code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) def __call__( self : Tuple ): """simple docstring""" UpperCamelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase = 1 UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample UpperCamelCase = scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase_ ) return result
343
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = 0 @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) # Check that tokenizer_type ≠ model_type UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowerCamelCase_ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="""bert""" , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowerCamelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowerCamelCase_ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="""gpt2""" , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(lowerCamelCase_ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="""bert""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(lowerCamelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(lowerCamelCase_ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type="""gpt2""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with pytest.raises(lowerCamelCase_ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCamelCase_ ( self : str ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCamelCase_ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCamelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TOKENIZER_MAPPING.values() UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCamelCase_ ) @require_tokenizers def lowerCamelCase_ ( self : str ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowerCamelCase_ ) , lowerCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , lowerCamelCase_ ) @require_tokenizers def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=lowerCamelCase_ ) UpperCamelCase = """Hello, world. How are you?""" UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCamelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=lowerCamelCase_ ) UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = get_tokenizer_config("""bert-base-cased""" ) UpperCamelCase = config.pop("""_commit_hash""" , lowerCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCamelCase_ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase = get_tokenizer_config(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = get_tokenizer_config(lowerCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) UpperCamelCase = CustomTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) # Can register in two steps AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase_ ( self : int ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = False class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = NewTokenizer __lowerCAmelCase = False try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
343
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int=13 , lowerCamelCase_ : int=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=99 , lowerCamelCase_ : Optional[int]=32 , lowerCamelCase_ : int=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=512 , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : str=0.0_2 , lowerCamelCase_ : Tuple=4 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) UpperCamelCase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) UpperCamelCase = model(lowerCamelCase_ )[0] UpperCamelCase = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , lowerCamelCase_ ) # compare the actual values for a slice. UpperCamelCase = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) UpperCamelCase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) UpperCamelCase = model(lowerCamelCase_ )[0] # compare the actual values for a slice. UpperCamelCase = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = create_tensor(UpperCamelCase_ ) UpperCamelCase = gather(UpperCamelCase_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = [state.process_index] UpperCamelCase = gather_object(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == state.num_processes, f"""{gathered_obj}, {len(UpperCamelCase_ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = create_tensor(UpperCamelCase_ ) UpperCamelCase = broadcast(UpperCamelCase_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: UpperCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCamelCase = torch.arange(state.num_processes ).to(state.device ) UpperCamelCase = pad_across_processes(UpperCamelCase_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase = create_tensor(UpperCamelCase_ ) UpperCamelCase = reduce(UpperCamelCase_ , """sum""" ) UpperCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return UpperCamelCase = create_tensor(UpperCamelCase_ ) UpperCamelCase = reduce(UpperCamelCase_ , """mean""" ) UpperCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' # For xla_spawn (TPUs) main() def lowercase( ) -> str: '''simple docstring''' UpperCamelCase = PartialState() state.print(f"""State: {state}""" ) state.print("""testing gather""" ) test_gather(UpperCamelCase_ ) state.print("""testing gather_object""" ) test_gather_object(UpperCamelCase_ ) state.print("""testing broadcast""" ) test_broadcast(UpperCamelCase_ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(UpperCamelCase_ ) state.print("""testing reduce_sum""" ) test_reduce_sum(UpperCamelCase_ ) state.print("""testing reduce_mean""" ) test_reduce_mean(UpperCamelCase_ ) if __name__ == "__main__": main()
343
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = git.Repo(search_parent_directories=UpperCamelCase_ ) UpperCamelCase = { """repo_id""": str(UpperCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase_ , """git_log.json""" ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ , indent=4 ) def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if params.n_gpu <= 0: UpperCamelCase = 0 UpperCamelCase = -1 UpperCamelCase = True UpperCamelCase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase = int(os.environ["""WORLD_SIZE"""] ) UpperCamelCase = int(os.environ["""N_GPU_NODE"""] ) UpperCamelCase = int(os.environ["""RANK"""] ) # number of nodes / node ID UpperCamelCase = params.world_size // params.n_gpu_per_node UpperCamelCase = params.global_rank // params.n_gpu_per_node UpperCamelCase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase = 1 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase = params.node_id == 0 and params.local_rank == 0 UpperCamelCase = params.n_nodes > 1 # summary UpperCamelCase = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
343
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
343
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xlnet""" __lowerCAmelCase = ["""mems"""] __lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = n_layer UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase = d_model // n_head UpperCamelCase = ff_activation UpperCamelCase = d_inner UpperCamelCase = untie_r UpperCamelCase = attn_type UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = dropout UpperCamelCase = mem_len UpperCamelCase = reuse_len UpperCamelCase = bi_data UpperCamelCase = clamp_len UpperCamelCase = same_length UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_last_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs["""use_cache"""] UpperCamelCase = use_mems_eval UpperCamelCase = use_mems_train super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
343
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
343
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = AudioLDMPipeline __lowerCAmelCase = TEXT_TO_AUDIO_PARAMS __lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCAmelCase = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCamelCase_ , ) UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase = ClapTextModelWithProjection(lowerCamelCase_ ) UpperCamelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCamelCase_ , ) UpperCamelCase = SpeechTaHifiGan(lowerCamelCase_ ) UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 UpperCamelCase = audio[:10] UpperCamelCase = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs["""prompt"""]] # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs.pop("""prompt""" )] UpperCamelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="""pt""" , ) UpperCamelCase = text_inputs["""input_ids"""].to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) UpperCamelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase = F.normalize(lowerCamelCase_ , dim=-1 ) UpperCamelCase = prompt_embeds # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs["""prompt"""]] # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * [inputs.pop("""prompt""" )] UpperCamelCase = [] for p in [prompt, negative_prompt]: UpperCamelCase = audioldm_pipe.tokenizer( lowerCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="""pt""" , ) UpperCamelCase = text_inputs["""input_ids"""].to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.text_encoder( lowerCamelCase_ , ) UpperCamelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase = F.normalize(lowerCamelCase_ , dim=-1 ) embeds.append(lowerCamelCase_ ) UpperCamelCase , UpperCamelCase = embeds # forward UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = """egg cracking""" UpperCamelCase = audioldm_pipe(**lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 256 