase_ )
UpperCamelCase = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCamelCase = get_pairs(lowerCamelCase_ )
UpperCamelCase = """ """.join(lowerCamelCase_ )
UpperCamelCase = word
return word
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = []
for token in re.findall(self.pat , lowerCamelCase_ ):
UpperCamelCase = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) )
return bpe_tokens
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
return self.decoder.get(lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ):
"""simple docstring"""
UpperCamelCase = """""".join(lowerCamelCase_ )
UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(lowerCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" )
UpperCamelCase = 0
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
UpperCamelCase = token_index
writer.write(""" """.join(lowerCamelCase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ):
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCamelCase = """ """ + text
return (text, kwargs)
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ):
"""simple docstring"""
UpperCamelCase = super()._pad(
encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
# Load from model defaults
if return_attention_mask is None:
UpperCamelCase = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCamelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCamelCase = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
UpperCamelCase = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 343 | 0 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class __A( datasets.BuilderConfig ):
snake_case_ = None
class __A( datasets.ArrowBasedBuilder ):
snake_case_ = PandasConfig
def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCamelCase_ , (str, list, tuple) ):
__a = data_files
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__a = [dl_manager.iter_files(lowerCamelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__a = []
for split_name, files in data_files.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__a = [dl_manager.iter_files(lowerCamelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__a = table_cast(lowerCamelCase_ , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict:
'''simple docstring'''
for i, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ):
with open(lowerCamelCase_ , '''rb''' ) as f:
__a = pa.Table.from_pandas(pd.read_pickle(lowerCamelCase_ ) )
yield i, self._cast_table(lowerCamelCase_ ) | 6 | import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_SCREAMING_SNAKE_CASE = (
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
_SCREAMING_SNAKE_CASE = (
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]),
("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
_SCREAMING_SNAKE_CASE = (
("""JH AH TH KH QH""", 2_3),
("""JH 9H TH KH QH""", 2_2),
("""JC KH JS JD JH""", 2_1),
("""KH KC 3S 3H 3D""", 2_0),
("""8C 9C 5C 3C TC""", 1_9),
("""JS QS 9H TS KH""", 1_8),
("""7C 7S KH 2H 7H""", 1_7),
("""3C KH 5D 5S KH""", 1_6),
("""QH 8H KD JH 8S""", 1_5),
("""2D 6D 9D TH 7D""", 1_4),
)
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) )
UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowercase( UpperCamelCase_ = 100 ) -> List[Any]:
'''simple docstring'''
return (generate_random_hand() for _ in range(UpperCamelCase_ ))
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict:
'''simple docstring'''
UpperCamelCase = PokerHand(UpperCamelCase_ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int:
'''simple docstring'''
assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected
def lowercase( ) -> Dict:
'''simple docstring'''
UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS]
UpperCamelCase = poker_hands.copy()
shuffle(UpperCamelCase_ )
UpperCamelCase = chain(sorted(UpperCamelCase_ ) )
for index, hand in enumerate(UpperCamelCase_ ):
assert hand == poker_hands[index]
def lowercase( ) -> Union[str, Any]:
'''simple docstring'''
# Test that five high straights are compared correctly.
UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=UpperCamelCase_ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowercase( ) -> str:
'''simple docstring'''
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" )
UpperCamelCase = True
UpperCamelCase = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowercase( ) -> int:
'''simple docstring'''
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
UpperCamelCase = 0
UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" )
with open(UpperCamelCase_ ) as file_hand:
for line in file_hand:
UpperCamelCase = line[:14].strip()
UpperCamelCase = line[15:].strip()
UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ )
UpperCamelCase = player.compare_with(UpperCamelCase_ )
if output == "Win":
answer += 1
assert answer == 376
| 343 | 0 |
'''simple docstring'''
def _lowerCamelCase ( lowercase : int , lowercase : str ) -> int:
return number | (1 << position)
def _lowerCamelCase ( lowercase : int , lowercase : Any ) -> int:
return number & ~(1 << position)
def _lowerCamelCase ( lowercase : Tuple , lowercase : int ) -> int:
return number ^ (1 << position)
def _lowerCamelCase ( lowercase : int , lowercase : Union[str, Any] ) -> bool:
return ((number >> position) & 1) == 1
def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Dict ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 63 | import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """xlnet"""
__lowerCAmelCase = ["""mems"""]
__lowerCAmelCase = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = n_layer
UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
UpperCamelCase = d_model // n_head
UpperCamelCase = ff_activation
UpperCamelCase = d_inner
UpperCamelCase = untie_r
UpperCamelCase = attn_type
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = dropout
UpperCamelCase = mem_len
UpperCamelCase = reuse_len
UpperCamelCase = bi_data
UpperCamelCase = clamp_len
UpperCamelCase = same_length
UpperCamelCase = summary_type
UpperCamelCase = summary_use_proj
UpperCamelCase = summary_activation
UpperCamelCase = summary_last_dropout
UpperCamelCase = start_n_top
UpperCamelCase = end_n_top
UpperCamelCase = bos_token_id
UpperCamelCase = pad_token_id
UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , lowerCamelCase_ , )
UpperCamelCase = kwargs["""use_cache"""]
UpperCamelCase = use_mems_eval
UpperCamelCase = use_mems_train
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ):
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 343 | 0 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
},
"merges_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
},
}
_SCREAMING_SNAKE_CASE = {
"vinai/phobert-base": 2_56,
"vinai/phobert-large": 2_56,
}
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = set()
_lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase = char
_lowerCAmelCase = set(UpperCamelCase_ )
return pairs
class lowerCAmelCase_ ( __lowerCAmelCase ):
__lowerCamelCase : List[str] = VOCAB_FILES_NAMES
__lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , **_lowerCAmelCase , ) -> Tuple:
super().__init__(
bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , )
_lowerCAmelCase = vocab_file
_lowerCAmelCase = merges_file
_lowerCAmelCase = {}
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 2
_lowerCAmelCase = 3
self.add_from_file(lowerCamelCase_ )
_lowerCAmelCase = {v: k for k, v in self.encoder.items()}
with open(lowerCamelCase_ , encoding="utf-8" ) as merges_handle:
_lowerCAmelCase = merges_handle.read().split("\n" )[:-1]
_lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges]
_lowerCAmelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
_lowerCAmelCase = {}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> int:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> Tuple:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Union[str, Any]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ) -> Tuple:
return len(self.encoder )
def _snake_case ( self ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , _lowerCAmelCase ) -> int:
if token in self.cache:
return self.cache[token]
_lowerCAmelCase = tuple(lowerCamelCase_ )
_lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
_lowerCAmelCase = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
_lowerCAmelCase = min(lowerCamelCase_ , key=lambda _lowerCAmelCase : self.bpe_ranks.get(lowerCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase , _lowerCAmelCase = bigram
_lowerCAmelCase = []
_lowerCAmelCase = 0
while i < len(lowerCamelCase_ ):
try:
_lowerCAmelCase = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase = tuple(lowerCamelCase_ )
_lowerCAmelCase = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
_lowerCAmelCase = get_pairs(lowerCamelCase_ )
_lowerCAmelCase = "@@ ".join(lowerCamelCase_ )
_lowerCAmelCase = word[:-4]
_lowerCAmelCase = word
return word
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = []
_lowerCAmelCase = re.findall(r"\S+\n?" , lowerCamelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(" " ) ) )
return split_tokens
def _snake_case ( self , _lowerCAmelCase ) -> Any:
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
return self.decoder.get(lowerCamelCase_ , self.unk_token )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = " ".join(lowerCamelCase_ ).replace("@@ " , "" ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Union[str, Any]:
if not os.path.isdir(lowerCamelCase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_lowerCAmelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ):
copyfile(self.vocab_file , lowerCamelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCamelCase_ ):
copyfile(self.merges_file , lowerCamelCase_ )
return out_vocab_file, out_merge_file
def _snake_case ( self , _lowerCAmelCase ) -> str:
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
try:
with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(lowerCamelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' )
return
_lowerCAmelCase = f.readlines()
for lineTmp in lines:
_lowerCAmelCase = lineTmp.strip()
_lowerCAmelCase = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
_lowerCAmelCase = line[:idx]
_lowerCAmelCase = len(self.encoder )
| 158 | import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""")
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = 0
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict()
config_dict.pop("""feature_extractor_type""" )
UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ )
# save in new folder
model_config.save_pretrained(lowerCamelCase_ )
config.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
# make sure private variable is not incorrectly saved
UpperCamelCase = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
with self.assertRaisesRegex(
lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCamelCase_ ):
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCamelCase_ ):
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(lowerCamelCase_ )
UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = True
try:
AutoConfig.register("""custom""" , lowerCamelCase_ )
AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ )
# If remote code is not set, the default is to use local
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
UpperCamelCase = AutoFeatureExtractor.from_pretrained(
"""hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 343 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
UpperCAmelCase : Tuple = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
lowercase_ = BeautifulSoup(requests.get(url + location ).content , """html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ):
lowercase_ = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
lowercase_ = job.find("""span""" , {"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F"Job {i:>2} is {job[0]} at {job[1]}")
| 136 | import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X2_0000 and cp <= 0X2_A6DF) #
or (cp >= 0X2_A700 and cp <= 0X2_B73F) #
or (cp >= 0X2_B740 and cp <= 0X2_B81F) #
or (cp >= 0X2_B820 and cp <= 0X2_CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2_F800 and cp <= 0X2_FA1F) #
): #
return True
return False
def lowercase( UpperCamelCase_ ) -> Dict:
'''simple docstring'''
# word like '180' or '身高' or '神'
for char in word:
UpperCamelCase = ord(UpperCamelCase_ )
if not _is_chinese_char(UpperCamelCase_ ):
return 0
return 1
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = set()
for token in tokens:
UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ )
if chinese_word:
word_set.add(UpperCamelCase_ )
UpperCamelCase = list(UpperCamelCase_ )
return word_list
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] )
UpperCamelCase = bert_tokens
UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ )
while start < end:
UpperCamelCase = True
if is_chinese(bert_word[start] ):
UpperCamelCase = min(end - start , UpperCamelCase_ )
for i in range(UpperCamelCase_ , 1 , -1 ):
UpperCamelCase = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCamelCase = """##""" + bert_word[j]
UpperCamelCase = start + i
UpperCamelCase = False
break
if single_word:
start += 1
return bert_word
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
'''simple docstring'''
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0]
UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res]
ltp_res.extend(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for i in range(0 , len(UpperCamelCase_ ) , 100 ):
UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
UpperCamelCase = []
for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ):
UpperCamelCase = []
for id in input_ids:
UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ )
input_tokens.append(UpperCamelCase_ )
UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ )
UpperCamelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(UpperCamelCase_ ):
if token[:2] == "##":
UpperCamelCase = token[2:]
# save chinese tokens' pos
if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ):
ref_id.append(UpperCamelCase_ )
ref_ids.append(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
return ref_ids
def lowercase( UpperCamelCase_ ) -> List[Any]:
'''simple docstring'''
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCamelCase = LTP(args.ltp ) # faster in GPU device
UpperCamelCase = BertTokenizer.from_pretrained(args.bert )
UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids]
f.writelines(UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_SCREAMING_SNAKE_CASE = parser.parse_args()
main(args)
| 343 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
a = logging.get_logger(__name__)
a = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
a = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
a = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES
UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Optional[Any] = BertTokenizer
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="[UNK]" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : Optional[int]="[PAD]" , _UpperCAmelCase : Tuple="[CLS]" , _UpperCAmelCase : Any="[MASK]" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : Dict , ):
super().__init__(
lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , )
_A = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars
):
_A = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) )
_A = do_lower_case
_A = strip_accents
_A = tokenize_chinese_chars
_A = normalizer_class(**lowerCamelCase_ )
_A = do_lower_case
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=None ):
_A = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
_A = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ )
return tuple(lowerCamelCase_ )
| 315 | import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ):
"""simple docstring"""
UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (self.image_size, self.image_size)
UpperCamelCase = (self.patch_size, self.patch_size)
UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = FlaxViTModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(lowerCamelCase_ )
UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = model_class(lowerCamelCase_ )
@jax.jit
def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ):
return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ )
with self.subTest("""JIT Enabled""" ):
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple()
self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) )
for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
UpperCamelCase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase_ )
| 343 | 0 |
lowerCamelCase = {str(digit): digit**5 for digit in range(10)}
def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCamelCase_ ) )
def a_ ( ):
'''simple docstring'''
return sum(
number
for number in range(1_000 , 1_000_000 )
if number == digits_fifth_powers_sum(UpperCamelCase_ ) )
if __name__ == "__main__":
print(solution())
| 199 | import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE_ :
def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ):
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = scope
UpperCamelCase = range_bbox
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCamelCase = bbox[i, j, 3]
UpperCamelCase = bbox[i, j, 1]
UpperCamelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCamelCase = bbox[i, j, 2]
UpperCamelCase = bbox[i, j, 0]
UpperCamelCase = t
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ )
UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ):
"""simple docstring"""
UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCamelCase = model(
lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCAmelCase = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ):
"""simple docstring"""
return True
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = LiltModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 )
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase = type
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ )
@slow
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@require_torch
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ )
UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ )
UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ )
UpperCamelCase = torch.Size([1, 2, 768] )
UpperCamelCase = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
| 343 | 0 |
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowercase ( _snake_case : Tuple ) ->Tuple:
"""simple docstring"""
__snake_case : Any = filter(lambda _snake_case : p.requires_grad , model.parameters() )
__snake_case : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
def lowercase ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
if metric == "rouge2":
__snake_case : Optional[Any] = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
__snake_case : Dict = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
__snake_case : Union[str, Any] = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
''' function.''' )
__snake_case : List[Any] = ModelCheckpoint(
dirpath=UpperCamelCase_ , filename=UpperCamelCase_ , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def lowercase ( _snake_case : List[str] , _snake_case : str ) ->str:
"""simple docstring"""
return EarlyStopping(
monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=UpperCamelCase_ , verbose=UpperCamelCase_ , )
class _UpperCAmelCase ( pl.Callback ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : str = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(lowerCamelCase_ )
@rank_zero_only
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_=True ):
'''simple docstring'''
logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
__snake_case : Optional[int] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
__snake_case : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
__snake_case : Any = od / '''test_results.txt'''
__snake_case : List[Any] = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__snake_case : List[str] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt"""
__snake_case : int = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=lowerCamelCase_ )
generations_file.parent.mkdir(exist_ok=lowerCamelCase_ )
with open(lowerCamelCase_ , '''a+''' ) as writer:
for key in sorted(lowerCamelCase_ ):
if key in ["log", "progress_bar", "preds"]:
continue
__snake_case : List[str] = metrics[key]
if isinstance(lowerCamelCase_ , torch.Tensor ):
__snake_case : List[str] = val.item()
__snake_case : Optional[int] = f"""{key}: {val:.6f}\n"""
writer.write(lowerCamelCase_ )
if not save_generations:
return
if "preds" in metrics:
__snake_case : List[str] = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(lowerCamelCase_ )
@rank_zero_only
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
try:
__snake_case : List[Any] = pl_module.model.model.num_parameters()
except AttributeError:
__snake_case : List[str] = pl_module.model.num_parameters()
__snake_case : List[str] = count_trainable_parameters(lowerCamelCase_ )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} )
@rank_zero_only
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(lowerCamelCase_ , lowerCamelCase_ , '''test''' )
@rank_zero_only
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 102 | import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
UpperCamelCase = size if size is not None else {"""shortest_edge""": 30}
UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize_and_center_crop
UpperCamelCase = size
UpperCamelCase = crop_pct
UpperCamelCase = crop_size
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ):
__lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Any ):
"""simple docstring"""
UpperCamelCase = PoolFormerImageProcessingTester(self )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) )
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 343 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class _lowerCamelCase( __lowerCAmelCase ):
lowercase_ : Dict = """trocr"""
lowercase_ : int = ["""past_key_values"""]
lowercase_ : int = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self, lowerCamelCase=5_02_65, lowerCamelCase=10_24, lowerCamelCase=12, lowerCamelCase=16, lowerCamelCase=40_96, lowerCamelCase="gelu", lowerCamelCase=5_12, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, **lowerCamelCase, ) -> Dict:
"""simple docstring"""
_lowercase : List[str] = vocab_size
_lowercase : Optional[Any] = d_model
_lowercase : Any = decoder_layers
_lowercase : List[Any] = decoder_attention_heads
_lowercase : Optional[int] = decoder_ffn_dim
_lowercase : List[Any] = activation_function
_lowercase : Any = max_position_embeddings
_lowercase : List[str] = dropout
_lowercase : int = attention_dropout
_lowercase : List[str] = activation_dropout
_lowercase : Optional[int] = init_std
_lowercase : Union[str, Any] = decoder_layerdrop
_lowercase : Optional[int] = use_cache
_lowercase : List[Any] = scale_embedding
_lowercase : Optional[int] = use_learned_position_embeddings
_lowercase : Dict = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, **lowerCamelCase_, )
| 21 | def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 343 | 0 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_a : int= logging.get_logger(__name__)
_a : List[Any]= {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_a : Optional[Any]= {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : Union[str, Any]= {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : Optional[int]= {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : Union[str, Any]= {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_a : int= {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_a : List[str]= {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_a : int= {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_a : List[str]= {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_a : int= {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class UpperCamelCase ( __lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES
UpperCAmelCase : Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class UpperCamelCase ( __lowerCAmelCase ):
UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
UpperCAmelCase : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_a : Dict= collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_a : Union[str, Any]= collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_a : str= R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__lowerCAmelCase )
class UpperCamelCase :
def __call__(self : Dict , _A : List[Any] , _A : Optional[str] = None , _A : Optional[str] = None , _A : Union[bool, str] = False , _A : Union[bool, str] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , **_A : List[str] , ) -> Dict:
if titles is None and texts is None:
return super().__call__(
lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , )
elif titles is None or texts is None:
__snake_case : str = titles if texts is None else texts
return super().__call__(
lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , )
__snake_case : Union[str, Any] = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_) else [titles]
__snake_case : Any = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_) else [texts]
__snake_case : Union[str, Any] = len(lowerCamelCase_)
__snake_case : Optional[int] = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_) else [questions] * n_passages
if len(lowerCamelCase_) != len(lowerCamelCase_):
raise ValueError(
f"There should be as many titles than texts but got {len(lowerCamelCase_)} titles and {len(lowerCamelCase_)} texts.")