UpperCamelCase = audio[:10] UpperCamelCase = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase = 2 UpperCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase = 2 UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase = 2 UpperCamelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(audio_length_in_s=0.0_1_6 , **lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_1_6 UpperCamelCase = audioldm_pipe(audio_length_in_s=0.0_3_2 , **lowerCamelCase_ ) UpperCamelCase = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) / vocoder_sampling_rate == 0.0_3_2 def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = AudioLDMPipeline(**lowerCamelCase_ ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ["""hey"""] UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) UpperCamelCase = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase = SpeechTaHifiGan(lowerCamelCase_ ).to(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(lowerCamelCase_ , num_inference_steps=1 ) UpperCamelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCamelCase_ ( self : Any ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase_ ) @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]="cpu" , lowerCamelCase_ : List[str]=torch.floataa , lowerCamelCase_ : Tuple=0 ): """simple docstring""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = 25 UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 UpperCamelCase = audio[7_7230:7_7240] UpperCamelCase = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) UpperCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase = audioldm_pipe.to(lowerCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = audioldm_pipe(**lowerCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase_ ) == 8_1920 UpperCamelCase = audio[2_7780:2_7790] UpperCamelCase = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) UpperCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' # Initialise PyTorch model UpperCamelCase = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint UpperCamelCase = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
343
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") _SCREAMING_SNAKE_CASE = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' with open(UpperCamelCase_ , """rb""" ) as f: UpperCamelCase = Image.open(UpperCamelCase_ ) return im.convert("""RGB""" ) @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field(default=__lowerCAmelCase , metadata={"""help""": """A folder containing the training data."""} ) __lowerCAmelCase = field(default=__lowerCAmelCase , metadata={"""help""": """A folder containing the validation data."""} ) __lowerCAmelCase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase_ ( self : str ): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__lowerCAmelCase )} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __lowerCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCAmelCase = field(default=__lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) UpperCamelCase = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase( ) -> Dict: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCamelCase = {} if data_args.train_dir is not None: UpperCamelCase = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: UpperCamelCase = os.path.join(data_args.validation_dir , """**""" ) UpperCamelCase = load_dataset( """imagefolder""" , data_files=UpperCamelCase_ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase_ ) and data_args.train_val_split > 0.0: UpperCamelCase = dataset["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase = split["""train"""] UpperCamelCase = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase = dataset["""train"""].features["""labels"""].names UpperCamelCase , UpperCamelCase = {}, {} for i, label in enumerate(UpperCamelCase_ ): UpperCamelCase = str(UpperCamelCase_ ) UpperCamelCase = label # Load the accuracy metric from the datasets package UpperCamelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase_ ) , labelaid=UpperCamelCase_ , idalabel=UpperCamelCase_ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCamelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size["""shortest_edge"""] else: UpperCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCamelCase = Compose( [ RandomResizedCrop(UpperCamelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCamelCase = Compose( [ Resize(UpperCamelCase_ ), CenterCrop(UpperCamelCase_ ), ToTensor(), normalize, ] ) def train_transforms(UpperCamelCase_ ): UpperCamelCase = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(UpperCamelCase_ ): UpperCamelCase = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCamelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCamelCase_ ) # Initalize our trainer UpperCamelCase = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase_ ) trainer.save_metrics("""eval""" , UpperCamelCase_ ) # Write model card and (optionally) push to hub UpperCamelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) if __name__ == "__main__": main()
343
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
1
from collections.abc import Sequence def lowercase( UpperCamelCase_ = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) UpperCamelCase = nums[0] for i in range(1 , len(UpperCamelCase_ ) ): UpperCamelCase = nums[i] UpperCamelCase = max(UpperCamelCase_ , ans + num , UpperCamelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _SCREAMING_SNAKE_CASE = int(input("""Enter number of elements : """).strip()) _SCREAMING_SNAKE_CASE = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
343
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """BlipImageProcessor""" __lowerCAmelCase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.image_processor def __call__( self : Tuple , lowerCamelCase_ : ImageInput = None , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Tuple , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCamelCase = self.tokenizer UpperCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding # add pixel_values UpperCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) if text is not None: UpperCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) else: UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def lowerCamelCase_ ( self : Optional[int] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : str ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) set_seed(7_7_0) _SCREAMING_SNAKE_CASE = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _SCREAMING_SNAKE_CASE = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.abspath(__file__)) _SCREAMING_SNAKE_CASE = os.path.join(os.path.expanduser("""~"""), """.cache""") _SCREAMING_SNAKE_CASE = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Any: '''simple docstring''' UpperCamelCase = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ) -> Dict: '''simple docstring''' if model_type == "text": UpperCamelCase = BarkSemanticModel UpperCamelCase = BarkSemanticConfig UpperCamelCase = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase = BarkCoarseModel UpperCamelCase = BarkCoarseConfig UpperCamelCase = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase = BarkFineModel UpperCamelCase = BarkFineConfig UpperCamelCase = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase = f"""{model_type}_small""" if use_small else model_type UpperCamelCase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCamelCase = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) # this is a hack UpperCamelCase = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCamelCase = model_args["""vocab_size"""] UpperCamelCase = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase = model_args.pop("""n_head""" ) UpperCamelCase = model_args.pop("""n_embd""" ) UpperCamelCase = model_args.pop("""n_layer""" ) UpperCamelCase = ConfigClass(**checkpoint["""model_args"""] ) UpperCamelCase = ModelClass(config=UpperCamelCase_ ) UpperCamelCase = GenerationConfigClass() UpperCamelCase = model_generation_config UpperCamelCase = checkpoint["""model"""] # fixup checkpoint UpperCamelCase = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase_ ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase = k[len(UpperCamelCase_ ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] ) UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCamelCase = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(UpperCamelCase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(UpperCamelCase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) UpperCamelCase = model.num_parameters(exclude_embeddings=UpperCamelCase_ ) UpperCamelCase = checkpoint["""best_val_loss"""].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss""" ) model.eval() model.to(UpperCamelCase_ ) del checkpoint, state_dict return model def lowercase( UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ) -> Any: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase = """cpu""" # do conversion on cpu UpperCamelCase = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ ) UpperCamelCase = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) # load bark initial model UpperCamelCase = _bark_load_model(UpperCamelCase_ , """cpu""" , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) if model_type == "text": UpperCamelCase = bark_model["""model"""] if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCamelCase = 5 UpperCamelCase = 10 if model_type in ["text", "coarse"]: UpperCamelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase = bark_model(UpperCamelCase_ )[0] UpperCamelCase = model(UpperCamelCase_ ) # take last logits UpperCamelCase = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase = 3 UpperCamelCase = 8 UpperCamelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = bark_model(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) UpperCamelCase = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) UpperCamelCase = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) UpperCamelCase = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase = BarkSemanticModel.from_pretrained(UpperCamelCase_ ) UpperCamelCase = BarkCoarseModel.from_pretrained(UpperCamelCase_ ) UpperCamelCase = BarkFineModel.from_pretrained(UpperCamelCase_ ) UpperCamelCase = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase = BarkConfig.from_sub_model_configs( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase = BarkModel(UpperCamelCase_ ) UpperCamelCase = semantic UpperCamelCase = coarseAcoustic UpperCamelCase = fineAcoustic UpperCamelCase = codec UpperCamelCase = bark_generation_config Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") _SCREAMING_SNAKE_CASE = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
343
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """trocr""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = activation_function UpperCamelCase = max_position_embeddings UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = init_std UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = scale_embedding UpperCamelCase = use_learned_position_embeddings UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
343
1
def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(UpperCamelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
343
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' random.seed(UpperCamelCase_ ) np.random.seed(UpperCamelCase_ ) torch.manual_seed(UpperCamelCase_ ) torch.cuda.manual_seed_all(UpperCamelCase_ ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Iterable[torch.nn.Parameter] , lowerCamelCase_ : float = 0.9_9_9_9 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Union[float, int] = 1.0 , lowerCamelCase_ : Union[float, int] = 2 / 3 , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : Dict[str, Any] = None , **lowerCamelCase_ : Dict , ): """simple docstring""" if isinstance(lowerCamelCase_ , torch.nn.Module ): UpperCamelCase = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ , ) UpperCamelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase = True if kwargs.get("""max_value""" , lowerCamelCase_ ) is not None: UpperCamelCase = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) UpperCamelCase = kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCamelCase_ ) is not None: UpperCamelCase = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) UpperCamelCase = kwargs["""min_value"""] UpperCamelCase = list(lowerCamelCase_ ) UpperCamelCase = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCamelCase_ ) is not None: UpperCamelCase = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) self.to(device=kwargs["""device"""] ) UpperCamelCase = None UpperCamelCase = decay UpperCamelCase = min_decay UpperCamelCase = update_after_step UpperCamelCase = use_ema_warmup UpperCamelCase = inv_gamma UpperCamelCase = power UpperCamelCase = 0 UpperCamelCase = None # set in `step()` UpperCamelCase = model_cls UpperCamelCase = model_config @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = model_cls.load_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ ) UpperCamelCase = model_cls.from_pretrained(lowerCamelCase_ ) UpperCamelCase = cls(model.parameters() , model_cls=lowerCamelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCamelCase_ ) return ema_model def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase = self.model_cls.from_config(self.model_config ) UpperCamelCase = self.state_dict() state_dict.pop("""shadow_params""" , lowerCamelCase_ ) model.register_to_config(**lowerCamelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase = (1 + step) / (10 + step) UpperCamelCase = min(lowerCamelCase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase = max(lowerCamelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Iterable[torch.nn.Parameter] ): """simple docstring""" if isinstance(lowerCamelCase_ , torch.nn.Module ): UpperCamelCase = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ , ) UpperCamelCase = parameters.parameters() UpperCamelCase = list(lowerCamelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase = self.get_decay(self.optimization_step ) UpperCamelCase = decay UpperCamelCase = 1 - decay UpperCamelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCamelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase = deepspeed.zero.GatheredParameters(lowerCamelCase_ , modifier_rank=lowerCamelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Iterable[torch.nn.Parameter] ): """simple docstring""" UpperCamelCase = list(lowerCamelCase_ ) for s_param, param in zip(self.shadow_params , lowerCamelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = [ p.to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) if p.is_floating_point() else p.to(device=lowerCamelCase_ ) for p in self.shadow_params ] def lowerCamelCase_ ( self : str ): """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Iterable[torch.nn.Parameter] ): """simple docstring""" UpperCamelCase = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Iterable[torch.nn.Parameter] ): """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCamelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase = None def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : dict ): """simple docstring""" UpperCamelCase = copy.deepcopy(lowerCamelCase_ ) UpperCamelCase = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCamelCase_ ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCamelCase_ ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCamelCase_ ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCamelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase = state_dict.get("""shadow_params""" , lowerCamelCase_ ) if shadow_params is not None: UpperCamelCase = shadow_params if not isinstance(self.shadow_params , lowerCamelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCamelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
343
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
1
import requests _SCREAMING_SNAKE_CASE = """""" # <-- Put your OpenWeatherMap appid here! _SCREAMING_SNAKE_CASE = """https://api.openweathermap.org/data/2.5/""" def lowercase( UpperCamelCase_ = "Chicago" , UpperCamelCase_ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """weather""" , params=locals() ).json() def lowercase( UpperCamelCase_ = "Kolkata, India" , UpperCamelCase_ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def lowercase( UpperCamelCase_ = 5_5.6_8 , UpperCamelCase_ = 1_2.5_7 , UpperCamelCase_ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _SCREAMING_SNAKE_CASE = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
343
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE_ : def __init__( self : List[str] , lowerCamelCase_ : str = "cpu" , lowerCamelCase_ : str = "openai/clip-vit-large-patch14" ): """simple docstring""" UpperCamelCase = device UpperCamelCase = CLIPTokenizerFast.from_pretrained(lowerCamelCase_ ) UpperCamelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCamelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCamelCase = torchvision.transforms.Resize(224 ) UpperCamelCase = torchvision.transforms.CenterCrop(224 ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.resize(lowerCamelCase_ ) UpperCamelCase = self.center_crop(lowerCamelCase_ ) UpperCamelCase = self.normalize(lowerCamelCase_ ) return images def __call__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.tokenizer(text=lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.preprocess_img(lowerCamelCase_ ) UpperCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : str , lowerCamelCase_ : Any=10 , lowerCamelCase_ : Union[str, Any]=0.0_1 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : str=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str="image" , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : Any=False , ): """simple docstring""" super().