__snake_case : Optional[Any] = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_)['input_ids']
__snake_case : str = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_)['input_ids']
__snake_case : Optional[Any] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_)
]
}
if return_attention_mask is not False:
__snake_case : Optional[Any] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
__snake_case : Any = attention_mask
return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_)
def _lowercase (self : str , _A : BatchEncoding , _A : DPRReaderOutput , _A : int = 16 , _A : int = 64 , _A : int = 4 , ) -> Union[str, Any]:
__snake_case : Optional[int] = reader_input['input_ids']
__snake_case , __snake_case , __snake_case : Optional[Any] = reader_output[:3]
__snake_case : Tuple = len(lowerCamelCase_)
__snake_case : Dict = sorted(range(lowerCamelCase_) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__)
__snake_case : str = []
for doc_id in sorted_docs:
__snake_case : Tuple = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
__snake_case : List[str] = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
__snake_case : Optional[Any] = sequence_ids.index(self.pad_token_id)
else:
__snake_case : Dict = len(lowerCamelCase_)
__snake_case : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(lowerCamelCase_) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _lowercase (self : List[Any] , _A : List[int] , _A : List[int] , _A : int , _A : int , ) -> Tuple:
__snake_case : int = []
for start_index, start_score in enumerate(lowerCamelCase_):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
__snake_case : Dict = sorted(lowerCamelCase_ , key=lambda _A: x[1] , reverse=lowerCamelCase_)
__snake_case : Dict = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]")
__snake_case : str = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f"Span is too long: {length} > {max_answer_length}")
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(lowerCamelCase_) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__lowerCAmelCase )
class UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
UpperCAmelCase : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Dict = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase : int = ["""input_ids""", """attention_mask"""]
| 172 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = """trocr"""
__lowerCAmelCase = ["""past_key_values"""]
__lowerCAmelCase = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ):
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_attention_heads
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = activation_function
UpperCamelCase = max_position_embeddings
UpperCamelCase = dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = init_std
UpperCamelCase = decoder_layerdrop
UpperCamelCase = use_cache
UpperCamelCase = scale_embedding
UpperCamelCase = use_learned_position_embeddings
UpperCamelCase = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
| 343 | 0 |
'''simple docstring'''
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
lowercase : Optional[Any] = 'bart'
lowercase : int = True
@st.cache(allow_output_mutation=UpperCamelCase_ )
def lowerCAmelCase_ ( ):
'''simple docstring'''
if LOAD_DENSE_INDEX:
A : int = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
A : Union[str, Any] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
A : Optional[Any] = qar_model.eval()
else:
A, A : int = (None, None)
if MODEL_TYPE == "bart":
A : Dict = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
A : str = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
A : Any = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
A : Dict = sas_model.eval()
else:
A, A : str = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=UpperCamelCase_ )
def lowerCAmelCase_ ( ):
'''simple docstring'''
if LOAD_DENSE_INDEX:
A : Union[str, Any] = faiss.StandardGpuResources()
A : List[Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
A : Union[str, Any] = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
A : Optional[Any] = faiss.IndexFlatIP(128 )
A : Optional[int] = faiss.index_cpu_to_gpu(UpperCamelCase_ , 1 , UpperCamelCase_ )
wikiaab_gpu_index_flat.add(UpperCamelCase_ ) # TODO fix for larger GPU
else:
A, A : Optional[Any] = (None, None)
A : Optional[int] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=UpperCamelCase_ )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
A : Optional[Any] = elia['''train_eli5''']
A : Tuple = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
A : Union[str, Any] = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(UpperCamelCase_ )
return (elia_train, eli5_train_q_index)
lowercase , lowercase , lowercase : Optional[int] = load_indexes()
lowercase , lowercase , lowercase , lowercase : Optional[Any] = load_models()
lowercase , lowercase : str = load_train_data()
def lowerCAmelCase_ ( snake_case__ , snake_case__=10 ):
'''simple docstring'''
A : List[Any] = embed_questions_for_retrieval([question] , UpperCamelCase_ , UpperCamelCase_ )
A, A : Optional[int] = eli5_train_q_index.search(UpperCamelCase_ , UpperCamelCase_ )
A : Optional[Any] = [elia_train[int(UpperCamelCase_ )] for i in I[0]]
return nn_examples
def lowerCAmelCase_ ( snake_case__ , snake_case__="wiki40b" , snake_case__="dense" , snake_case__=10 ):
'''simple docstring'''
if source == "none":
A, A : Dict = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
A, A : int = query_qa_dense_index(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
A, A : Union[str, Any] = query_es_index(
UpperCamelCase_ , UpperCamelCase_ , index_name='''english_wiki40b_snippets_100w''' , n_results=UpperCamelCase_ , )
A : Tuple = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
A : Tuple = '''question: {} context: {}'''.format(UpperCamelCase_ , UpperCamelCase_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case__ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case__ : None),
} )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=64 , snake_case__=256 , snake_case__=False , snake_case__=2 , snake_case__=0.95 , snake_case__=0.8 ):
'''simple docstring'''
with torch.no_grad():
A : Any = qa_sas_generate(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_answers=1 , num_beams=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ , do_sample=UpperCamelCase_ , temp=UpperCamelCase_ , top_p=UpperCamelCase_ , top_k=UpperCamelCase_ , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
lowercase : int = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
lowercase : Tuple = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
lowercase : List[str] = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
lowercase : Any = st.sidebar.checkbox('Demo options')
if demo_options:
lowercase : Optional[int] = st.sidebar.selectbox(
'',
action_list,
index=3,
)
lowercase : Tuple = action_list.index(action_st)
lowercase : Optional[int] = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
lowercase : Optional[Any] = show_type == 'Show full text of passages'
else:
lowercase : str = 3
lowercase : List[Any] = True
lowercase : Union[str, Any] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
lowercase : Optional[int] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
lowercase : List[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
lowercase : str = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
lowercase : List[Any] = 'wiki40b'
lowercase : Union[str, Any] = 'dense'
lowercase : List[str] = 'beam'
lowercase : str = 2
lowercase : Union[str, Any] = 64
lowercase : List[str] = 2_56
lowercase : List[str] = None
lowercase : int = None
lowercase : Optional[int] = st.sidebar.checkbox('Generation options')
if generate_options:
lowercase : str = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
lowercase : int = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
lowercase : List[str] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
lowercase : Union[str, Any] = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
lowercase : int = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
lowercase : List[Any] = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
lowercase : List[Any] = None
# start main text
lowercase : str = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
lowercase : int = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
lowercase : str = st.text_input('Enter your question here:', '')
else:
lowercase : str = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
lowercase , lowercase : str = make_support(question, source=wiki_source, method='dense', n_results=10)
lowercase , lowercase : Any = make_support(question, source=wiki_source, method='sparse', n_results=10)
lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
lowercase : List[str] = support_list[:10]
lowercase : Dict = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
lowercase , lowercase : Any = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
lowercase , lowercase : List[str] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
lowercase : Tuple = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
lowercase : Union[str, Any] = res[1].strip()
if sec_titles == "":
lowercase : Tuple = '[{}]({})'.format(res[0], wiki_url)
else:
lowercase : Optional[int] = sec_titles.split(' & ')
lowercase : Tuple = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style=\"font-family:arial; font-size:10pt;\">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
lowercase : List[str] = find_nearest_training(question)
lowercase : str = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
lowercase : Any = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
lowercase : List[str] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 3 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ):
__lowerCAmelCase = """swin"""
__lowerCAmelCase = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
super().__init__(**lowerCamelCase_ )
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = embed_dim
UpperCamelCase = depths
UpperCamelCase = len(lowerCamelCase_ )
UpperCamelCase = num_heads
UpperCamelCase = window_size
UpperCamelCase = mlp_ratio
UpperCamelCase = qkv_bias
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = drop_path_rate
UpperCamelCase = hidden_act
UpperCamelCase = use_absolute_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )]
UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(
out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
__lowerCAmelCase = version.parse("""1.11""" )
@property
def lowerCamelCase_ ( self : int ):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return 1E-4
| 343 | 0 |
'''simple docstring'''
from numpy import exp, pi, sqrt
def lowercase_ ( _lowercase , _lowercase = 0.0 , _lowercase = 1.0 ) -> int:
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_SCREAMING_SNAKE_CASE = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
_SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
_SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(6_4, 6_4)
)
_SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image)
_SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0)
_SCREAMING_SNAKE_CASE = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_SCREAMING_SNAKE_CASE = """Normal"""
if result[0][0] == 1:
_SCREAMING_SNAKE_CASE = """Abnormality detected"""
| 343 | 0 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __A( __lowerCAmelCase ):
snake_case_ = '''char'''
snake_case_ = '''bpe'''
snake_case_ = '''wp'''
A : Dict = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __A( __lowerCAmelCase ):
snake_case_ = ['''image_processor''', '''char_tokenizer''']
snake_case_ = '''ViTImageProcessor'''
snake_case_ = '''MgpstrTokenizer'''
def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> str:
'''simple docstring'''
__a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowerCamelCase_ , )
__a = kwargs.pop('''feature_extractor''' )
__a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
__a = tokenizer
__a = AutoTokenizer.from_pretrained('''gpt2''' )
__a = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(lowerCamelCase_ , lowerCamelCase_ )
def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
__a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is not None:
__a = self.char_tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
__a = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int:
'''simple docstring'''
__a , __a , __a = sequences
__a = char_preds.size(0 )
__a , __a = self._decode_helper(lowerCamelCase_ , '''char''' )
__a , __a = self._decode_helper(lowerCamelCase_ , '''bpe''' )
__a , __a = self._decode_helper(lowerCamelCase_ , '''wp''' )
__a = []
__a = []
for i in range(lowerCamelCase_ ):
__a = [char_scores[i], bpe_scores[i], wp_scores[i]]
__a = [char_strs[i], bpe_strs[i], wp_strs[i]]
__a = scores.index(max(lowerCamelCase_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__a = {}
__a = final_strs
__a = final_scores
__a = char_strs
__a = bpe_strs
__a = wp_strs
return out
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int:
'''simple docstring'''
if format == DecodeType.CHARACTER:
__a = self.char_decode
__a = 1
__a = '''[s]'''
elif format == DecodeType.BPE:
__a = self.bpe_decode
__a = 2
__a = '''#'''
elif format == DecodeType.WORDPIECE:
__a = self.wp_decode
__a = 102
__a = '''[SEP]'''
else:
raise ValueError(F"""Format {format} is not supported.""" )
__a , __a = [], []
__a = pred_logits.size(0 )
__a = pred_logits.size(1 )
__a , __a = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase_ , sorted=lowerCamelCase_ )
__a = preds_index.view(-1 , lowerCamelCase_ )[:, 1:]
__a = decoder(lowerCamelCase_ )
__a , __a = torch.nn.functional.softmax(lowerCamelCase_ , dim=2 ).max(dim=2 )
__a = preds_max_prob[:, 1:]
for index in range(lowerCamelCase_ ):
__a = preds_str[index].find(lowerCamelCase_ )
__a = preds_str[index][:pred_eos]
__a = preds_index[index].cpu().tolist()
__a = pred_index.index(lowerCamelCase_ ) if eos_token in pred_index else -1
__a = preds_max_prob[index][: pred_eos_index + 1]
__a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(lowerCamelCase_ )
conf_scores.append(lowerCamelCase_ )
return dec_strs, conf_scores
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase_ )]
return decode_strs
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(lowerCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple:
'''simple docstring'''
__a = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase_ )]
return decode_strs | 6 | from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
pass
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , lowerCamelCase_ : Any ):
"""simple docstring"""
UpperCamelCase = data
UpperCamelCase = None
def __iter__( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = self
UpperCamelCase = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(lowerCamelCase_ )
yield node.data
UpperCamelCase = node.next_node
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = Node(1)
_SCREAMING_SNAKE_CASE = Node(2)
_SCREAMING_SNAKE_CASE = Node(3)
_SCREAMING_SNAKE_CASE = Node(4)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = root_node.next_node
print(root_node.has_loop) # True
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
_SCREAMING_SNAKE_CASE = Node(5)
_SCREAMING_SNAKE_CASE = Node(6)
print(root_node.has_loop) # False
_SCREAMING_SNAKE_CASE = Node(1)
print(root_node.has_loop) # False
| 343 | 0 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] , lowercase : Optional[Any] ) -> float:
_a = x
_a = y
for step in range(UpperCamelCase_ ): # noqa: B007
_a = a * a - b * b + x
_a = 2 * a * b + y
_a = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _lowerCamelCase ( lowercase : Dict ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _lowerCamelCase ( lowercase : int ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) )
def _lowerCamelCase ( lowercase : Union[str, Any] = 800 , lowercase : Optional[int] = 600 , lowercase : Optional[int] = -0.6 , lowercase : List[str] = 0 , lowercase : List[str] = 3.2 , lowercase : Optional[int] = 50 , lowercase : str = True , ) -> Image.Image:
_a = Image.new("RGB" , (image_width, image_height) )
_a = img.load()
# loop through the image-coordinates
for image_x in range(UpperCamelCase_ ):
for image_y in range(UpperCamelCase_ ):
# determine the figure-coordinates based on the image-coordinates
_a = figure_width / image_width * image_height
_a = figure_center_x + (image_x / image_width - 0.5) * figure_width
_a = figure_center_y + (image_y / image_height - 0.5) * figure_height
_a = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_a = get_color_coded_rgb(UpperCamelCase_ )
else:
_a = get_black_and_white_rgb(UpperCamelCase_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase_ : Dict = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 63 | import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , )
assert hasattr(self , """env""" )
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ):
"""simple docstring"""
UpperCamelCase = {
"""enabled""": True,
"""processes_per_host""": 8,
}
UpperCamelCase = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , )
def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ):
"""simple docstring"""
TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ):
"""simple docstring"""
UpperCamelCase = self.create_estimator(lowerCamelCase_ )
# run training
estimator.fit()
# result dataframe
UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
| 343 | 0 |
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = XLNetTokenizer
lowerCamelCase = XLNetTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
def UpperCAmelCase_ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A_ : str = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Dict = """<s>"""
A_ : Optional[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """<eod>""" )
self.assertEqual(len(_lowerCamelCase ) , 1006 )
def UpperCAmelCase_ ( self ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Union[str, Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
A_ : Optional[Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] )
A_ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A_ : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
A_ : Dict = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : List[str] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase )
A_ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + """""",
"""i""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] )
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Any = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase )
A_ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
@slow
def UpperCAmelCase_ ( self ) -> int:
A_ : Optional[int] = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" )
A_ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase )
A_ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase )
A_ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase )
A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
# fmt: off
A_ : int = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
'Visual-Attention-Network/van-base': (
'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'
),
}
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''van'''