__init__() UpperCamelCase = None UpperCamelCase = device if device else get_device() if vqgan: UpperCamelCase = vqgan else: UpperCamelCase = load_vqgan(self.device , conf_path=lowerCamelCase_ , ckpt_path=lowerCamelCase_ ) self.vqgan.eval() if clip: UpperCamelCase = clip else: UpperCamelCase = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCamelCase = ProcessorGradientFlow(device=self.device ) UpperCamelCase = iterations UpperCamelCase = lr UpperCamelCase = log UpperCamelCase = make_grid UpperCamelCase = return_val UpperCamelCase = quantize UpperCamelCase = self.vqgan.decoder.z_shape def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]=5 , lowerCamelCase_ : int=True ): """simple docstring""" UpperCamelCase = [] if output_path is None: UpperCamelCase = """./animation.gif""" if input_path is None: UpperCamelCase = self.save_path UpperCamelCase = sorted(glob(input_path + """/*""" ) ) if not len(lowerCamelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCamelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCamelCase = total_duration / len(lowerCamelCase_ ) UpperCamelCase = [frame_duration] * len(lowerCamelCase_ ) if extend_frames: UpperCamelCase = 1.5 UpperCamelCase = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCamelCase_ ) ) imageio.mimsave(lowerCamelCase_ , lowerCamelCase_ , duration=lowerCamelCase_ ) print(f"""gif saved to {output_path}""" ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Any=None ): """simple docstring""" if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCamelCase = preprocess(Image.open(lowerCamelCase_ ) , target_image_size=256 ).to(self.device ) UpperCamelCase = preprocess_vqgan(lowerCamelCase_ ) UpperCamelCase , *UpperCamelCase = self.vqgan.encode(lowerCamelCase_ ) return z def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = self.latent.detach().requires_grad_() UpperCamelCase = base_latent + transform_vector if self.quantize: UpperCamelCase , *UpperCamelCase = self.vqgan.quantize(lowerCamelCase_ ) else: UpperCamelCase = trans_latent return self.vqgan.decode(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any]=None ): """simple docstring""" UpperCamelCase = self.clip_preprocessor(text=lowerCamelCase_ , images=lowerCamelCase_ , return_tensors="""pt""" , padding=lowerCamelCase_ ) UpperCamelCase = self.clip(**lowerCamelCase_ ) UpperCamelCase = clip_outputs.logits_per_image if weights is not None: UpperCamelCase = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase_ ( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCamelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCamelCase = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCamelCase_ , weights=neg_prompts["""weights"""] ) else: UpperCamelCase = torch.tensor([1] , device=self.device ) UpperCamelCase = -torch.log(lowerCamelCase_ ) + torch.log(lowerCamelCase_ ) return loss def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = torch.randn_like(self.latent , requires_grad=lowerCamelCase_ , device=self.device ) UpperCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase = self._add_vector(lowerCamelCase_ ) UpperCamelCase = loop_post_process(lowerCamelCase_ ) UpperCamelCase = self._get_CLIP_loss(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) print("""CLIP loss""" , lowerCamelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCamelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" wandb.init(reinit=lowerCamelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCamelCase = Image.open(lowerCamelCase_ ) UpperCamelCase = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(lowerCamelCase_ ) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" if not prompts: return [] UpperCamelCase = [] UpperCamelCase = [] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCamelCase_ , (tuple, list) ): UpperCamelCase = prompt[0] UpperCamelCase = float(prompt[1] ) elif ":" in prompt: UpperCamelCase , UpperCamelCase = prompt.split(""":""" ) UpperCamelCase = float(lowerCamelCase_ ) else: UpperCamelCase = prompt UpperCamelCase = 1.0 processed_prompts.append(lowerCamelCase_ ) weights.append(lowerCamelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCamelCase_ , device=self.device ), } def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Dict=None , ): """simple docstring""" if image_path: UpperCamelCase = self._get_latent(lowerCamelCase_ ) else: UpperCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase = self.process_prompts(lowerCamelCase_ ) UpperCamelCase = self.process_prompts(lowerCamelCase_ ) if save_final and save_path is None: UpperCamelCase = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) else: UpperCamelCase = save_path + """_""" + get_timestamp() os.makedirs(lowerCamelCase_ ) UpperCamelCase = save_path UpperCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCamelCase_ ) ) UpperCamelCase = loop_post_process(lowerCamelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ): if show_intermediate: show_pil(lowerCamelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCamelCase_ )} ) if show_final: show_pil(lowerCamelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
343
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def lowercase( UpperCamelCase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' UpperCamelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): UpperCamelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() UpperCamelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
343
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ShapEPipeline __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase = False @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 8 @property def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase = PriorTransformer(**lowerCamelCase_ ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase = ShapERenderer(**lowerCamelCase_ ) return model def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_prior UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_renderer UpperCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) UpperCamelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase = output.images[0] UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch_device == """cpu""" UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase = batch_size * [inputs[key]] UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = pipe( """a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
343
1
def lowercase( UpperCamelCase_ ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
343
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' return number | (1 << position) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' return number & ~(1 << position) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' return number ^ (1 << position) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
343
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
1
def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [0] * len(UpperCamelCase_ ) for i in range(1 , len(UpperCamelCase_ ) ): # use last results for better performance - dynamic programming UpperCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase = j return prefix_result def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' return max(prefix_function(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
343
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _SCREAMING_SNAKE_CASE = """bert-base-cased""" _SCREAMING_SNAKE_CASE = """google/pegasus-xsum""" _SCREAMING_SNAKE_CASE = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _SCREAMING_SNAKE_CASE = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _SCREAMING_SNAKE_CASE = """patrickvonplaten/t5-tiny-random""" _SCREAMING_SNAKE_CASE = """sshleifer/bart-tiny-random""" _SCREAMING_SNAKE_CASE = """sshleifer/tiny-mbart""" _SCREAMING_SNAKE_CASE = """sshleifer/tiny-marian-en-de""" def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = """\n""".join(UpperCamelCase_ ) Path(UpperCamelCase_ ).open("""w""" ).writelines(UpperCamelCase_ ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase_ , f"""{split}.source""" ) , UpperCamelCase_ ) _dump_articles(os.path.join(UpperCamelCase_ , f"""{split}.target""" ) , UpperCamelCase_ ) return tmp_dir class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) UpperCamelCase = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) UpperCamelCase = 4 UpperCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCamelCase , UpperCamelCase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. UpperCamelCase = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="""train""" , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) UpperCamelCase = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCamelCase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) UpperCamelCase = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) UpperCamelCase = 4 UpperCamelCase = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="""train""" , max_source_length=20 , max_target_length=lowerCamelCase_ , ) UpperCamelCase = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCamelCase = tmp_dir.joinpath("""train.source""" ).open().readlines() UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 128 , lowerCamelCase_ ) UpperCamelCase = {x.name for x in tmp_dir.iterdir()} UpperCamelCase = {x.name for x in save_dir.iterdir()} UpperCamelCase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_dataset(max_len=64 ) UpperCamelCase = 64 UpperCamelCase = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) UpperCamelCase = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples UpperCamelCase = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase = [] UpperCamelCase = [] for batch in data_loader: UpperCamelCase = batch["""input_ids"""].shape UpperCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCamelCase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f"""too many tokens in {len(lowerCamelCase_ )} batches""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_dataset(max_len=512 ) UpperCamelCase = 2 UpperCamelCase = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) UpperCamelCase = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) UpperCamelCase = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[Any] , lowerCamelCase_ : str="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k="""labels""" ) ) < sum(count_pad_tokens(lowerCamelCase_ , k="""labels""" ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, Any]=1000 , lowerCamelCase_ : Optional[Any]=128 ): """simple docstring""" if os.getenv("""USE_REAL_DATA""" , lowerCamelCase_ ): UpperCamelCase = """examples/seq2seq/wmt_en_ro""" UpperCamelCase = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath("""train.len""" ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: UpperCamelCase = """examples/seq2seq/test_data/wmt_en_ro""" UpperCamelCase = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) UpperCamelCase = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path="""train""" , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = self._get_dataset() UpperCamelCase = set(DistributedSortishSampler(lowerCamelCase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) UpperCamelCase = set(DistributedSortishSampler(lowerCamelCase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: UpperCamelCase = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) UpperCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCamelCase = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) UpperCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
343
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
1
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' UpperCamelCase = sorted(numsa + numsa ) UpperCamelCase , UpperCamelCase = divmod(len(UpperCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [float(x) for x in input("""Enter the elements of first array: """).split()] _SCREAMING_SNAKE_CASE = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
1
import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = """docs/source/en/_toctree.yml""" def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = defaultdict(UpperCamelCase_ ) UpperCamelCase = [] UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCamelCase_ ) UpperCamelCase = new_doc_list UpperCamelCase = [key for key, value in counts.items() if value > 1] UpperCamelCase = [] for duplicate_key in duplicates: UpperCamelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCamelCase_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) UpperCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase_ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCamelCase_ ) # Sort return overview_doc def lowercase( UpperCamelCase_=False ) -> List[str]: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase = api_doc[scheduler_idx]["""sections"""] UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) UpperCamelCase = False if new_scheduler_doc != scheduler_doc: UpperCamelCase = True if overwrite: UpperCamelCase = new_scheduler_doc if diff: if overwrite: UpperCamelCase = api_doc with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase_ , allow_unicode=UpperCamelCase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowercase( UpperCamelCase_=False ) -> int: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase = False UpperCamelCase = api_doc[pipeline_idx]["""sections"""] UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase = pipeline_doc["""section"""] UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) if overwrite: UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase_ ) # sort overall pipeline doc UpperCamelCase = clean_doc_toc(UpperCamelCase_ ) if new_pipeline_docs != pipeline_docs: UpperCamelCase = True if overwrite: UpperCamelCase = new_pipeline_docs if diff: if overwrite: UpperCamelCase = api_doc with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase_ , allow_unicode=UpperCamelCase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _SCREAMING_SNAKE_CASE = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
343
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """M-CLIP""" def __init__( self : Any , lowerCamelCase_ : Optional[Any]=1024 , lowerCamelCase_ : Optional[Any]=768 , **lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = transformerDimSize UpperCamelCase = imageDimSize super().__init__(**lowerCamelCase_ ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = MCLIPConfig def __init__( self : Dict , lowerCamelCase_ : Tuple , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): """simple docstring""" super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = XLMRobertaModel(lowerCamelCase_ ) UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.transformer(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCamelCase_ ), embs
343
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = 42 # setable values __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): """simple docstring""" return cls(common=lowerCamelCase_ , init_noise_sigma=lowerCamelCase_ , timesteps=lowerCamelCase_ ) @dataclass class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCAmelCase = 42 @property def lowerCamelCase_ ( self : int ): """simple docstring""" return True @register_to_config def __init__( self : int , lowerCamelCase_ : int = 1000 , lowerCamelCase_ : float = 0.0_0_0_1 , lowerCamelCase_ : float = 0.0_2 , lowerCamelCase_ : str = "linear" , lowerCamelCase_ : Optional[jnp.ndarray] = None , lowerCamelCase_ : str = "fixed_small" , lowerCamelCase_ : bool = True , lowerCamelCase_ : str = "epsilon" , lowerCamelCase_ : jnp.dtype = jnp.floataa , ): """simple docstring""" UpperCamelCase = dtype def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[CommonSchedulerState] = None ): """simple docstring""" if common is None: UpperCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCamelCase = jnp.array(1.0 , dtype=self.dtype ) UpperCamelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase_ , init_noise_sigma=lowerCamelCase_ , timesteps=lowerCamelCase_ , ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Optional[int] = None ): """simple docstring""" return sample def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : int , lowerCamelCase_ : Tuple = () ): """simple docstring""" UpperCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCamelCase = (jnp.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None ): """simple docstring""" UpperCamelCase = state.common.alphas_cumprod[t] UpperCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCamelCase = jnp.clip(lowerCamelCase_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCamelCase = jnp.log(jnp.clip(lowerCamelCase_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCamelCase = variance UpperCamelCase = state.common.betas[t] UpperCamelCase = (predicted_variance + 1) / 2 UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Optional[jax.random.KeyArray] = None , lowerCamelCase_ : bool = True , ): """simple docstring""" UpperCamelCase = timestep if key is None: UpperCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCamelCase , UpperCamelCase = jnp.split(lowerCamelCase_ , sample.shape[1] , axis=1 ) else: UpperCamelCase = None # 1. compute alphas, betas UpperCamelCase = state.common.alphas_cumprod[t] UpperCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase = model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase = jnp.clip(lowerCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCamelCase = jax.random.split(lowerCamelCase_ , num=1 ) UpperCamelCase = jax.random.normal(lowerCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase_ , lowerCamelCase_ , predicted_variance=lowerCamelCase_ ) ** 0.5) * noise UpperCamelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase_ , state=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , ): """simple docstring""" return add_noise_common(state.common , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , ): """simple docstring""" return get_velocity_common(state.common , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
343
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xlnet""" __lowerCAmelCase = ["""mems"""] __lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = n_layer UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase = d_model // n_head UpperCamelCase = ff_activation UpperCamelCase = d_inner UpperCamelCase = untie_r UpperCamelCase = attn_type UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = dropout UpperCamelCase = mem_len UpperCamelCase = reuse_len UpperCamelCase = bi_data UpperCamelCase = clamp_len UpperCamelCase = same_length UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_last_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs["""use_cache"""] UpperCamelCase = use_mems_eval UpperCamelCase = use_mems_train super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
343
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert x is not None assert y is not None UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(UpperCamelCase_ ) # declaring the array for storing the dp values UpperCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 UpperCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) UpperCamelCase = """""" UpperCamelCase , UpperCamelCase = m, n while i > 0 and j > 0: UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """AGGTAB""" _SCREAMING_SNAKE_CASE = """GXTXAYB""" _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = """GTAB""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
343