def __init__( self , _lowerCamelCase=224 , _lowerCamelCase=3 , _lowerCamelCase=[7, 3, 3, 3] , _lowerCamelCase=[4, 2, 2, 2] , _lowerCamelCase=[64, 128, 320, 512] , _lowerCamelCase=[3, 3, 12, 3] , _lowerCamelCase=[8, 8, 4, 4] , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=1e-6 , _lowerCamelCase=1e-2 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , **_lowerCamelCase , ) -> List[str]:
super().__init__(**_lowerCamelCase )
A_ : Dict = image_size
A_ : Dict = num_channels
A_ : Optional[int] = patch_sizes
A_ : List[Any] = strides
A_ : Union[str, Any] = hidden_sizes
A_ : List[str] = depths
A_ : Any = mlp_ratios
A_ : List[str] = hidden_act
A_ : Dict = initializer_range
A_ : int = layer_norm_eps
A_ : Any = layer_scale_init_value
A_ : Optional[Any] = drop_path_rate
A_ : Dict = dropout_rate
| 344 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''distilbert'''
lowerCamelCase = {
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]:
A_ : Tuple = vocab_size
A_ : List[Any] = max_position_embeddings
A_ : int = sinusoidal_pos_embds
A_ : int = n_layers
A_ : str = n_heads
A_ : Optional[int] = dim
A_ : int = hidden_dim
A_ : Tuple = dropout
A_ : List[Any] = attention_dropout
A_ : int = activation
A_ : Dict = initializer_range
A_ : List[Any] = qa_dropout
A_ : int = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A_ : int = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 344 | 1 |
'''simple docstring'''
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''EncodecFeatureExtractor'''
lowerCamelCase = ('''T5Tokenizer''', '''T5TokenizerFast''')
def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
super().__init__(_lowerCamelCase , _lowerCamelCase )
A_ : int = self.feature_extractor
A_ : List[str] = False
def UpperCAmelCase_ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Optional[Any]:
return self.tokenizer.get_decoder_prompt_ids(task=_lowerCamelCase , language=_lowerCamelCase , no_timestamps=_lowerCamelCase )
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowerCamelCase , **_lowerCamelCase )
A_ : int = kwargs.pop("""audio""" , _lowerCamelCase )
A_ : str = kwargs.pop("""sampling_rate""" , _lowerCamelCase )
A_ : Optional[Any] = kwargs.pop("""text""" , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
A_ : List[str] = args[0]
A_ : Any = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
A_ : Any = self.tokenizer(_lowerCamelCase , **_lowerCamelCase )
if audio is not None:
A_ : Tuple = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
A_ : Tuple = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
A_ : int = audio_inputs["""padding_mask"""]
return inputs
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any:
A_ : Optional[int] = kwargs.pop("""audio""" , _lowerCamelCase )
A_ : List[str] = kwargs.pop("""padding_mask""" , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
A_ : Dict = args[0]
A_ : Optional[Any] = args[1:]
if audio_values is not None:
return self._decode_audio(_lowerCamelCase , padding_mask=_lowerCamelCase )
else:
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]:
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[np.ndarray]:
A_ : Any = to_numpy(_lowerCamelCase )
A_ , A_ , A_ : Optional[Any] = audio_values.shape
if padding_mask is None:
return list(_lowerCamelCase )
A_ : Union[str, Any] = to_numpy(_lowerCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
A_ : Union[str, Any] = seq_len - padding_mask.shape[-1]
A_ : Optional[int] = 1 - self.feature_extractor.padding_value
A_ : List[str] = np.pad(_lowerCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=_lowerCamelCase )
A_ : List[str] = audio_values.tolist()
for i in range(_lowerCamelCase ):
A_ : Optional[Any] = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
A_ : Tuple = sliced_audio.reshape(_lowerCamelCase , -1 )
return audio_values
| 344 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ : int = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
UpperCamelCase__ : Any = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias'))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'),
('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'),
('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'),
('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'),
('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'),
('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'),
('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'),
('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'),
('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'),
('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'),
]
)
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
A_ : int = state_dict.pop(a_ )
A_ : Tuple = val
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
A_ : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
A_ : str = value
else:
A_ : int = value
return new_state_dict
def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]:
"""simple docstring"""
A_ : List[Any] = """"""
if is_panoptic:
A_ : Any = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
A_ : Optional[Any] = in_proj_weight[:2_5_6, :]
A_ : Tuple = in_proj_bias[:2_5_6]
A_ : Dict = in_proj_weight[2_5_6:5_1_2, :]
A_ : int = in_proj_bias[2_5_6:5_1_2]
A_ : int = in_proj_weight[-2_5_6:, :]
A_ : Optional[int] = in_proj_bias[-2_5_6:]
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
A_ : int = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
A_ : str = """resnet101"""
if "dc5" in model_name:
A_ : List[Any] = True
A_ : str = """panoptic""" in model_name
if is_panoptic:
A_ : Dict = 2_5_0
else:
A_ : Union[str, Any] = 9_1
A_ : str = """huggingface/label-files"""
A_ : Union[str, Any] = """coco-detection-id2label.json"""
A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) )
A_ : str = {int(a_ ): v for k, v in idalabel.items()}
A_ : Optional[int] = idalabel
A_ : Tuple = {v: k for k, v in idalabel.items()}
# load image processor
A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection"""
A_ : Any = ConditionalDetrImageProcessor(format=a_ )
# prepare image
A_ : Tuple = prepare_img()
A_ : Any = image_processor(images=a_ , return_tensors="""pt""" )
A_ : Optional[int] = encoding["""pixel_values"""]
logger.info(F"Converting model {model_name}..." )
# load original model from torch hub
A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval()
A_ : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
A_ : Union[str, Any] = """conditional_detr.""" + src
rename_key(a_ , a_ , a_ )
A_ : Any = rename_backbone_keys(a_ )
# query, key and value matrices need special treatment
read_in_q_k_v(a_ , is_panoptic=a_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
A_ : Dict = state_dict.pop(a_ )
A_ : List[Any] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
A_ : str = state_dict.pop(a_ )
A_ : Any = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
A_ : Optional[int] = state_dict.pop(a_ )
A_ : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
A_ : Tuple = state_dict.pop(a_ )
A_ : Dict = val
# finally, create HuggingFace model and load state dict
A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ )
model.load_state_dict(a_ )
model.eval()
model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
A_ : str = conditional_detr(a_ )
A_ : str = model(a_ )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 )
# Save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
UpperCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='conditional_detr_resnet50',
type=str,
help='Name of the CONDITIONAL_DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
UpperCamelCase__ : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 344 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__ : Tuple = {
'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimesformerModel',
'TimesformerForVideoClassification',
'TimesformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = (UnCLIPScheduler,)
def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]:
A_ : Union[str, Any] = {
"""num_train_timesteps""": 1000,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**_lowerCamelCase )
return config
def UpperCAmelCase_ ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[int]:
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Optional[int] = self.scheduler_classes[0]
A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" )
A_ : List[Any] = scheduler_class(**_lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : List[Any] = self.scheduler_classes[0]
A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" )
A_ : Dict = scheduler_class(**_lowerCamelCase )
A_ : Dict = 0.5
assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5
def UpperCAmelCase_ ( self ) -> Any:
A_ : Optional[Any] = self.scheduler_classes[0]
A_ : Tuple = self.get_scheduler_config()
A_ : Optional[Any] = scheduler_class(**_lowerCamelCase )
A_ : int = scheduler.timesteps
A_ : List[Any] = self.dummy_model()
A_ : str = self.dummy_sample_deter
A_ : Optional[Any] = torch.manual_seed(0 )
for i, t in enumerate(_lowerCamelCase ):
# 1. predict noise residual
A_ : Any = model(_lowerCamelCase , _lowerCamelCase )
# 2. predict previous mean of sample x_t-1
A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
A_ : List[Any] = pred_prev_sample
A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1e-2
assert abs(result_mean.item() - 0.328_4743 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Union[str, Any] = self.scheduler_classes[0]
A_ : Dict = self.get_scheduler_config()
A_ : Tuple = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(25 )
A_ : List[str] = scheduler.timesteps
A_ : List[Any] = self.dummy_model()
A_ : List[Any] = self.dummy_sample_deter
A_ : List[Any] = torch.manual_seed(0 )
for i, t in enumerate(_lowerCamelCase ):
# 1. predict noise residual
A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase )
if i + 1 == timesteps.shape[0]:
A_ : List[str] = None
else:
A_ : Dict = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
A_ : str = scheduler.step(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample
A_ : Optional[Any] = pred_prev_sample
A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1e-2
assert abs(result_mean.item() - 0.336_2038 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> int:
pass
| 344 | 1 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase__ : List[Any] = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''mask2former'''
lowerCamelCase = ['''swin''']
lowerCamelCase = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = 256 , _lowerCamelCase = 256 , _lowerCamelCase = 256 , _lowerCamelCase = 1024 , _lowerCamelCase = "relu" , _lowerCamelCase = 6 , _lowerCamelCase = 10 , _lowerCamelCase = 8 , _lowerCamelCase = 0.0 , _lowerCamelCase = 2048 , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = 4 , _lowerCamelCase = 255 , _lowerCamelCase = 100 , _lowerCamelCase = 0.1 , _lowerCamelCase = 2.0 , _lowerCamelCase = 5.0 , _lowerCamelCase = 5.0 , _lowerCamelCase = 1_2544 , _lowerCamelCase = 3.0 , _lowerCamelCase = 0.75 , _lowerCamelCase = 0.02 , _lowerCamelCase = 1.0 , _lowerCamelCase = True , _lowerCamelCase = [4, 8, 16, 32] , _lowerCamelCase = None , **_lowerCamelCase , ) -> str:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
A_ : str = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
A_ : Dict = backbone_config.pop("""model_type""" )
A_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type]
A_ : List[Any] = config_class.from_dict(_lowerCamelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. "
F"Supported model types: {','.join(self.backbones_supported )}" )
A_ : Any = backbone_config
A_ : Optional[Any] = feature_size
A_ : str = mask_feature_size
A_ : Optional[Any] = hidden_dim
A_ : List[Any] = encoder_feedforward_dim
A_ : List[Any] = activation_function
A_ : Optional[Any] = encoder_layers
A_ : Optional[Any] = decoder_layers
A_ : str = num_attention_heads
A_ : int = dropout
A_ : int = dim_feedforward
A_ : Optional[Any] = pre_norm
A_ : str = enforce_input_projection
A_ : List[str] = common_stride
A_ : str = ignore_value
A_ : Any = num_queries
A_ : int = no_object_weight
A_ : int = class_weight
A_ : int = mask_weight
A_ : List[Any] = dice_weight
A_ : List[Any] = train_num_points
A_ : Optional[Any] = oversample_ratio
A_ : Optional[int] = importance_sample_ratio
A_ : Tuple = init_std
A_ : Tuple = init_xavier_std
A_ : List[Any] = use_auxiliary_loss
A_ : List[Any] = feature_strides
A_ : List[Any] = output_auxiliary_logits
A_ : Tuple = decoder_layers
super().__init__(**_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ) -> List[str]:
return cls(
backbone_config=_lowerCamelCase , **_lowerCamelCase , )
def UpperCAmelCase_ ( self ) -> Dict[str, any]:
A_ : str = copy.deepcopy(self.__dict__ )
A_ : str = self.backbone_config.to_dict()
A_ : int = self.__class__.model_type
return output
| 344 |
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]:
A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20}
A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
A_ : Optional[Any] = parent
A_ : Optional[int] = batch_size
A_ : Union[str, Any] = num_channels
A_ : str = image_size
A_ : Tuple = min_resolution
A_ : Dict = max_resolution
A_ : str = do_resize
A_ : Tuple = size
A_ : int = do_center_crop
A_ : Dict = crop_size
A_ : Tuple = do_normalize
A_ : List[str] = image_mean
A_ : Optional[Any] = image_std
A_ : Any = do_reduce_labels
def UpperCAmelCase_ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(dataset[0]["""file"""] )
A_ : Dict = Image.open(dataset[1]["""file"""] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(ds[0]["""file"""] )
A_ : List[Any] = Image.open(ds[1]["""file"""] )
A_ : Any = Image.open(ds[2]["""file"""] )
A_ : str = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = BeitImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : List[Any] = BeitImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
A_ : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> Dict:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> List[str]:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> str:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> Optional[int]:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
A_ : Optional[int] = []
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
A_ , A_ : List[Any] = prepare_semantic_single_inputs()
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
A_ , A_ : str = prepare_semantic_batch_inputs()
A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def UpperCAmelCase_ ( self ) -> Tuple:
# Initialize image_processing
A_ : Any = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
A_ , A_ : Tuple = prepare_semantic_single_inputs()
A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
A_ : str = True
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 344 | 1 |
'''simple docstring'''
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
A_ : List[str] = sorted(string.lower() )
return len(a_ ) == len(set(a_ ) )
if __name__ == "__main__":
UpperCamelCase__ : int = input('Enter a string ').strip()
UpperCamelCase__ : List[Any] = is_isogram(input_str)
print(f'{input_str} is {"an" if isogram else "not an"} isogram.')
| 344 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class _lowerCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str:
super().__init__()
A_ : Optional[Any] = pad_token_id
A_ : List[Any] = max_length
A_ : str = vocab
A_ : Union[str, Any] = merges
A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int:
A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()]
A_ : Dict = tokenizer.get_vocab()
return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str:
A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]:
return cls(**_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any:
A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase )
A_ : Any = tf.ones_like(_lowerCamelCase )
if self.pad_token_id is not None:
# pad the tokens up to max length
A_ : List[Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
A_ , A_ : Tuple = pad_model_inputs(
_lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 344 | 1 |
'''simple docstring'''
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
UpperCamelCase__ : Tuple = int(input('Enter number: ').strip())
print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : int = ['YolosFeatureExtractor']
UpperCamelCase__ : int = ['YolosImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST',
'YolosForObjectDetection',
'YolosModel',
'YolosPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __lt__( self , _lowerCamelCase ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self , _lowerCamelCase ) -> List[Any]:
return self[-1] == other[-1]
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
A_ : list[Stack] = []
# sort into stacks
for element in collection:
A_ : Any = Stack([element] )
A_ : Optional[int] = bisect_left(a_ , a_ )
if i != len(a_ ):
stacks[i].append(a_ )
else:
stacks.append(a_ )
# use a heap-based merge to merge stack efficiently
A_ : Any = merge(*(reversed(a_ ) for stack in stacks) )
return collection
if __name__ == "__main__":
UpperCamelCase__ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip()
UpperCamelCase__ : List[str] = [int(item) for item in user_input.split(',')]
print(patience_sort(unsorted))
| 344 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
A_ : Optional[Any] = name
A_ : Dict = value
A_ : Union[str, Any] = weight
def __repr__( self ) -> List[str]:
return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return self.value
def UpperCAmelCase_ ( self ) -> List[str]:
return self.name
def UpperCAmelCase_ ( self ) -> Tuple:
return self.weight
def UpperCAmelCase_ ( self ) -> Optional[int]:
return self.value / self.weight
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
A_ : Optional[int] = []
for i in range(len(a_ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ )
A_ : str = []
A_ , A_ : Dict = 0.0, 0.0
for i in range(len(a_ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 | 1 |
'''simple docstring'''
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
stooge(a_ , 0 , len(a_ ) - 1 )
return arr
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
A_ , A_ : int = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
A_ : Optional[int] = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(a_ , a_ , (h - t) )
# Recursively sort last 2/3 elements
stooge(a_ , i + t , (a_) )
# Recursively sort first 2/3 elements
stooge(a_ , a_ , (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : List[Any] = input('Enter numbers separated by a comma:\n').strip()
UpperCamelCase__ : Union[str, Any] = [int(item) for item in user_input.split(',')]
print(stooge_sort(unsorted))
| 344 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def UpperCAmelCase ( a_ , a_ ) -> tuple:
"""simple docstring"""
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 | 1 |
'''simple docstring'''
UpperCamelCase__ : List[Any] = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]:
"""simple docstring"""
A_ : Any = [False] * len(a_ )
A_ : List[str] = [s]
A_ : int = True
while queue:
A_ : Tuple = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(a_ )
A_ : Union[str, Any] = True
A_ : List[str] = u
return visited[t]
def UpperCAmelCase ( a_ , a_ , a_ ) -> int:
"""simple docstring"""
A_ : Optional[Any] = [-1] * (len(a_ ))
A_ : List[Any] = 0
A_ : List[str] = []
A_ : List[Any] = [i[:] for i in graph] # Record original cut, copy.