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase = mf_knapsack(i - 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: UpperCamelCase = max( mf_knapsack(i - 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , mf_knapsack(i - 1 , UpperCamelCase_ , UpperCamelCase_ , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase = val return f[i][j] def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase = dp[i - 1][w_] return dp[n][w_], dp def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' if not (isinstance(UpperCamelCase_ , (list, tuple) ) and isinstance(UpperCamelCase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) UpperCamelCase = len(UpperCamelCase_ ) if num_items != len(UpperCamelCase_ ): UpperCamelCase = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(UpperCamelCase_ )} values""" ) raise ValueError(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): if not isinstance(wt[i] , UpperCamelCase_ ): UpperCamelCase = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = set() _construct_solution(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return optimal_val, example_optional_set def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase_ , UpperCamelCase_ , i - 1 , UpperCamelCase_ , UpperCamelCase_ ) else: optimal_set.add(UpperCamelCase_ ) _construct_solution(UpperCamelCase_ , UpperCamelCase_ , i - 1 , j - wt[i - 1] , UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 6 _SCREAMING_SNAKE_CASE = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
343
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' # Load checkpoint UpperCamelCase = torch.load(UpperCamelCase_ , map_location="""cpu""" ) UpperCamelCase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase = v else: UpperCamelCase = v UpperCamelCase = chkpt["""params"""] UpperCamelCase = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase = chkpt["""dico_word2id"""] UpperCamelCase = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCamelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + """\n""" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + """\n""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
1
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = [10, 20, 30, 40, 50, 60] UpperCamelCase = [2, 4, 6, 8, 10, 12] UpperCamelCase = 100 self.assertEqual(kp.calc_profit(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , 210 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.assertRaisesRegex(lowerCamelCase_ , """max_weight must greater than zero.""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.assertRaisesRegex(lowerCamelCase_ , """Weight can not be negative.""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.assertRaisesRegex(lowerCamelCase_ , """Profit can not be negative.""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.assertRaisesRegex(lowerCamelCase_ , """max_weight must greater than zero.""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.assertRaisesRegex( lowerCamelCase_ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
343
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
1
from __future__ import annotations import os from collections.abc import Mapping _SCREAMING_SNAKE_CASE = tuple[int, int] class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : set[int] , lowerCamelCase_ : Mapping[EdgeT, int] ): """simple docstring""" UpperCamelCase = vertices UpperCamelCase = { (min(lowerCamelCase_ ), max(lowerCamelCase_ )): weight for edge, weight in edges.items() } def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : EdgeT , lowerCamelCase_ : int ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase = weight def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Graph({min(self.vertices )} , {} ) UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase = edge UpperCamelCase = weight subgraph.add_edge(lowerCamelCase_ , lowerCamelCase_ ) return subgraph def lowercase( UpperCamelCase_ = "p107_network.txt" ) -> int: '''simple docstring''' UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = {} UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 with open(UpperCamelCase_ ) as f: UpperCamelCase = f.read().strip().split("""\n""" ) UpperCamelCase = [line.split(""",""" ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) UpperCamelCase = graph.prims_algorithm() UpperCamelCase = sum(graph.edges.values() ) UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """dpt""" def __init__( self : Optional[int] , lowerCamelCase_ : str=768 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Tuple=3072 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Optional[Any]=0.0 , lowerCamelCase_ : str=0.0_2 , lowerCamelCase_ : int=1E-12 , lowerCamelCase_ : Dict=384 , lowerCamelCase_ : str=16 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=[2, 5, 8, 11] , lowerCamelCase_ : int="project" , lowerCamelCase_ : str=[4, 2, 1, 0.5] , lowerCamelCase_ : Dict=[96, 192, 384, 768] , lowerCamelCase_ : int=256 , lowerCamelCase_ : int=-1 , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Tuple=0.4 , lowerCamelCase_ : int=255 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : str=[1, 1024, 24, 24] , lowerCamelCase_ : Dict=[0, 1] , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : List[str] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = hidden_size UpperCamelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCamelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } UpperCamelCase = BitConfig(**lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCamelCase = BitConfig(**lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) UpperCamelCase = backbone_featmap_shape UpperCamelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = [] UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) UpperCamelCase = readout_type UpperCamelCase = reassemble_factors UpperCamelCase = neck_hidden_sizes UpperCamelCase = fusion_hidden_size UpperCamelCase = head_in_index UpperCamelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCamelCase = use_auxiliary_head UpperCamelCase = auxiliary_loss_weight UpperCamelCase = semantic_loss_ignore_index UpperCamelCase = semantic_classifier_dropout def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
343
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """trocr""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = activation_function UpperCamelCase = max_position_embeddings UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = init_std UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = scale_embedding UpperCamelCase = use_learned_position_embeddings UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
343
1
import colorsys from PIL import Image # type: ignore def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' UpperCamelCase = x UpperCamelCase = y for step in range(UpperCamelCase_ ): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowercase( UpperCamelCase_ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowercase( UpperCamelCase_ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def lowercase( UpperCamelCase_ = 800 , UpperCamelCase_ = 600 , UpperCamelCase_ = -0.6 , UpperCamelCase_ = 0 , UpperCamelCase_ = 3.2 , UpperCamelCase_ = 50 , UpperCamelCase_ = True , ) -> Image.Image: '''simple docstring''' UpperCamelCase = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(UpperCamelCase_ ) else: UpperCamelCase = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
343
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""pixel_values"""] def __init__( self : Any , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 255 , lowerCamelCase_ : bool = True , lowerCamelCase_ : int = 8 , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad UpperCamelCase = pad_size def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : float , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" UpperCamelCase , UpperCamelCase = get_image_size(lowerCamelCase_ ) UpperCamelCase = (old_height // size + 1) * size - old_height UpperCamelCase = (old_width // size + 1) * size - old_width return pad(lowerCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : List[str] , ): """simple docstring""" UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_pad if do_pad is not None else self.do_pad UpperCamelCase = pad_size if pad_size is not None else self.pad_size UpperCamelCase = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_pad: UpperCamelCase = [self.pad(lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
343
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = RobertaPreLayerNormConfig.from_pretrained( UpperCamelCase_ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict UpperCamelCase = torch.load(hf_hub_download(repo_id=UpperCamelCase_ , filename="""pytorch_model.bin""" ) ) UpperCamelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): UpperCamelCase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue UpperCamelCase = tensor_value UpperCamelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=UpperCamelCase_ , config=UpperCamelCase_ , state_dict=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) # convert tokenizer UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
343