while bfs(a_ , a_ , a_ , a_ ):
A_ : Any = float("""Inf""" )
A_ : Tuple = sink
while s != source:
# Find the minimum value in select path
A_ : Optional[int] = min(a_ , graph[parent[s]][s] )
A_ : Tuple = parent[s]
max_flow += path_flow
A_ : str = sink
while v != source:
A_ : List[Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
A_ : str = parent[v]
for i in range(len(a_ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 344 |
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any:
A_ : List[Any] = parent
A_ : int = config_class
A_ : int = has_text_modality
A_ : str = kwargs
A_ : int = common_properties
def UpperCAmelCase_ ( self ) -> str:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : Optional[int] = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(_lowerCamelCase ):
try:
setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(_lowerCamelCase ):
try:
A_ : List[str] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = self.config_class(**self.inputs_dict )
A_ : Optional[int] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : str = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" )
config_first.to_json_file(_lowerCamelCase )
A_ : Dict = self.config_class.from_json_file(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Any = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(_lowerCamelCase )
A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : List[Any] = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase )
config_first.save_pretrained(_lowerCamelCase )
A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
A_ : str = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if self.config_class.is_composition:
return
A_ : Dict = self.config_class()
self.parent.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Any = copy.deepcopy(_lowerCamelCase )
A_ : Tuple = self.config_class(**_lowerCamelCase )
A_ : Optional[Any] = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(_lowerCamelCase , _lowerCamelCase ) != value:
wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) )
if len(_lowerCamelCase ) > 0:
A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(F"The following keys were not properly set in the config:\n{errors}" )
def UpperCAmelCase_ ( self ) -> Optional[int]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 344 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__ : List[str] = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[Any] = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
try:
with open(a_ , """rb""" ) as flax_state_f:
A_ : Tuple = from_bytes(a_ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(a_ ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(a_ , a_ )
def UpperCAmelCase ( a_ , a_ ) -> Any:
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values()
if any(a_ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
A_ : str = jax.tree_util.tree_map(
lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ )
A_ : Any = """"""
A_ : Optional[int] = flatten_dict(a_ , sep=""".""" )
A_ : List[str] = pt_model.state_dict()
# keep track of unexpected & missing keys
A_ : Union[str, Any] = []
A_ : Dict = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A_ : List[Any] = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""]
A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
A_ : int = flax_key_tuple_array[:-1] + ["""weight"""]
A_ : Optional[int] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(a_ ):
A_ : Tuple = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
A_ : Dict = """.""".join(a_ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor
A_ : Tuple = torch.from_numpy(a_ )
# remove from missing keys
missing_keys.remove(a_ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(a_ )
pt_model.load_state_dict(a_ )
# re-transform missing_keys to list
A_ : Dict = list(a_ )
if len(a_ ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(a_ ) > 0:
logger.warning(
F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
""" use it for predictions and inference.""" )
return pt_model
| 344 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .tokenization_wavaveca import WavaVecaCTCTokenizer
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''Wav2Vec2FeatureExtractor'''
lowerCamelCase = '''AutoTokenizer'''
def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Dict:
super().__init__(_lowerCamelCase , _lowerCamelCase )
A_ : List[str] = self.feature_extractor
A_ : Dict = False
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ) -> List[Any]:
try:
return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase )
except OSError:
warnings.warn(
F"Loading a tokenizer inside {cls.__name__} from a config that does not"
""" include a `tokenizer_class` attribute is deprecated and will be """
"""removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"""
""" attribute to either your `config.json` or `tokenizer_config.json` """
"""file to suppress this warning: """ , _lowerCamelCase , )
A_ : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase )
A_ : Optional[Any] = WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase )
return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowerCamelCase , **_lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
A_ : Union[str, Any] = kwargs.pop("""raw_speech""" )
else:
A_ : Tuple = kwargs.pop("""audio""" , _lowerCamelCase )
A_ : List[Any] = kwargs.pop("""sampling_rate""" , _lowerCamelCase )
A_ : int = kwargs.pop("""text""" , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
A_ : str = args[0]
A_ : Tuple = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
A_ : Any = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase )
if text is not None:
A_ : Dict = self.tokenizer(_lowerCamelCase , **_lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
A_ : Union[str, Any] = encodings["""input_ids"""]
return inputs
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase )
A_ : str = kwargs.pop("""input_features""" , _lowerCamelCase )
A_ : Any = kwargs.pop("""labels""" , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
A_ : Optional[int] = args[0]
A_ : Any = args[1:]
if input_features is not None:
A_ : str = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
if labels is not None:
A_ : Optional[int] = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
A_ : List[Any] = labels["""input_ids"""]
return input_features
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]:
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
@contextmanager
def UpperCAmelCase_ ( self ) -> List[str]:
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
A_ : List[str] = True
A_ : Optional[Any] = self.tokenizer
yield
A_ : Any = self.feature_extractor
A_ : Union[str, Any] = False
| 344 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]:
A_ : Any = parent
A_ : List[Any] = batch_size
A_ : List[Any] = image_size
A_ : Optional[int] = num_channels
A_ : Tuple = embeddings_size
A_ : str = hidden_sizes
A_ : Optional[Any] = depths
A_ : Any = is_training
A_ : int = use_labels
A_ : int = hidden_act
A_ : Optional[Any] = num_labels
A_ : str = scope
A_ : Optional[int] = len(_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ : Dict = None
if self.use_labels:
A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
A_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
A_ : Dict = TFRegNetModel(config=_lowerCamelCase )
A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
A_ : Optional[Any] = self.num_labels
A_ : int = TFRegNetForImageClassification(_lowerCamelCase )
A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self ) -> str:
A_ : Any = self.prepare_config_and_inputs()
A_ , A_ , A_ : str = config_and_inputs
A_ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( __A, __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Dict = TFRegNetModelTester(self )
A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def UpperCAmelCase_ ( self ) -> Dict:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def UpperCAmelCase_ ( self ) -> int:
super().test_keras_fit()
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
pass
def UpperCAmelCase_ ( self ) -> int:
A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : Optional[Any] = model_class(_lowerCamelCase )
A_ : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ : int = [*signature.parameters.keys()]
A_ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A_ : Optional[int] = model_class(_lowerCamelCase )
A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase )
A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A_ : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
A_ : List[str] = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A_ : Dict = layer_type
A_ : List[Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A_ : str = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ):
A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase )
A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple()
def recursive_check(_lowerCamelCase , _lowerCamelCase ):
if isinstance(_lowerCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ):
recursive_check(_lowerCamelCase , _lowerCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"
) , )
recursive_check(_lowerCamelCase , _lowerCamelCase )
for model_class in self.all_model_classes:
A_ : Optional[Any] = model_class(_lowerCamelCase )
A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} )
A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} )
def UpperCAmelCase_ ( self ) -> str:
A_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase_ ( self ) -> int:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
A_ : Tuple = self.default_image_processor
A_ : Optional[int] = prepare_img()
A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" )
# forward pass
A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase )
# verify the logits
A_ : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
| 344 | 1 |
'''simple docstring'''
UpperCamelCase__ : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.602_176_634e-19,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.3_5_5_8_1_8,
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
A_ : Tuple = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(a_ )}"
)
raise ValueError(a_ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 |
'''simple docstring'''
def UpperCAmelCase ( a_ = 1_0_0 ) -> int:
"""simple docstring"""
A_ : Dict = n * (n + 1) * (2 * n + 1) / 6
A_ : Optional[int] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'{solution() = }')
| 344 | 1 |
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any:
A_ : List[Any] = parent
A_ : int = config_class
A_ : int = has_text_modality
A_ : str = kwargs
A_ : int = common_properties
def UpperCAmelCase_ ( self ) -> str:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : Optional[int] = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(_lowerCamelCase ):
try:
setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(_lowerCamelCase ):
try:
A_ : List[str] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = self.config_class(**self.inputs_dict )
A_ : Optional[int] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : str = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" )
config_first.to_json_file(_lowerCamelCase )
A_ : Dict = self.config_class.from_json_file(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Any = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(_lowerCamelCase )
A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : List[Any] = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase )
config_first.save_pretrained(_lowerCamelCase )
A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
A_ : str = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if self.config_class.is_composition:
return
A_ : Dict = self.config_class()
self.parent.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Any = copy.deepcopy(_lowerCamelCase )
A_ : Tuple = self.config_class(**_lowerCamelCase )
A_ : Optional[Any] = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(_lowerCamelCase , _lowerCamelCase ) != value:
wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) )
if len(_lowerCamelCase ) > 0:
A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(F"The following keys were not properly set in the config:\n{errors}" )
def UpperCAmelCase_ ( self ) -> Optional[int]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
UpperCamelCase__ : int = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
import string
from math import logaa
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
A_ : str = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
A_ : List[Any] = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def UpperCAmelCase ( a_ , a_ ) -> tuple[int, int]:
"""simple docstring"""
A_ : Dict = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
A_ : Optional[Any] = corpus_without_punctuation.split("""\n""" )
A_ : int = term.lower()
return (len([doc for doc in docs if term in doc] ), len(a_ ))
def UpperCAmelCase ( a_ , a_ , a_=False ) -> float:
"""simple docstring"""
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def UpperCAmelCase ( a_ , a_ ) -> float:
"""simple docstring"""
return round(tf * idf , 3 )
| 344 |
'''simple docstring'''
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
A_ : List[str] = []
A_ : Dict = []
A_ : List[Any] = []
for rt in rc.restypes:
A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 1_4 )
restype_atomaa_to_atomaa_list.append([0] * 3_7 )
restype_atomaa_mask_list.append([0.0] * 1_4 )
A_ : Tuple = torch.tensor(
a_ , dtype=torch.intaa , device=protein["""aatype"""].device , )
A_ : Optional[int] = torch.tensor(
a_ , dtype=torch.intaa , device=protein["""aatype"""].device , )
A_ : List[Any] = torch.tensor(
a_ , dtype=torch.floataa , device=protein["""aatype"""].device , )
A_ : Optional[int] = protein["""aatype"""].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
A_ : Dict = restype_atomaa_to_atomaa[protein_aatype]
A_ : Optional[Any] = restype_atomaa_mask[protein_aatype]
A_ : Any = residx_atomaa_mask
A_ : List[str] = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype]
A_ : Tuple = residx_atomaa_to_atomaa.long()
# create the corresponding mask
A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device )
for restype, restype_letter in enumerate(rc.restypes ):
A_ : Optional[Any] = rc.restype_atoa[restype_letter]
A_ : Any = rc.residue_atoms[restype_name]
for atom_name in atom_names:
A_ : Any = rc.atom_order[atom_name]
A_ : Optional[int] = 1
A_ : Optional[int] = restype_atomaa_mask[protein_aatype]
A_ : Dict = residx_atomaa_mask
return protein
def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]:
"""simple docstring"""
A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray )
A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) )
return out
| 344 | 1 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase__ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = GPTSwaTokenizer
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A_ : Tuple = GPTSwaTokenizer(_lowerCamelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]:
A_ : str = """This is a test"""
A_ : Dict = """This is a test"""
return input_text, output_text
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = """<s>"""
A_ : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(_lowerCamelCase ) , 2000 )
def UpperCAmelCase_ ( self ) -> Tuple:
self.assertEqual(self.get_tokenizer().vocab_size , 2000 )
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Dict = GPTSwaTokenizer(_lowerCamelCase )
A_ : List[str] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [465, 287, 265, 631, 842] )
A_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_lowerCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , )
# fmt: on
A_ : List[str] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , )
A_ : Optional[Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
# fmt: off
self.assertListEqual(
_lowerCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def UpperCAmelCase_ ( self ) -> int:
A_ : Any = GPTSwaTokenizer(_lowerCamelCase )
A_ : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""]
A_ : Dict = [
[465, 287, 265, 631, 842],
[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertListEqual(tokenizer.encode_fast(_lowerCamelCase ) , _lowerCamelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertEqual(tokenizer.decode_fast(_lowerCamelCase ) , _lowerCamelCase )
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Dict = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
A_ : Dict = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=_lowerCamelCase , )
| 344 |
'''simple docstring'''
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str:
A_ : Optional[int] = parent
A_ : Dict = batch_size
A_ : List[Any] = image_size
A_ : Optional[int] = patch_size
A_ : List[str] = num_channels
A_ : List[Any] = is_training
A_ : Union[str, Any] = use_labels
A_ : Union[str, Any] = hidden_size
A_ : str = num_hidden_layers
A_ : List[str] = num_attention_heads
A_ : Union[str, Any] = intermediate_size
A_ : Any = hidden_act
A_ : Optional[Any] = hidden_dropout_prob
A_ : List[Any] = attention_probs_dropout_prob
A_ : Dict = type_sequence_label_size
A_ : Optional[int] = initializer_range
A_ : str = scope
A_ : Optional[Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A_ : Tuple = (image_size // patch_size) ** 2
A_ : Union[str, Any] = num_patches + 2
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ : Dict = None
if self.use_labels:
A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self ) -> int:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
A_ : List[str] = DeiTModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : Dict = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : int = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A_ : Dict = 1
A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ : int = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
A_ : Tuple = self.type_sequence_label_size
A_ : Tuple = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A_ : Dict = 1
A_ : Any = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : List[Any] = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) ,
) : Union[str, Any] = config_and_inputs
A_ : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __A, __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': DeiTModel,
'''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : int = DeiTModelTester(self )
A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def UpperCAmelCase_ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def UpperCAmelCase_ ( self ) -> Optional[int]:
pass
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : List[Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : List[str] = model_class(_lowerCamelCase )
A_ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ : Union[str, Any] = [*signature.parameters.keys()]
A_ : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]:
A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if not self.model_tester.is_training:
return
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
A_ : Optional[Any] = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(_lowerCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
A_ : List[str] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : List[str] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCAmelCase_ ( self ) -> int:
A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A_ : Any = False