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , '''num_attention_heads''' ) ) class lowercase_ : '''simple docstring''' def __init__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[Any]=32 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Dict=640 , __UpperCAmelCase : str=4 , __UpperCAmelCase : int="silu" , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=10 , __UpperCAmelCase : List[str]=None , ) ->Any: """simple docstring""" a = parent a = batch_size a = image_size a = patch_size a = num_channels a = last_hidden_size a = num_attention_heads a = hidden_act a = conv_kernel_size a = output_stride a = hidden_dropout_prob a = attention_probs_dropout_prob a = classifier_dropout_prob a = use_labels a = is_training a = num_labels a = initializer_range a = scope def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Any: """simple docstring""" a = MobileViTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) ->Tuple: """simple docstring""" a = self.num_labels a = MobileViTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) ->Optional[int]: """simple docstring""" a = self.num_labels a = MobileViTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = MobileViTModelTester(self ) a = MobileViTConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def __lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" pass def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" pass def __lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ): a = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a = outputs.hidden_states a = 5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a = 2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = MobileViTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Union[str, Any]: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__UpperCAmelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) # verify the logits a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = model.to(__UpperCAmelCase ) a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits # verify the logits a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = model.to(__UpperCAmelCase ) a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a = model(**__UpperCAmelCase ) a = outputs.logits.detach().cpu() a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] ) a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) a = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __A : def __init__(self : List[str] , __a : Any ): if isinstance(__a , __a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCAmelCase_ = deepcopy(__a ) elif os.path.exists(__a ): with io.open(__a , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.load(__a ) else: try: UpperCAmelCase_ = baseaa.urlsafe_baadecode(__a ).decode("utf-8" ) UpperCAmelCase_ = json.loads(__a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) UpperCAmelCase_ = config self.set_stage_and_offload() def _lowercase (self : Optional[Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. UpperCAmelCase_ = self.get_value("zero_optimization.stage" , -1 ) # offload UpperCAmelCase_ = False if self.is_zeroa() or self.is_zeroa(): UpperCAmelCase_ = set(["cpu", "nvme"] ) UpperCAmelCase_ = set( [ self.get_value("zero_optimization.offload_optimizer.device" ), self.get_value("zero_optimization.offload_param.device" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCAmelCase_ = True def _lowercase (self : Tuple , __a : int ): UpperCAmelCase_ = self.config # find the config node of interest if it exists UpperCAmelCase_ = ds_key_long.split("." ) UpperCAmelCase_ = nodes.pop() for node in nodes: UpperCAmelCase_ = config.get(__a ) if config is None: return None, ds_key return config, ds_key def _lowercase (self : Union[str, Any] , __a : Union[str, Any] , __a : List[Any]=None ): UpperCAmelCase_ , UpperCAmelCase_ = self.find_config_node(__a ) if config is None: return default return config.get(__a , __a ) def _lowercase (self : Optional[int] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = self.config # find the config node of interest if it exists UpperCAmelCase_ = ds_key_long.split("." ) for node in nodes: UpperCAmelCase_ = config UpperCAmelCase_ = config.get(__a ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__a ) def _lowercase (self : Dict , __a : Any ): UpperCAmelCase_ = self.get_value(__a ) return False if value is None else bool(__a ) def _lowercase (self : Dict , __a : List[Any] ): UpperCAmelCase_ = self.get_value(__a ) return False if value is None else not bool(__a ) def _lowercase (self : Any ): return self._stage == 2 def _lowercase (self : Union[str, Any] ): return self._stage == 3 def _lowercase (self : Dict ): return self._offload class __A : def __init__(self : Dict , __a : List[str] ): UpperCAmelCase_ = engine def _lowercase (self : str , __a : Tuple , **__a : Tuple ): # runs backpropagation and handles mixed precision self.engine.backward(__a , **__a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : int ): super().__init__(__a , device_placement=__a , scaler=__a ) UpperCAmelCase_ = hasattr(self.optimizer , "overflow" ) def _lowercase (self : Dict , __a : List[Any]=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowercase (self : List[str] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowercase (self : str ): if self.__has_overflow__: return self.optimizer.overflow return False class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , __a : Any , __a : int ): super().__init__(__a , __a ) def _lowercase (self : List[str] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __A : def __init__(self : Dict , __a : Optional[int] , __a : Dict=0.0_01 , __a : Any=0 , **__a : Dict ): UpperCAmelCase_ = params UpperCAmelCase_ = lr UpperCAmelCase_ = weight_decay UpperCAmelCase_ = kwargs class __A : def __init__(self : Optional[int] , __a : List[str] , __a : List[str]=None , __a : Dict=0 , **__a : Dict ): UpperCAmelCase_ = optimizer UpperCAmelCase_ = total_num_steps UpperCAmelCase_ = warmup_num_steps UpperCAmelCase_ = kwargs
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ShapEPipeline __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase = False @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 8 @property def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase = PriorTransformer(**lowerCamelCase_ ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase = ShapERenderer(**lowerCamelCase_ ) return model def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_prior UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_renderer UpperCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) UpperCamelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase = output.images[0] UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch_device == """cpu""" UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase = batch_size * [inputs[key]] UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = pipe( """a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
343
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ : Dict = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase__ : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase__ : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = ZeroShotClassificationPipeline( model=UpperCamelCase , tokenizer=UpperCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase__ (self : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # No kwarg lowercase__ = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__ = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(1 ) ] , ) lowercase__ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier(UpperCamelCase , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=UpperCamelCase ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=UpperCamelCase , ) self.run_entailment_id(UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Pipeline ): '''simple docstring''' lowercase__ = zero_shot_classifier.model.config lowercase__ = config.labelaid lowercase__ = zero_shot_classifier.entailment_id lowercase__ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__ = original_labelaid self.assertEqual(UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
2
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 100 ): '''simple docstring''' A : List[str] = 0 A : List[str] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
3
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
0
'''simple docstring''' from math import factorial def a_ ( lowerCamelCase : int = 100 ): return sum(int(lowerCamelCase ) for x in str(factorial(lowerCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
4
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Dict: torch.manual_seed(0 ) _lowercase =UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCAmelCase , use_timestep_embedding=UpperCAmelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _lowercase =IPNDMScheduler() _lowercase ={ '''unet''': unet, '''scheduler''': scheduler, } return components def __A (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: if str(UpperCAmelCase ).startswith('''mps''' ): _lowercase =torch.manual_seed(UpperCAmelCase ) else: _lowercase =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _lowercase ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __A (self ) -> Tuple: _lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() _lowercase =DanceDiffusionPipeline(**UpperCAmelCase ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =self.get_dummy_inputs(UpperCAmelCase ) _lowercase =pipe(**UpperCAmelCase ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowercase =np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A (self ) -> Any: return super().test_save_load_local() @skip_mps def __A (self ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __A (self ) -> Any: return super().test_save_load_optional_components() @skip_mps def __A (self ) -> Optional[Any]: return super().test_attention_slicing_forward_pass() def __A (self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A (self ) -> List[str]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __A (self ) -> Optional[Any]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