A_ : Union[str, Any] = True
for model_class in self.all_model_classes:
if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
A_ : List[Any] = model_class(_lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCamelCase )
model.train()
A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : Union[str, Any] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCAmelCase_ ( self ) -> Tuple:
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
A_ : Optional[Any] = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(_lowerCamelCase ),
*get_values(_lowerCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ):
A_ : Dict = problem_type["""title"""]
A_ : List[Any] = problem_type["""num_labels"""]
A_ : List[str] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if problem_type["num_labels"] > 1:
A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list:
A_ : List[str] = model(**_lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : int = DeiTModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to(
_lowerCamelCase )
A_ : Optional[int] = self.default_image_processor
A_ : str = prepare_img()
A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
A_ : Any = model(**_lowerCamelCase )
# verify the logits
A_ : Tuple = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = DeiTModel.from_pretrained(
"""facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" )
A_ : int = self.default_image_processor
A_ : List[str] = prepare_img()
A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" )
A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
A_ : List[Any] = model(_lowerCamelCase )
| 344 | 1 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
raise RuntimeError("""CUDA out of memory.""" )
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> Tuple:
super().__init__()
A_ : Union[str, Any] = nn.Linear(3 , 4 )
A_ : int = nn.BatchNormad(4 )
A_ : str = nn.Linear(4 , 5 )
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]:
return self.lineara(self.batchnorm(self.lineara(_lowerCamelCase ) ) )
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : List[Any] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(_lowerCamelCase ):
nonlocal batch_sizes
batch_sizes.append(_lowerCamelCase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(_lowerCamelCase , [128, 64, 32, 16, 8] )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Tuple = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(_lowerCamelCase , _lowerCamelCase ):
nonlocal batch_sizes
batch_sizes.append(_lowerCamelCase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
A_ , A_ : List[Any] = mock_training_loop_function("""hello""" )
self.assertListEqual(_lowerCamelCase , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, """hello"""] )
def UpperCAmelCase_ ( self ) -> List[str]:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(_lowerCamelCase ):
pass
with self.assertRaises(_lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def UpperCAmelCase_ ( self ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowerCamelCase ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(_lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def UpperCAmelCase_ ( self ) -> Any:
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(_lowerCamelCase ) as cm:
mock_training_loop_function(128 , """hello""" , """world""" )
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] )
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] )
def UpperCAmelCase_ ( self ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(_lowerCamelCase ):
raise ValueError("""Oops, we had an error!""" )
with self.assertRaises(_lowerCamelCase ) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] )
@require_cuda
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Union[str, Any] = torch.cuda.memory_allocated()
A_ : Any = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , _lowerCamelCase )
A_ : Dict = release_memory(_lowerCamelCase )
self.assertEqual(torch.cuda.memory_allocated() , _lowerCamelCase )
| 344 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]:
A_ : Optional[int] = parent
A_ : Union[str, Any] = do_resize
A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288}
A_ : Tuple = size_divisor
A_ : List[Any] = do_rescale
A_ : Dict = rescale_factor
A_ : List[Any] = do_normalize
A_ : Dict = do_center_crop
A_ : Optional[Any] = image_mean
A_ : List[str] = image_std
A_ : str = do_pad
A_ : Any = batch_size
A_ : List[str] = num_channels
A_ : List[str] = min_resolution
A_ : Union[str, Any] = max_resolution
def UpperCAmelCase_ ( self ) -> Any:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
if not batched:
A_ : Union[str, Any] = self.size["""shortest_edge"""]
A_ : Dict = image_inputs[0]
if isinstance(_lowerCamelCase , Image.Image ):
A_ , A_ : Optional[Any] = image.size
else:
A_ , A_ : int = image.shape[1], image.shape[2]
A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase )
if h < w:
A_ , A_ : Optional[Any] = size, scale * w
else:
A_ , A_ : Dict = scale * h, size
A_ : Union[str, Any] = int((1333 / 800) * size )
if max(_lowerCamelCase , _lowerCamelCase ) > max_size:
A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase )
A_ : Dict = newh * scale
A_ : Dict = neww * scale
A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 )
A_ , A_ : Dict = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
A_ : Tuple = []
for image in image_inputs:
A_ , A_ : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0]
A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> List[str]:
# Initialize image processor
A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
# Initialize image processor
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> Tuple:
# Initialize image processor
A_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 344 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> Tuple:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Optional[int] = ort.SessionOptions()
A_ : List[str] = False
return options
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
A_ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
A_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
A_ : List[str] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
A_ : Optional[Any] = """A red cat sitting on a park bench"""
A_ : Optional[Any] = np.random.RandomState(0 )
A_ : Optional[int] = pipe(
prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowerCamelCase , output_type="""np""" , )
A_ : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 344 |
'''simple docstring'''
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" )
for i in range(a_ ):
for j in range(a_ ):
if dist[i][j] != float("""inf""" ):
print(int(dist[i][j] ) , end="""\t""" )
else:
print("""INF""" , end="""\t""" )
print()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )]
for i in range(a_ ):
for j in range(a_ ):
A_ : List[Any] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(a_ ):
# looping through rows of graph array
for i in range(a_ ):
# looping through columns of graph array
for j in range(a_ ):
if (
dist[i][k] != float("""inf""" )
and dist[k][j] != float("""inf""" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
A_ : List[str] = dist[i][k] + dist[k][j]
_print_dist(a_ , a_ )
return dist, v
if __name__ == "__main__":
UpperCamelCase__ : Tuple = int(input('Enter number of vertices: '))
UpperCamelCase__ : int = int(input('Enter number of edges: '))
UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
UpperCamelCase__ : Union[str, Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
UpperCamelCase__ : Union[str, Any] = int(input('Enter source:'))
UpperCamelCase__ : int = int(input('Enter destination:'))
UpperCamelCase__ : Optional[Any] = float(input('Enter weight:'))
UpperCamelCase__ : Any = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 344 | 1 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
UpperCamelCase__ : Tuple = 10
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
for i in range(a_ , a_ ):
if array[i] == target:
return i
return -1
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
A_ : Optional[Any] = 0
A_ : Optional[int] = len(a_ )
while left <= right:
if right - left < precision:
return lin_search(a_ , a_ , a_ , a_ )
A_ : str = (left + right) // 3 + 1
A_ : Tuple = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
A_ : Optional[int] = one_third - 1
elif array[two_third] < target:
A_ : Optional[int] = two_third + 1
else:
A_ : Union[str, Any] = one_third + 1
A_ : List[Any] = two_third - 1
else:
return -1
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(a_ , a_ , a_ , a_ )
A_ : Any = (left + right) // 3 + 1
A_ : Dict = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(a_ , one_third - 1 , a_ , a_ )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , a_ , a_ , a_ )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , a_ , a_ )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__ : Any = input('Enter numbers separated by comma:\n').strip()
UpperCamelCase__ : Optional[Any] = [int(item.strip()) for item in user_input.split(',')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
UpperCamelCase__ : Any = int(input('Enter the number to be found in the list:\n').strip())
UpperCamelCase__ : Optional[int] = ite_ternary_search(collection, target)
UpperCamelCase__ : Any = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'Iterative search: {target} found at positions: {resulta}')
print(f'Recursive search: {target} found at positions: {resulta}')
else:
print('Not found')
| 344 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n'
UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n'
UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
A_ : List[Any] = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 344 | 1 |
'''simple docstring'''
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" )
for i in range(a_ ):
for j in range(a_ ):
if dist[i][j] != float("""inf""" ):
print(int(dist[i][j] ) , end="""\t""" )
else:
print("""INF""" , end="""\t""" )
print()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )]
for i in range(a_ ):
for j in range(a_ ):
A_ : List[Any] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(a_ ):
# looping through rows of graph array
for i in range(a_ ):
# looping through columns of graph array
for j in range(a_ ):
if (
dist[i][k] != float("""inf""" )
and dist[k][j] != float("""inf""" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
A_ : List[str] = dist[i][k] + dist[k][j]
_print_dist(a_ , a_ )
return dist, v
if __name__ == "__main__":
UpperCamelCase__ : Tuple = int(input('Enter number of vertices: '))
UpperCamelCase__ : int = int(input('Enter number of edges: '))
UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
UpperCamelCase__ : Union[str, Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
UpperCamelCase__ : Union[str, Any] = int(input('Enter source:'))
UpperCamelCase__ : int = int(input('Enter destination:'))
UpperCamelCase__ : Optional[Any] = float(input('Enter weight:'))
UpperCamelCase__ : Any = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase__ : Any = {
'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'],
'configuration_data2vec_text': [
'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecTextConfig',
'Data2VecTextOnnxConfig',
],
'configuration_data2vec_vision': [
'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecVisionConfig',
'Data2VecVisionOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Optional[Any] = [
'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecAudioForAudioFrameClassification',
'Data2VecAudioForCTC',
'Data2VecAudioForSequenceClassification',
'Data2VecAudioForXVector',
'Data2VecAudioModel',
'Data2VecAudioPreTrainedModel',
]
UpperCamelCase__ : List[str] = [
'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecTextForCausalLM',
'Data2VecTextForMaskedLM',
'Data2VecTextForMultipleChoice',
'Data2VecTextForQuestionAnswering',
'Data2VecTextForSequenceClassification',
'Data2VecTextForTokenClassification',
'Data2VecTextModel',
'Data2VecTextPreTrainedModel',
]
UpperCamelCase__ : str = [
'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecVisionForImageClassification',
'Data2VecVisionForMaskedImageModeling',
'Data2VecVisionForSemanticSegmentation',
'Data2VecVisionModel',
'Data2VecVisionPreTrainedModel',
]
if is_tf_available():
UpperCamelCase__ : List[str] = [
'TFData2VecVisionForImageClassification',
'TFData2VecVisionForSemanticSegmentation',
'TFData2VecVisionModel',
'TFData2VecVisionPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
from math import sqrt
def UpperCAmelCase ( a_ = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
A_ : int = 0
A_ : int = 0
A_ : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(a_ , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(f'{solution() = }')
| 344 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''vision-encoder-decoder'''
lowerCamelCase = True
def __init__( self , **_lowerCamelCase ) -> str:
super().__init__(**_lowerCamelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F"A configuraton of type {self.model_type} cannot be instantiated because "
F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" )
A_ : Optional[int] = kwargs.pop("""encoder""" )
A_ : List[str] = encoder_config.pop("""model_type""" )
A_ : str = kwargs.pop("""decoder""" )
A_ : Optional[Any] = decoder_config.pop("""model_type""" )
A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase )
A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase )
A_ : Any = True
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig:
logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
A_ : int = True
A_ : List[Any] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Any:
A_ : Dict = copy.deepcopy(self.__dict__ )
A_ : List[str] = self.encoder.to_dict()
A_ : Union[str, Any] = self.decoder.to_dict()
A_ : str = self.__class__.model_type
return output
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = version.parse('''1.11''' )
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def UpperCAmelCase_ ( self ) -> float:
return 1e-4
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} )
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
A_ : Optional[Any] = OrderedDict()
A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""}
return common_inputs
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]:
import torch
A_ : Optional[int] = OrderedDict()
A_ : List[Any] = super().generate_dummy_inputs(
_lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase )
A_ , A_ : str = dummy_input["""input_ids"""].shape
A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size)
A_ : Union[str, Any] = dummy_input.pop("""input_ids""" )
A_ : List[str] = dummy_input.pop("""attention_mask""" )
A_ : Optional[int] = torch.zeros(_lowerCamelCase )
return common_inputs
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> None:
pass
def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig:
A_ : List[Any] = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
| 344 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ) -> Dict:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A_ : Optional[int] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
A_ : str = parent
A_ : Optional[int] = batch_size
A_ : int = num_channels
A_ : Dict = min_resolution
A_ : Union[str, Any] = max_resolution
A_ : Optional[Any] = do_resize
A_ : str = size
A_ : Tuple = do_normalize
A_ : Union[str, Any] = image_mean
A_ : List[Any] = image_std
A_ : str = do_rescale
A_ : Union[str, Any] = rescale_factor
A_ : Union[str, Any] = do_pad
def UpperCAmelCase_ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Any:
if not batched:
A_ : List[str] = image_inputs[0]
if isinstance(_lowerCamelCase , Image.Image ):
A_ , A_ : Optional[int] = image.size
else:
A_ , A_ : Union[str, Any] = image.shape[1], image.shape[2]
if w < h:
A_ : Tuple = int(self.size["""shortest_edge"""] * h / w )
A_ : Dict = self.size["""shortest_edge"""]
elif w > h:
A_ : Tuple = self.size["""shortest_edge"""]
A_ : Optional[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
A_ : Any = self.size["""shortest_edge"""]
A_ : Optional[int] = self.size["""shortest_edge"""]
else:
A_ : List[str] = []
for image in image_inputs:
A_ , A_ : List[str] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A_ : Union[str, Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0]
A_ : Dict = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = DetaImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Optional[int] = DetaImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_pad""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[int]:
pass
def UpperCAmelCase_ ( self ) -> Optional[int]:
# Initialize image_processing
A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ , A_ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> int:
# Initialize image_processing
A_ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> str:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
# prepare image and target
A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
A_ : List[Any] = json.loads(f.read() )
A_ : int = {"""image_id""": 3_9769, """annotations""": target}
# encode them
A_ : List[str] = DetaImageProcessor()
A_ : Optional[int] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""" )
# verify pixel values
A_ : Optional[int] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase )
A_ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) )
# verify area
A_ : Optional[int] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase ) )
# verify boxes
A_ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase )
A_ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3 ) )
# verify image_id
A_ : List[str] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase ) )
# verify is_crowd
A_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase ) )
# verify class_labels
A_ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase ) )
# verify orig_size
A_ : Any = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase ) )
# verify size
A_ : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase ) )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
# prepare image, target and masks_path
A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
A_ : Any = json.loads(f.read() )
A_ : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
A_ : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
A_ : List[str] = DetaImageProcessor(format="""coco_panoptic""" )
A_ : Union[str, Any] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""" )
# verify pixel values
A_ : int = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase )
A_ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) )
# verify area
A_ : List[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase ) )
# verify boxes
A_ : int = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase )
A_ : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3 ) )
# verify image_id
A_ : str = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase ) )
# verify is_crowd
A_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase ) )
# verify class_labels
A_ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase ) )
# verify masks
A_ : Dict = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase )
# verify orig_size
A_ : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase ) )
# verify size
A_ : Optional[int] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase ) )
| 344 |
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.'
UpperCamelCase__ : List[Any] = 'file'
@pytest.fixture(scope="""session""" )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
A_ : int = bytes(a_ , """utf-8""" )
with zstd.open(a_ , """wb""" ) as f:
f.write(a_ )
return path
@pytest.fixture
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f:
f.write(a_ )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]:
"""simple docstring"""
A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
A_ : Any = input_paths[compression_format]
A_ : Tuple = tmp_path / """cache"""
A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ )
A_ : Dict = cached_path(a_ , download_config=a_ )
with open(a_ ) as f:
A_ : Optional[Any] = f.read()
with open(a_ ) as f:
A_ : List[str] = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str:
"""simple docstring"""
A_ : Union[str, Any] = """custom_cache"""
A_ : List[str] = """custom_extracted_dir"""
A_ : Optional[Any] = tmp_path / """custom_extracted_path"""
if default_extracted:
A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) )
A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
A_ : List[Any] = xz_file
A_ : Optional[int] = (
DownloadConfig(extract_compressed_file=a_ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ )
)
A_ : Union[str, Any] = cached_path(a_ , download_config=a_ )
assert Path(a_ ).parent.parts[-2:] == expected
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
A_ : str = str(Path(a_ ).resolve() )
assert cached_path(a_ ) == text_file
# relative path
A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(a_ ) == text_file
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(a_ ):
cached_path(a_ )
# relative path
A_ : Tuple = """./__missing_file__.txt"""
with pytest.raises(a_ ):
cached_path(a_ )
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" )
with open(a_ ) as f:
A_ : List[str] = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ )
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
with pytest.raises(a_ ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(a_ ):
http_get("""https://huggingface.co""" , temp_file=a_ )
with pytest.raises(a_ ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(a_ ):
ftp_get("""ftp://huggingface.co""" , temp_file=a_ )
with pytest.raises(a_ ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(a_ ):
fsspec_get("""s3://huggingface.co""" , temp_file=a_ )
with pytest.raises(a_ ):
fsspec_head("""s3://huggingface.co""" )
| 344 | 1 |
'''simple docstring'''
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class _lowerCAmelCase :
"""simple docstring"""
lowerCamelCase = 42
# setable values
lowerCamelCase = 42
lowerCamelCase = 42
lowerCamelCase = None
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
return cls(common=_lowerCamelCase , init_noise_sigma=_lowerCamelCase , timesteps=_lowerCamelCase )
@dataclass
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = 42
class _lowerCAmelCase ( __A, __A ):
"""simple docstring"""
lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers]
lowerCamelCase = 42
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
return True
@register_to_config
def __init__( self , _lowerCamelCase = 1000 , _lowerCamelCase = 0.0001 , _lowerCamelCase = 0.02 , _lowerCamelCase = "linear" , _lowerCamelCase = None , _lowerCamelCase = "fixed_small" , _lowerCamelCase = True , _lowerCamelCase = "epsilon" , _lowerCamelCase = jnp.floataa , ) -> Tuple:
A_ : Tuple = dtype
def UpperCAmelCase_ ( self , _lowerCamelCase = None ) -> DDPMSchedulerState:
if common is None:
A_ : str = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
A_ : Any = jnp.array(1.0 , dtype=self.dtype )
A_ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_lowerCamelCase , init_noise_sigma=_lowerCamelCase , timesteps=_lowerCamelCase , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) -> jnp.ndarray:
return sample
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = () ) -> DDPMSchedulerState:
A_ : Tuple = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
A_ : Tuple = (jnp.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) -> Any:
A_ : Union[str, Any] = state.common.alphas_cumprod[t]
A_ : str = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
A_ : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
A_ : str = jnp.clip(_lowerCamelCase , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
A_ : Tuple = jnp.log(jnp.clip(_lowerCamelCase , a_min=1e-20 ) )
elif variance_type == "fixed_large":
A_ : Union[str, Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
A_ : int = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
A_ : Any = variance
A_ : Union[str, Any] = state.common.betas[t]
A_ : Optional[Any] = (predicted_variance + 1) / 2
A_ : int = frac * max_log + (1 - frac) * min_log
return variance
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
A_ : Optional[int] = timestep
if key is None:
A_ : List[str] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
A_ , A_ : List[Any] = jnp.split(_lowerCamelCase , sample.shape[1] , axis=1 )
else:
A_ : Union[str, Any] = None
# 1. compute alphas, betas
A_ : Optional[Any] = state.common.alphas_cumprod[t]
A_ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
A_ : str = 1 - alpha_prod_t
A_ : Dict = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ : str = model_output
elif self.config.prediction_type == "v_prediction":
A_ : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` "
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ : Optional[Any] = jnp.clip(_lowerCamelCase , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
A_ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
A_ : Dict = jax.random.split(_lowerCamelCase , num=1 )
A_ : int = jax.random.normal(_lowerCamelCase , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_lowerCamelCase , _lowerCamelCase , predicted_variance=_lowerCamelCase ) ** 0.5) * noise
A_ : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
A_ : Dict = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_lowerCamelCase , state=_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> jnp.ndarray:
return add_noise_common(state.common , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> jnp.ndarray:
return get_velocity_common(state.common , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __len__( self ) -> str:
return self.config.num_train_timesteps
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__ : int = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Any = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[str] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : str = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = '''distilbert'''
lowerCamelCase = {
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]:
A_ : Tuple = vocab_size
A_ : List[Any] = max_position_embeddings
A_ : int = sinusoidal_pos_embds
A_ : int = n_layers
A_ : str = n_heads
A_ : Optional[int] = dim
A_ : int = hidden_dim
A_ : Tuple = dropout
A_ : List[Any] = attention_dropout
A_ : int = activation
A_ : Dict = initializer_range
A_ : List[Any] = qa_dropout
A_ : int = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@property
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A_ : int = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 344 | 1 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase__ : Dict = 4
UpperCamelCase__ : str = 3
class _lowerCAmelCase ( __A ):
"""simple docstring"""
pass
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
for shard in shards:
for i in range(a_ ):
yield {"i": i, "shard": shard}
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
A_ : Optional[int] = int(os.environ["""RANK"""] )
A_ : List[Any] = int(os.environ["""WORLD_SIZE"""] )
A_ : Tuple = ArgumentParser()
parser.add_argument("""--streaming""" , type=a_ )
parser.add_argument("""--local_rank""" , type=a_ )
parser.add_argument("""--num_workers""" , type=a_ , default=0 )
A_ : Optional[Any] = parser.parse_args()
A_ : List[Any] = args.streaming
A_ : Dict = args.num_workers
A_ : int = {"""shards""": [F"shard_{shard_idx}" for shard_idx in range(a_ )]}
A_ : Dict = IterableDataset.from_generator(a_ , gen_kwargs=a_ )
if not streaming:
A_ : Optional[int] = Dataset.from_list(list(a_ ) )
A_ : Tuple = split_dataset_by_node(a_ , rank=a_ , world_size=a_ )
A_ : List[Any] = torch.utils.data.DataLoader(a_ , num_workers=a_ )
A_ : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
A_ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
A_ : int = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" )
if __name__ == "__main__":
main()
| 344 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ : int = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
UpperCamelCase__ : Any = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias'))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'),
('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'),
('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'),
('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'),
('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'),
('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'),
('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'),
('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'),
('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'),
('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'),
]
)
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
A_ : int = state_dict.pop(a_ )
A_ : Tuple = val
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
A_ : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
A_ : str = value
else:
A_ : int = value
return new_state_dict
def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]:
"""simple docstring"""
A_ : List[Any] = """"""
if is_panoptic:
A_ : Any = """conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
A_ : Optional[Any] = in_proj_weight[:2_5_6, :]
A_ : Tuple = in_proj_bias[:2_5_6]
A_ : Dict = in_proj_weight[2_5_6:5_1_2, :]
A_ : int = in_proj_bias[2_5_6:5_1_2]
A_ : int = in_proj_weight[-2_5_6:, :]
A_ : Optional[int] = in_proj_bias[-2_5_6:]
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
A_ : int = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
A_ : str = """resnet101"""
if "dc5" in model_name:
A_ : List[Any] = True
A_ : str = """panoptic""" in model_name
if is_panoptic:
A_ : Dict = 2_5_0
else:
A_ : Union[str, Any] = 9_1
A_ : str = """huggingface/label-files"""
A_ : Union[str, Any] = """coco-detection-id2label.json"""
A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) )
A_ : str = {int(a_ ): v for k, v in idalabel.items()}
A_ : Optional[int] = idalabel
A_ : Tuple = {v: k for k, v in idalabel.items()}
# load image processor
A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection"""
A_ : Any = ConditionalDetrImageProcessor(format=a_ )
# prepare image
A_ : Tuple = prepare_img()
A_ : Any = image_processor(images=a_ , return_tensors="""pt""" )
A_ : Optional[int] = encoding["""pixel_values"""]
logger.info(F"Converting model {model_name}..." )
# load original model from torch hub
A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval()
A_ : List[Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
A_ : Union[str, Any] = """conditional_detr.""" + src
rename_key(a_ , a_ , a_ )
A_ : Any = rename_backbone_keys(a_ )
# query, key and value matrices need special treatment
read_in_q_k_v(a_ , is_panoptic=a_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
A_ : Dict = state_dict.pop(a_ )
A_ : List[Any] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
A_ : str = state_dict.pop(a_ )
A_ : Any = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
A_ : Optional[int] = state_dict.pop(a_ )
A_ : str = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
A_ : Tuple = state_dict.pop(a_ )
A_ : Dict = val
# finally, create HuggingFace model and load state dict
A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ )
model.load_state_dict(a_ )
model.eval()
model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" )
# verify our conversion
A_ : str = conditional_detr(a_ )
A_ : str = model(a_ )
assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 )
# Save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
UpperCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='conditional_detr_resnet50',
type=str,
help='Name of the CONDITIONAL_DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
UpperCamelCase__ : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 344 | 1 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : List[Any] = get_activation("""swish""" )
self.assertIsInstance(_lowerCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Dict = get_activation("""silu""" )
self.assertIsInstance(_lowerCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Union[str, Any] = get_activation("""mish""" )
self.assertIsInstance(_lowerCamelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : List[Any] = get_activation("""gelu""" )
self.assertIsInstance(_lowerCamelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 344 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = (UnCLIPScheduler,)
def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]:
A_ : Union[str, Any] = {
"""num_train_timesteps""": 1000,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**_lowerCamelCase )
return config
def UpperCAmelCase_ ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[int]:
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ : Optional[int] = self.scheduler_classes[0]
A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" )
A_ : List[Any] = scheduler_class(**_lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : List[Any] = self.scheduler_classes[0]
A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" )
A_ : Dict = scheduler_class(**_lowerCamelCase )
A_ : Dict = 0.5
assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5
def UpperCAmelCase_ ( self ) -> Any:
A_ : Optional[Any] = self.scheduler_classes[0]
A_ : Tuple = self.get_scheduler_config()
A_ : Optional[Any] = scheduler_class(**_lowerCamelCase )
A_ : int = scheduler.timesteps
A_ : List[Any] = self.dummy_model()
A_ : str = self.dummy_sample_deter
A_ : Optional[Any] = torch.manual_seed(0 )
for i, t in enumerate(_lowerCamelCase ):
# 1. predict noise residual
A_ : Any = model(_lowerCamelCase , _lowerCamelCase )
# 2. predict previous mean of sample x_t-1
A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
A_ : List[Any] = pred_prev_sample
A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1e-2
assert abs(result_mean.item() - 0.328_4743 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Union[str, Any] = self.scheduler_classes[0]
A_ : Dict = self.get_scheduler_config()
A_ : Tuple = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(25 )
A_ : List[str] = scheduler.timesteps
A_ : List[Any] = self.dummy_model()
A_ : List[Any] = self.dummy_sample_deter
A_ : List[Any] = torch.manual_seed(0 )
for i, t in enumerate(_lowerCamelCase ):
# 1. predict noise residual
A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase )
if i + 1 == timesteps.shape[0]:
A_ : List[str] = None
else:
A_ : Dict = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
A_ : str = scheduler.step(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample
A_ : Optional[Any] = pred_prev_sample
A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1e-2
assert abs(result_mean.item() - 0.336_2038 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> int:
pass
| 344 | 1 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCamelCase__ : Dict = {
'b0': {
'hidden_dim': 1_280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1_280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1_408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1_536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1_792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2_048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2_304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2_560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
A_ : Tuple = EfficientNetConfig()
A_ : int = CONFIG_MAP[model_name]["""hidden_dim"""]
A_ : Optional[int] = CONFIG_MAP[model_name]["""width_coef"""]
A_ : Union[str, Any] = CONFIG_MAP[model_name]["""depth_coef"""]
A_ : int = CONFIG_MAP[model_name]["""image_size"""]
A_ : str = CONFIG_MAP[model_name]["""dropout_rate"""]
A_ : Optional[Any] = CONFIG_MAP[model_name]["""dw_padding"""]
A_ : List[Any] = """huggingface/label-files"""
A_ : List[str] = """imagenet-1k-id2label.json"""
A_ : Optional[Any] = 1_0_0_0
A_ : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) )
A_ : str = {int(a_ ): v for k, v in idalabel.items()}
A_ : Dict = idalabel
A_ : str = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
A_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A_ : Any = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
A_ : Any = CONFIG_MAP[model_name]["""image_size"""]
A_ : Optional[int] = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=a_ , )
return preprocessor
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
A_ : str = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
A_ : List[str] = sorted(set(a_ ) )
A_ : Optional[int] = len(a_ )
A_ : str = {b: str(a_ ) for b, i in zip(a_ , range(a_ ) )}
A_ : List[Any] = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
A_ : List[str] = block_name_mapping[b]
rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
A_ : Any = {}
for item in rename_keys:
if item[0] in original_param_names:
A_ : Union[str, Any] = """efficientnet.""" + item[1]
A_ : List[str] = """classifier.weight"""
A_ : int = """classifier.bias"""
return key_mapping
def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
for key, value in tf_params.items():
if "normalization" in key:
continue
A_ : Optional[int] = key_mapping[key]
if "_conv" in key and "kernel" in key:
A_ : List[str] = torch.from_numpy(a_ ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A_ : Tuple = torch.from_numpy(a_ ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A_ : Dict = torch.from_numpy(np.transpose(a_ ) )
else:
A_ : List[Any] = torch.from_numpy(a_ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(a_ )
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
A_ : Optional[int] = model_classes[model_name](
include_top=a_ , weights="""imagenet""" , input_tensor=a_ , input_shape=a_ , pooling=a_ , classes=1_0_0_0 , classifier_activation="""softmax""" , )
A_ : List[str] = original_model.trainable_variables
A_ : Any = original_model.non_trainable_variables
A_ : Any = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A_ : Dict = param.numpy()
A_ : str = list(tf_params.keys() )
# Load HuggingFace model
A_ : Union[str, Any] = get_efficientnet_config(a_ )
A_ : Tuple = EfficientNetForImageClassification(a_ ).eval()
A_ : List[str] = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
A_ : Optional[int] = rename_keys(a_ )
replace_params(a_ , a_ , a_ )
# Initialize preprocessor and preprocess input image
A_ : Optional[Any] = convert_image_processor(a_ )
A_ : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
A_ : Optional[Any] = hf_model(**a_ )
A_ : Any = outputs.logits.detach().numpy()
# Original model inference
A_ : Dict = False
A_ : str = CONFIG_MAP[model_name]["""image_size"""]
A_ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A_ : Optional[int] = image.img_to_array(a_ )
A_ : Union[str, Any] = np.expand_dims(a_ , axis=0 )
A_ : Dict = original_model.predict(a_ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(a_ , a_ , atol=1E-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(a_ ):
os.mkdir(a_ )
# Save converted model and image processor
hf_model.save_pretrained(a_ )
preprocessor.save_pretrained(a_ )
if push_to_hub:
# Push model and image processor to hub
print(F"Pushing converted {model_name} to the hub..." )
A_ : List[str] = F"efficientnet-{model_name}"
preprocessor.push_to_hub(a_ )
hf_model.push_to_hub(a_ )
if __name__ == "__main__":
UpperCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCamelCase__ : Tuple = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 344 |
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]:
A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20}
A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
A_ : Optional[Any] = parent
A_ : Optional[int] = batch_size
A_ : Union[str, Any] = num_channels
A_ : str = image_size
A_ : Tuple = min_resolution
A_ : Dict = max_resolution
A_ : str = do_resize
A_ : Tuple = size
A_ : int = do_center_crop
A_ : Dict = crop_size
A_ : Tuple = do_normalize
A_ : List[str] = image_mean
A_ : Optional[Any] = image_std
A_ : Any = do_reduce_labels
def UpperCAmelCase_ ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(dataset[0]["""file"""] )
A_ : Dict = Image.open(dataset[1]["""file"""] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
A_ : Tuple = Image.open(ds[0]["""file"""] )
A_ : List[Any] = Image.open(ds[1]["""file"""] )
A_ : Any = Image.open(ds[2]["""file"""] )
A_ : str = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = BeitImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : List[Any] = BeitImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
A_ : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> Dict:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> List[str]:
# Initialize image_processing
A_ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> str:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCAmelCase_ ( self ) -> Optional[int]:
# Initialize image_processing
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
A_ : Optional[int] = []
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
A_ , A_ : List[Any] = prepare_semantic_single_inputs()
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
A_ , A_ : str = prepare_semantic_batch_inputs()
A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def UpperCAmelCase_ ( self ) -> Tuple:
# Initialize image_processing
A_ : Any = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
A_ , A_ : Tuple = prepare_semantic_single_inputs()
A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
A_ : str = True
A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 344 | 1 |
'''simple docstring'''
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__ : str = r'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n'
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@add_start_docstrings(_lowerCamelCase )
def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool:
raise NotImplementedError("""StoppingCriteria needs to be subclassed""" )
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = None ) -> str:
A_ : Optional[int] = max_length
A_ : int = max_position_embeddings
@add_start_docstrings(_lowerCamelCase )
def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool:
A_ : Any = input_ids.shape[-1]
A_ : Any = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
"""This is a friendly reminder - the current text generation call will exceed the model's predefined """
F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe "
"""exceptions, performance degradation, or nothing at all.""" )
return is_done
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> int:
warnings.warn(
"""The class `MaxNewTokensCriteria` is deprecated. """
F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` "
"""with `max_length = start_length + max_new_tokens` instead.""" , _lowerCamelCase , )
A_ : List[str] = start_length
A_ : List[Any] = max_new_tokens
A_ : Union[str, Any] = start_length + max_new_tokens
@add_start_docstrings(_lowerCamelCase )
def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool:
return input_ids.shape[-1] >= self.max_length
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = None ) -> str:
A_ : Any = max_time
A_ : str = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(_lowerCamelCase )
def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool:
return time.time() - self.initial_timestamp > self.max_time
class _lowerCAmelCase ( __A ):
"""simple docstring"""
@add_start_docstrings(_lowerCamelCase )
def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool:
return any(criteria(_lowerCamelCase , _lowerCamelCase ) for criteria in self )
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
for stopping_criterium in self:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
return stopping_criterium.max_length
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
return stopping_criterium.max_length
return None
def UpperCAmelCase ( a_ , a_ ) -> StoppingCriteriaList:
"""simple docstring"""
A_ : Any = stopping_criteria.max_length
A_ : Optional[Any] = deepcopy(a_ )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , a_ )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=a_ ) )
return new_stopping_criteria
| 344 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class _lowerCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str:
super().__init__()
A_ : Optional[Any] = pad_token_id
A_ : List[Any] = max_length
A_ : str = vocab
A_ : Union[str, Any] = merges
A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int:
A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()]
A_ : Dict = tokenizer.get_vocab()
return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str:
A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
@classmethod
def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]:
return cls(**_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any:
A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase )
A_ : Any = tf.ones_like(_lowerCamelCase )
if self.pad_token_id is not None:
# pad the tokens up to max length
A_ : List[Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
A_ , A_ : Tuple = pad_model_inputs(
_lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 344 | 1 |
'''simple docstring'''
import os
from pathlib import Path
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
from torch.utils.cpp_extension import load
A_ : Union[str, Any] = Path(a_ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
A_ : Dict = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , a_ , with_cuda=a_ , extra_include_paths=[str(a_ )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : int = ['YolosFeatureExtractor']
UpperCamelCase__ : int = ['YolosImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST',
'YolosForObjectDetection',
'YolosModel',
'YolosPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]:
"""simple docstring"""
A_ : Dict = [0] * no_of_processes
A_ : List[str] = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(a_ ):
A_ : Union[str, Any] = burst_time[i]
A_ : Dict = 0
A_ : Optional[Any] = 0
A_ : Any = 9_9_9_9_9_9_9_9_9
A_ : Any = 0
A_ : List[str] = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(a_ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
A_ : Any = remaining_time[j]
A_ : Optional[Any] = j
A_ : Optional[int] = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
A_ : Optional[Any] = remaining_time[short]
if minm == 0:
A_ : Tuple = 9_9_9_9_9_9_9_9_9
if remaining_time[short] == 0:
complete += 1
A_ : Optional[Any] = False
# Find finish time of current process
A_ : Optional[int] = increment_time + 1
# Calculate waiting time
A_ : Optional[Any] = finish_time - arrival_time[short]
A_ : Union[str, Any] = finar - burst_time[short]
if waiting_time[short] < 0:
A_ : List[str] = 0
# Increment time
increment_time += 1
return waiting_time
def UpperCAmelCase ( a_ , a_ , a_ ) -> list[int]:
"""simple docstring"""
A_ : Optional[Any] = [0] * no_of_processes
for i in range(a_ ):
A_ : str = burst_time[i] + waiting_time[i]
return turn_around_time
def UpperCAmelCase ( a_ , a_ , a_ ) -> None:
"""simple docstring"""
A_ : Optional[int] = 0
A_ : List[Any] = 0
for i in range(a_ ):
A_ : List[Any] = total_waiting_time + waiting_time[i]
A_ : Any = total_turn_around_time + turn_around_time[i]
print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" )
print("""Average turn around time =""" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('Enter how many process you want to analyze')
UpperCamelCase__ : List[str] = int(input())
UpperCamelCase__ : Optional[Any] = [0] * no_of_processes
UpperCamelCase__ : int = [0] * no_of_processes
UpperCamelCase__ : Any = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('Enter the arrival time and burst time for process:--' + str(i + 1))
UpperCamelCase__ , UpperCamelCase__ : str = map(int, input().split())
UpperCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
UpperCamelCase__ : List[Any] = burst_time
UpperCamelCase__ : List[str] = no_of_processes
UpperCamelCase__ : Any = waiting_time
UpperCamelCase__ : List[str] = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
UpperCamelCase__ : Optional[int] = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'Process',
'BurstTime',
'ArrivalTime',
'WaitingTime',
'TurnAroundTime',
],
)
# Printing the dataFrame
pd.set_option('display.max_rows', fcfs.shape[0] + 1)
print(fcfs)
| 344 |
'''simple docstring'''
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
A_ : Optional[Any] = name
A_ : Dict = value
A_ : Union[str, Any] = weight
def __repr__( self ) -> List[str]:
return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return self.value
def UpperCAmelCase_ ( self ) -> List[str]:
return self.name
def UpperCAmelCase_ ( self ) -> Tuple:
return self.weight
def UpperCAmelCase_ ( self ) -> Optional[int]:
return self.value / self.weight
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
A_ : Optional[int] = []
for i in range(len(a_ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ )
A_ : str = []
A_ , A_ : Dict = 0.0, 0.0
for i in range(len(a_ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import choice
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return choice(a_ )
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
A_ : int = random_pivot(a_ )
# partition based on pivot
# linear time
A_ : str = [e for e in lst if e < pivot]
A_ : Dict = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(a_ ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(a_ ) < k - 1:
return kth_number(a_ , k - len(a_ ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(a_ , a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def UpperCAmelCase ( a_ , a_ ) -> tuple:
"""simple docstring"""
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 344 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__ : str = {
'configuration_altclip': [
'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AltCLIPConfig',
'AltCLIPTextConfig',
'AltCLIPVisionConfig',
],
'processing_altclip': ['AltCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[str] = [
'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'AltCLIPPreTrainedModel',
'AltCLIPModel',
'AltCLIPTextModel',
'AltCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _lowerCAmelCase ( __A ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any:
A_ : List[Any] = parent
A_ : int = config_class
A_ : int = has_text_modality
A_ : str = kwargs
A_ : int = common_properties
def UpperCAmelCase_ ( self ) -> str:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : Optional[int] = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(_lowerCamelCase ):
try:
setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(_lowerCamelCase ):
try:
A_ : List[str] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = self.config_class(**self.inputs_dict )
A_ : Optional[int] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : str = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" )
config_first.to_json_file(_lowerCamelCase )
A_ : Dict = self.config_class.from_json_file(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Any = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(_lowerCamelCase )
A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Optional[int] = self.config_class(**self.inputs_dict )
A_ : List[Any] = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase )
config_first.save_pretrained(_lowerCamelCase )
A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
A_ : str = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if self.config_class.is_composition:
return
A_ : Dict = self.config_class()
self.parent.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
A_ : Any = copy.deepcopy(_lowerCamelCase )
A_ : Tuple = self.config_class(**_lowerCamelCase )
A_ : Optional[Any] = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(_lowerCamelCase , _lowerCamelCase ) != value:
wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) )
if len(_lowerCamelCase ) > 0:
A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(F"The following keys were not properly set in the config:\n{errors}" )
def UpperCAmelCase_ ( self ) -> Optional[int]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 344 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , ) -> Dict:
A_ : Optional[Any] = parent
A_ : List[Any] = 13
A_ : List[Any] = 7
A_ : Dict = True
A_ : List[str] = True
A_ : Dict = True
A_ : List[str] = 99
A_ : Union[str, Any] = 32
A_ : List[Any] = 2
A_ : Optional[int] = 4
A_ : Any = 37
A_ : int = """gelu"""
A_ : Dict = 0.1
A_ : int = 0.1
A_ : str = 512
A_ : Tuple = 16
A_ : Tuple = 2
A_ : Dict = 0.02
A_ : Dict = 3
A_ : Dict = 4
A_ : Optional[Any] = None
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ : List[str] = None
if self.use_input_mask:
A_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
A_ : Any = None
A_ : int = None
A_ : Any = None
if self.use_labels:
A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
A_ : Optional[int] = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase_ ( self ) -> List[str]:
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) : Tuple = self.prepare_config_and_inputs()
A_ : Union[str, Any] = True
A_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
A_ : Any = TFEsmModel(config=_lowerCamelCase )
A_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
A_ : Dict = model(_lowerCamelCase )
A_ : Optional[Any] = [input_ids, input_mask]
A_ : Tuple = model(_lowerCamelCase )
A_ : Optional[Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> str:
A_ : str = True
A_ : Dict = TFEsmModel(config=_lowerCamelCase )
A_ : Dict = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""encoder_hidden_states""": encoder_hidden_states,
"""encoder_attention_mask""": encoder_attention_mask,
}
A_ : Union[str, Any] = model(_lowerCamelCase )
A_ : Union[str, Any] = [input_ids, input_mask]
A_ : Optional[int] = model(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase )
# Also check the case where encoder outputs are not passed
A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
A_ : Dict = TFEsmForMaskedLM(config=_lowerCamelCase )
A_ : Optional[Any] = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
A_ : str = self.num_labels
A_ : Optional[Any] = TFEsmForTokenClassification(config=_lowerCamelCase )
A_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
A_ : Optional[int] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase_ ( self ) -> int:
A_ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) : str = config_and_inputs
A_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( __A, __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : List[str] = TFEsmModelTester(self )
A_ : str = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 )
def UpperCAmelCase_ ( self ) -> Any:
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> int:
A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Optional[int] = TFEsmModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
@unittest.skip("""Protein models do not support embedding resizing.""" )
def UpperCAmelCase_ ( self ) -> Dict:
pass
@unittest.skip("""Protein models do not support embedding resizing.""" )
def UpperCAmelCase_ ( self ) -> int:
pass
def UpperCAmelCase_ ( self ) -> List[Any]:
A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : int = model_class(_lowerCamelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
A_ : Any = model.get_bias()
assert isinstance(_lowerCamelCase , _lowerCamelCase )
for k, v in name.items():
assert isinstance(_lowerCamelCase , tf.Variable )
else:
A_ : Any = model.get_output_embeddings()
assert x is None
A_ : int = model.get_bias()
assert name is None
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase_ ( self ) -> Any:
A_ : Tuple = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
A_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ : str = model(_lowerCamelCase )[0]
A_ : Optional[int] = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _lowerCamelCase )
# compare the actual values for a slice.
A_ : int = tf.constant(
[
[
[8.92_1518, -10.58_9814, -6.467_1307],
[-6.396_7156, -13.91_1377, -1.121_1915],
[-7.78_1247, -13.95_1557, -3.74_0592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) )
@slow
def UpperCAmelCase_ ( self ) -> str:
A_ : List[Any] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
A_ : List[Any] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
A_ : Optional[Any] = model(_lowerCamelCase )[0]
# compare the actual values for a slice.
A_ : Union[str, Any] = tf.constant(
[
[
[0.1444_3092, 0.5412_5327, 0.324_7739],
[0.3034_0484, 0.0052_6676, 0.3107_7722],
[0.3227_8043, -0.2498_7096, 0.341_4628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 344 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
try:
with open(a_ , """rb""" ) as flax_state_f:
A_ : Tuple = from_bytes(a_ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(a_ ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(a_ , a_ )
def UpperCAmelCase ( a_ , a_ ) -> Any:
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values()
if any(a_ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
A_ : str = jax.tree_util.tree_map(
lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ )
A_ : Any = """"""
A_ : Optional[int] = flatten_dict(a_ , sep=""".""" )
A_ : List[str] = pt_model.state_dict()
# keep track of unexpected & missing keys
A_ : Union[str, Any] = []
A_ : Dict = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A_ : List[Any] = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""]
A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
A_ : int = flax_key_tuple_array[:-1] + ["""weight"""]
A_ : Optional[int] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(a_ ):
A_ : Tuple = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
A_ : Dict = """.""".join(a_ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor
A_ : Tuple = torch.from_numpy(a_ )
# remove from missing keys
missing_keys.remove(a_ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(a_ )
pt_model.load_state_dict(a_ )
# re-transform missing_keys to list
A_ : Dict = list(a_ )
if len(a_ ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(a_ ) > 0:
logger.warning(
F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
""" use it for predictions and inference.""" )
return pt_model
| 344 | 1 |
'''simple docstring'''
def UpperCAmelCase ( a_ , a_ , a_ ) -> int:
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
A_ : List[str] = _modexpt(a_ , exponent // 2 , a_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(a_ , exponent - 1 , a_ )) % modulo_value
def UpperCAmelCase ( a_ = 1_7_7_7 , a_ = 1_8_5_5 , a_ = 8 ) -> int:
"""simple docstring"""
A_ : int = base
for _ in range(1 , a_ ):
A_ : Optional[Any] = _modexpt(a_ , a_ , 1_0**digits )
return result
if __name__ == "__main__":
print(f'{solution() = }')
| 344 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]:
A_ : Any = parent
A_ : List[Any] = batch_size
A_ : List[Any] = image_size
A_ : Optional[int] = num_channels
A_ : Tuple = embeddings_size
A_ : str = hidden_sizes
A_ : Optional[Any] = depths
A_ : Any = is_training
A_ : int = use_labels
A_ : int = hidden_act
A_ : Optional[Any] = num_labels
A_ : str = scope
A_ : Optional[int] = len(_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ : Dict = None
if self.use_labels:
A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
A_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
A_ : Dict = TFRegNetModel(config=_lowerCamelCase )
A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
A_ : Optional[Any] = self.num_labels
A_ : int = TFRegNetForImageClassification(_lowerCamelCase )
A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self ) -> str:
A_ : Any = self.prepare_config_and_inputs()
A_ , A_ , A_ : str = config_and_inputs
A_ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( __A, __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Dict = TFRegNetModelTester(self )
A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> str:
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def UpperCAmelCase_ ( self ) -> Dict:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def UpperCAmelCase_ ( self ) -> int:
super().test_keras_fit()
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
pass
def UpperCAmelCase_ ( self ) -> int:
A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : Optional[Any] = model_class(_lowerCamelCase )
A_ : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ : int = [*signature.parameters.keys()]
A_ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A_ : Optional[int] = model_class(_lowerCamelCase )
A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase )
A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A_ : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
A_ : List[str] = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A_ : Dict = layer_type
A_ : List[Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A_ : str = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Dict:
A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ):
A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase )
A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple()
def recursive_check(_lowerCamelCase , _lowerCamelCase ):
if isinstance(_lowerCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ):
recursive_check(_lowerCamelCase , _lowerCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"
) , )
recursive_check(_lowerCamelCase , _lowerCamelCase )
for model_class in self.all_model_classes:
A_ : Optional[Any] = model_class(_lowerCamelCase )
A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} )
A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} )
def UpperCAmelCase_ ( self ) -> str:
A_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase_ ( self ) -> int:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
A_ : Tuple = self.default_image_processor
A_ : Optional[int] = prepare_img()
A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" )
# forward pass
A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase )
# verify the logits
A_ : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
| 344 | 1 |
'''simple docstring'''
from math import factorial
def UpperCAmelCase ( a_ = 1_0_0 ) -> int:
"""simple docstring"""
return sum(map(a_ , str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 344 |
'''simple docstring'''
def UpperCAmelCase ( a_ = 1_0_0 ) -> int:
"""simple docstring"""
A_ : Dict = n * (n + 1) * (2 * n + 1) / 6
A_ : Optional[int] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'{solution() = }')
| 344 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = KandinskyVaaControlnetImgaImgPipeline
lowerCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
lowerCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
lowerCamelCase = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowerCamelCase = False
@property
def UpperCAmelCase_ ( self ) -> Optional[int]:
return 32
@property
def UpperCAmelCase_ ( self ) -> List[str]:
return 32
@property
def UpperCAmelCase_ ( self ) -> int:
return self.time_input_dim
@property
def UpperCAmelCase_ ( self ) -> Dict:
return self.time_input_dim * 4
@property
def UpperCAmelCase_ ( self ) -> Tuple:
return 100
@property
def UpperCAmelCase_ ( self ) -> List[Any]:
torch.manual_seed(0 )
A_ : Optional[Any] = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
A_ : Dict = UNetaDConditionModel(**_lowerCamelCase )
return model
@property
def UpperCAmelCase_ ( self ) -> List[Any]:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase_ ( self ) -> List[Any]:
torch.manual_seed(0 )
A_ : List[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase_ ( self ) -> Dict:
A_ : str = self.dummy_unet
A_ : Optional[Any] = self.dummy_movq
A_ : List[Any] = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_0085,
"""beta_end""": 0.012,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
A_ : Any = DDIMScheduler(**_lowerCamelCase )
A_ : str = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> Tuple:
A_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase )
A_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCamelCase )
# create init_image
A_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase )
A_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0]
A_ : List[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create hint
A_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase )
if str(_lowerCamelCase ).startswith("""mps""" ):
A_ : List[str] = torch.manual_seed(_lowerCamelCase )
else:
A_ : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
A_ : str = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Any = """cpu"""
A_ : str = self.get_dummy_components()
A_ : Dict = self.pipeline_class(**_lowerCamelCase )
A_ : Tuple = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
A_ : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) )
A_ : Optional[Any] = output.images
A_ : Optional[int] = pipe(
**self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0]
A_ : Optional[int] = image[0, -3:, -3:, -1]
A_ : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A_ : Any = np.array(
[0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self ) -> Optional[int]:
A_ : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
A_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
A_ : Optional[int] = init_image.resize((512, 512) )
A_ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
A_ : List[str] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 255.0
A_ : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
A_ : int = """A robot, 4k photo"""
A_ : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCamelCase )
A_ : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
A_ : Optional[Any] = pipeline.to(_lowerCamelCase )
pipeline.set_progress_bar_config(disable=_lowerCamelCase )
A_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
A_ , A_ : Optional[int] = pipe_prior(
_lowerCamelCase , image=_lowerCamelCase , strength=0.85 , generator=_lowerCamelCase , negative_prompt="""""" , ).to_tuple()
A_ : Dict = pipeline(
image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , )
A_ : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
| 344 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
UpperCamelCase__ : int = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 | 1 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def UpperCAmelCase ( a_ , a_ ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
A_ : Optional[Any] = iter(a_ )
while True:
A_ : List[str] = tuple(itertools.islice(a_ , a_ ) )
if not chunk:
return
yield chunk
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
A_ : List[Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] )
A_ : Tuple = """"""
if len(a_ ) < 2:
return dirty
for i in range(len(a_ ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(a_ ) & 1:
clean += "X"
return clean
def UpperCAmelCase ( a_ ) -> list[str]:
"""simple docstring"""
A_ : Any = """ABCDEFGHIKLMNOPQRSTUVWXYZ"""
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
A_ : Optional[Any] = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(a_ )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(a_ )
return table
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
A_ : int = generate_table(a_ )
A_ : List[str] = prepare_input(a_ )
A_ : Tuple = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(a_ , 2 ):
A_ , A_ : Optional[int] = divmod(table.index(a_ ) , 5 )
A_ , A_ : str = divmod(table.index(a_ ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
A_ : int = generate_table(a_ )
A_ : Union[str, Any] = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(a_ , 2 ):
A_ , A_ : Union[str, Any] = divmod(table.index(a_ ) , 5 )
A_ , A_ : List[Any] = divmod(table.index(a_ ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 344 |
'''simple docstring'''
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
A_ : List[str] = []
A_ : Dict = []
A_ : List[Any] = []
for rt in rc.restypes:
A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 1_4 )
restype_atomaa_to_atomaa_list.append([0] * 3_7 )
restype_atomaa_mask_list.append([0.0] * 1_4 )
A_ : Tuple = torch.tensor(
a_ , dtype=torch.intaa , device=protein["""aatype"""].device , )
A_ : Optional[int] = torch.tensor(
a_ , dtype=torch.intaa , device=protein["""aatype"""].device , )
A_ : List[Any] = torch.tensor(
a_ , dtype=torch.floataa , device=protein["""aatype"""].device , )
A_ : Optional[int] = protein["""aatype"""].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
A_ : Dict = restype_atomaa_to_atomaa[protein_aatype]
A_ : Optional[Any] = restype_atomaa_mask[protein_aatype]
A_ : Any = residx_atomaa_mask
A_ : List[str] = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype]
A_ : Tuple = residx_atomaa_to_atomaa.long()
# create the corresponding mask
A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device )
for restype, restype_letter in enumerate(rc.restypes ):
A_ : Optional[Any] = rc.restype_atoa[restype_letter]
A_ : Any = rc.residue_atoms[restype_name]
for atom_name in atom_names:
A_ : Any = rc.atom_order[atom_name]
A_ : Optional[int] = 1
A_ : Optional[int] = restype_atomaa_mask[protein_aatype]
A_ : Dict = residx_atomaa_mask
return protein
def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]:
"""simple docstring"""
A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray )
A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) )
return out
| 344 | 1 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( __A ):
"""simple docstring"""
lowerCamelCase = (PNDMScheduler,)
lowerCamelCase = (('''num_inference_steps''', 50),)
def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Dict:
A_ : Any = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_lowerCamelCase )
return config
def UpperCAmelCase_ ( self , _lowerCamelCase=0 , **_lowerCamelCase ) -> str:
A_ : Dict = dict(self.forward_default_kwargs )
A_ : Any = kwargs.pop("""num_inference_steps""" , _lowerCamelCase )
A_ : Optional[int] = self.dummy_sample
A_ : List[Any] = 0.1 * sample
A_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A_ : str = self.get_scheduler_config(**_lowerCamelCase )
A_ : List[Any] = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals
A_ : int = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCamelCase )
A_ : List[Any] = scheduler_class.from_pretrained(_lowerCamelCase )
new_scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals
A_ : Optional[int] = dummy_past_residuals[:]
A_ : Union[str, Any] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : Tuple = new_scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A_ : Tuple = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : List[str] = new_scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self , _lowerCamelCase=0 , **_lowerCamelCase ) -> List[Any]:
A_ : Optional[Any] = dict(self.forward_default_kwargs )
A_ : Optional[int] = kwargs.pop("""num_inference_steps""" , _lowerCamelCase )
A_ : str = self.dummy_sample
A_ : Tuple = 0.1 * sample
A_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A_ : int = self.get_scheduler_config()
A_ : List[str] = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
A_ : List[str] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCamelCase )
A_ : int = scheduler_class.from_pretrained(_lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
A_ : List[str] = dummy_past_residuals[:]
A_ : Union[str, Any] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : Tuple = new_scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A_ : List[Any] = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : List[Any] = new_scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> int:
A_ : Union[str, Any] = self.scheduler_classes[0]
A_ : List[str] = self.get_scheduler_config(**_lowerCamelCase )
A_ : Dict = scheduler_class(**_lowerCamelCase )
A_ : str = 10
A_ : Any = self.dummy_model()
A_ : Union[str, Any] = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCamelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
A_ : List[str] = model(_lowerCamelCase , _lowerCamelCase )
A_ : List[str] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
A_ : Dict = model(_lowerCamelCase , _lowerCamelCase )
A_ : Tuple = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample
return sample
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Dict = dict(self.forward_default_kwargs )
A_ : Any = kwargs.pop("""num_inference_steps""" , _lowerCamelCase )
for scheduler_class in self.scheduler_classes:
A_ : Tuple = self.get_scheduler_config()
A_ : Any = scheduler_class(**_lowerCamelCase )
A_ : Any = self.dummy_sample
A_ : int = 0.1 * sample
if num_inference_steps is not None and hasattr(_lowerCamelCase , """set_timesteps""" ):
scheduler.set_timesteps(_lowerCamelCase )
elif num_inference_steps is not None and not hasattr(_lowerCamelCase , """set_timesteps""" ):
A_ : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
A_ : List[Any] = dummy_past_residuals[:]
A_ : Tuple = scheduler.step_prk(_lowerCamelCase , 0 , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : Optional[int] = scheduler.step_prk(_lowerCamelCase , 1 , _lowerCamelCase , **_lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
A_ : Any = scheduler.step_plms(_lowerCamelCase , 0 , _lowerCamelCase , **_lowerCamelCase ).prev_sample
A_ : List[str] = scheduler.step_plms(_lowerCamelCase , 1 , _lowerCamelCase , **_lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowerCamelCase )
A_ : int = self.scheduler_classes[0]
A_ : List[Any] = self.get_scheduler_config(steps_offset=1 )
A_ : List[Any] = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Tuple:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Any:
for t in [1, 5, 10]:
self.check_over_forward(time_step=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> int:
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
A_ : List[Any] = 27
for scheduler_class in self.scheduler_classes:
A_ : Any = self.dummy_sample
A_ : Tuple = 0.1 * sample
A_ : int = self.get_scheduler_config()
A_ : List[str] = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(_lowerCamelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
A_ : str = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample
def UpperCAmelCase_ ( self ) -> Any:
with self.assertRaises(_lowerCamelCase ):
A_ : Optional[int] = self.scheduler_classes[0]
A_ : Optional[int] = self.get_scheduler_config()
A_ : Optional[int] = scheduler_class(**_lowerCamelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Union[str, Any] = self.full_loop()
A_ : int = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : Union[str, Any] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Union[str, Any] = self.full_loop(prediction_type="""v_prediction""" )
A_ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : Optional[int] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def UpperCAmelCase_ ( self ) -> List[str]:
# We specify different beta, so that the first alpha is 0.99
A_ : List[Any] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 )
A_ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def UpperCAmelCase_ ( self ) -> Any:
# We specify different beta, so that the first alpha is 0.99
A_ : str = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 )
A_ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) )
A_ : Any = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3
| 344 |
'''simple docstring'''
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str:
A_ : Optional[int] = parent
A_ : Dict = batch_size
A_ : List[Any] = image_size
A_ : Optional[int] = patch_size
A_ : List[str] = num_channels
A_ : List[Any] = is_training
A_ : Union[str, Any] = use_labels
A_ : Union[str, Any] = hidden_size
A_ : str = num_hidden_layers
A_ : List[str] = num_attention_heads
A_ : Union[str, Any] = intermediate_size
A_ : Any = hidden_act
A_ : Optional[Any] = hidden_dropout_prob
A_ : List[Any] = attention_probs_dropout_prob
A_ : Dict = type_sequence_label_size
A_ : Optional[int] = initializer_range
A_ : str = scope
A_ : Optional[Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A_ : Tuple = (image_size // patch_size) ** 2
A_ : Union[str, Any] = num_patches + 2
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ : Dict = None
if self.use_labels:
A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self ) -> int:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
A_ : List[str] = DeiTModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : Dict = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : int = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A_ : Dict = 1
A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ : int = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
A_ : Tuple = self.type_sequence_label_size
A_ : Tuple = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A_ : Dict = 1
A_ : Any = DeiTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : List[Any] = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) ,
) : Union[str, Any] = config_and_inputs
A_ : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __A, __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': DeiTModel,
'''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : int = DeiTModelTester(self )
A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def UpperCAmelCase_ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def UpperCAmelCase_ ( self ) -> Optional[int]:
pass
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : List[Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ : List[str] = model_class(_lowerCamelCase )
A_ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ : Union[str, Any] = [*signature.parameters.keys()]
A_ : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def UpperCAmelCase_ ( self ) -> List[str]:
A_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]:
A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCAmelCase_ ( self ) -> Optional[Any]:
if not self.model_tester.is_training:
return
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
A_ : Optional[Any] = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(_lowerCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
A_ : List[str] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : List[str] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCAmelCase_ ( self ) -> int:
A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A_ : Any = False
A_ : Union[str, Any] = True
for model_class in self.all_model_classes:
if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
A_ : List[Any] = model_class(_lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCamelCase )
model.train()
A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
A_ : Union[str, Any] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCAmelCase_ ( self ) -> Tuple:
A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
A_ : Optional[Any] = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(_lowerCamelCase ),
*get_values(_lowerCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ):
A_ : Dict = problem_type["""title"""]
A_ : List[Any] = problem_type["""num_labels"""]
A_ : List[str] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if problem_type["num_labels"] > 1:
A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list:
A_ : List[str] = model(**_lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : int = DeiTModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to(
_lowerCamelCase )
A_ : Optional[int] = self.default_image_processor
A_ : str = prepare_img()
A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
A_ : Any = model(**_lowerCamelCase )
# verify the logits
A_ : Tuple = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCAmelCase_ ( self ) -> Tuple:
A_ : Optional[Any] = DeiTModel.from_pretrained(
"""facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" )
A_ : int = self.default_image_processor
A_ : List[str] = prepare_img()
A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" )
A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
A_ : List[Any] = model(_lowerCamelCase )
| 344 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__ : Any = {
'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'],
'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Optional[int] = ['BertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
'BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BertForMaskedLM',
'BertForMultipleChoice',
'BertForNextSentencePrediction',
'BertForPreTraining',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'BertForTokenClassification',
'BertLayer',
'BertLMHeadModel',
'BertModel',
'BertPreTrainedModel',
'load_tf_weights_in_bert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBertEmbeddings',
'TFBertForMaskedLM',
'TFBertForMultipleChoice',
'TFBertForNextSentencePrediction',
'TFBertForPreTraining',
'TFBertForQuestionAnswering',
'TFBertForSequenceClassification',
'TFBertForTokenClassification',
'TFBertLMHeadModel',
'TFBertMainLayer',
'TFBertModel',
'TFBertPreTrainedModel',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Any = ['TFBertTokenizer']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Optional[int] = [
'FlaxBertForCausalLM',
'FlaxBertForMaskedLM',
'FlaxBertForMultipleChoice',
'FlaxBertForNextSentencePrediction',
'FlaxBertForPreTraining',
'FlaxBertForQuestionAnswering',
'FlaxBertForSequenceClassification',
'FlaxBertForTokenClassification',
'FlaxBertModel',
'FlaxBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]:
A_ : Optional[int] = parent
A_ : Union[str, Any] = do_resize
A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288}
A_ : Tuple = size_divisor
A_ : List[Any] = do_rescale
A_ : Dict = rescale_factor
A_ : List[Any] = do_normalize
A_ : Dict = do_center_crop
A_ : Optional[Any] = image_mean
A_ : List[str] = image_std
A_ : str = do_pad
A_ : Any = batch_size
A_ : List[str] = num_channels
A_ : List[str] = min_resolution
A_ : Union[str, Any] = max_resolution
def UpperCAmelCase_ ( self ) -> Any:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]:
if not batched:
A_ : Union[str, Any] = self.size["""shortest_edge"""]
A_ : Dict = image_inputs[0]
if isinstance(_lowerCamelCase , Image.Image ):
A_ , A_ : Optional[Any] = image.size
else:
A_ , A_ : int = image.shape[1], image.shape[2]
A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase )
if h < w:
A_ , A_ : Optional[Any] = size, scale * w
else:
A_ , A_ : Dict = scale * h, size
A_ : Union[str, Any] = int((1333 / 800) * size )
if max(_lowerCamelCase , _lowerCamelCase ) > max_size:
A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase )
A_ : Dict = newh * scale
A_ : Dict = neww * scale
A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 )
A_ , A_ : Dict = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
A_ : Tuple = []
for image in image_inputs:
A_ , A_ : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0]
A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowerCAmelCase ( __A, unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self ) -> Dict:
A_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self ) -> Optional[Any]:
A_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
pass
def UpperCAmelCase_ ( self ) -> List[str]:
# Initialize image processor
A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
# Initialize image processor
A_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self ) -> Tuple:
# Initialize image processor
A_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values
A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 344 | 1 |
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = '0.18.2'
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 344 |
'''simple docstring'''
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" )
for i in range(a_ ):
for j in range(a_ ):
if dist[i][j] != float("""inf""" ):
print(int(dist[i][j] ) , end="""\t""" )
else:
print("""INF""" , end="""\t""" )
print()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )]
for i in range(a_ ):
for j in range(a_ ):
A_ : List[Any] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(a_ ):
# looping through rows of graph array
for i in range(a_ ):
# looping through columns of graph array
for j in range(a_ ):
if (
dist[i][k] != float("""inf""" )
and dist[k][j] != float("""inf""" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
A_ : List[str] = dist[i][k] + dist[k][j]
_print_dist(a_ , a_ )
return dist, v
if __name__ == "__main__":
UpperCamelCase__ : Tuple = int(input('Enter number of vertices: '))
UpperCamelCase__ : int = int(input('Enter number of edges: '))
UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
UpperCamelCase__ : Union[str, Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
UpperCamelCase__ : Union[str, Any] = int(input('Enter source:'))
UpperCamelCase__ : int = int(input('Enter destination:'))
UpperCamelCase__ : Optional[Any] = float(input('Enter weight:'))
UpperCamelCase__ : Any = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 344 | 1 |
'''simple docstring'''
from math import factorial
def UpperCAmelCase ( a_ = 1_0_0 ) -> int:
"""simple docstring"""
return sum(int(a_ ) for x in str(factorial(a_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 344 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n'
UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n'
UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase_ ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , )
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
A_ : List[Any] = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 344 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.