5
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCAmelCase ( ) -> Optional[Any]: __a = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a__ ) return parser.parse_args() def __lowerCAmelCase ( ) -> Optional[Any]: __a = parse_args() # Import training_script as a module. __a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __a = script_fpath.stem __a = importlib.import_module(a__ ) # Patch sys.argv __a = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
6
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : """simple docstring""" def __init__( self : str,lowercase_ : str,lowercase_ : Tuple=1_3,lowercase_ : List[Any]=3_2,lowercase_ : Union[str, Any]=3,lowercase_ : Dict=4,lowercase_ : Dict=[1_0, 2_0, 3_0, 4_0],lowercase_ : Any=[2, 2, 3, 2],lowercase_ : str=True,lowercase_ : Optional[Any]=True,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[int]="gelu",lowercase_ : Optional[Any]=1_0,lowercase_ : Dict=0.02,lowercase_ : Dict=["stage2", "stage3", "stage4"],lowercase_ : Union[str, Any]=3,lowercase_ : Optional[Any]=None,)-> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels,num_stages=self.num_stages,hidden_sizes=self.hidden_sizes,depths=self.depths,is_training=self.is_training,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,out_features=self.out_features,) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(),hidden_size=5_1_2,pool_scales=[1, 2, 3, 6],use_auxiliary_head=lowercase_,auxiliary_loss_weight=0.4,auxiliary_in_channels=4_0,auxiliary_channels=2_5_6,auxiliary_num_convs=1,auxiliary_concat_input=lowercase_,loss_ignore_index=2_5_5,num_labels=self.num_labels,) def snake_case__ ( self : Optional[Any],lowercase_ : Dict,lowercase_ : int,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = UperNetForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case__ ( self : int )-> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = UperNetModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : int )-> Tuple: '''simple docstring''' return def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def snake_case__ ( self : str )-> int: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : int )-> Any: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' def check_hidden_states_output(lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Any ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_,lowercase_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ),expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(lowercase_ ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=lowercase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(),[0.0, 1.0],msg=F'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip(reason='UperNet does not have tied weights' ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' pass @slow def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> int: '''simple docstring''' A__ = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) A__ = Image.open(SCREAMING_SNAKE_CASE__ ).convert('RGB' ) return image @require_torch @require_vision @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> List[Any]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) ) def snake_case__ ( self : Any )-> Any: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) )
7
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = SwinConfig() snake_case_ = swin_name.split('''_''' ) snake_case_ = name_split[1] snake_case_ = int(name_split[4] ) snake_case_ = int(name_split[3][-1] ) if model_size == "tiny": snake_case_ = 96 snake_case_ = (2, 2, 6, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "small": snake_case_ = 96 snake_case_ = (2, 2, 18, 2) snake_case_ = (3, 6, 12, 24) elif model_size == "base": snake_case_ = 128 snake_case_ = (2, 2, 18, 2) snake_case_ = (4, 8, 16, 32) else: snake_case_ = 192 snake_case_ = (2, 2, 18, 2) snake_case_ = (6, 12, 24, 48) if "in22k" in swin_name: snake_case_ = 21841 else: snake_case_ = 1000 snake_case_ = '''huggingface/label-files''' snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = img_size snake_case_ = num_classes snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: snake_case_ = '''encoder.''' + name if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": snake_case_ = '''layernorm.weight''' if name == "norm.bias": snake_case_ = '''layernorm.bias''' if "head" in name: snake_case_ = name.replace('''head''' , '''classifier''' ) else: snake_case_ = '''swin.''' + name return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: snake_case_ = key.split('''.''' ) snake_case_ = int(key_split[1] ) snake_case_ = int(key_split[3] ) snake_case_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[ :dim ] snake_case_ = val[ dim : dim * 2 ] snake_case_ = val[ -dim: ] else: snake_case_ = val return orig_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() snake_case_ = get_swin_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = SwinForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) snake_case_ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = timm_model(inputs['''pixel_values'''] ) snake_case_ = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
8
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
0
def _UpperCamelCase ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase__ ) if number < 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowercase__ ) __SCREAMING_SNAKE_CASE : int = 1 for i in range(1 , lowercase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
9
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = MODEL_FOR_MASKED_LM_MAPPING lowercase_ = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf") lowerCamelCase__: List[Any] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser"}, ] , ) lowerCamelCase__: List[str] =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser", }, ] , ) lowerCamelCase__: List[str] =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt") lowerCamelCase__: Tuple =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-0_5, "token": 2_941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, ] , ) lowerCamelCase__: Dict =unmasker("My name is <mask> <mask>" , top_k=2) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt") # convert model to fp16 pipe.model.half() lowerCamelCase__: str =pipe("Paris is the [MASK] of France.") # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt") self.run_large_test(UpperCAmelCase_) @slow @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf") self.run_large_test(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_573, "token_str": " Chris"}, ] , ) lowerCamelCase__: Tuple =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12_790, "token_str": " Lyon", }, ] , ) lowerCamelCase__: int =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt") lowerCamelCase__: Dict =None lowerCamelCase__: Dict =None self.run_pipeline_test(UpperCAmelCase_ , []) @require_tf def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf") lowerCamelCase__: Any =None lowerCamelCase__: Optional[int] =None self.run_pipeline_test(UpperCAmelCase_ , []) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)") lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[int] =[ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =fill_masker.tokenizer lowerCamelCase__: str =fill_masker.model lowerCamelCase__: Optional[int] =fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: List[Any] =fill_masker([F"""This is a {tokenizer.mask_token}"""]) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[Any] =fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""]) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , ) with self.assertRaises(UpperCAmelCase_): fill_masker([None]) # No mask_token is not supported with self.assertRaises(UpperCAmelCase_): fill_masker("This is") self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =tokenizer.get_vocab() lowerCamelCase__: Optional[int] =sorted(vocab.keys())[:2] # Pipeline argument lowerCamelCase__: Tuple =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Tuple ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: List[str] =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Call argument lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[int] ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: str =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Score equivalence lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: str =[top_mask["token_str"] for top_mask in outputs] lowerCamelCase__: Dict =[top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_) == set(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: Any =[top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) # Raises with invalid with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Optional[int] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""]) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2) lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Dict =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =tokenizer.get_vocab() lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) # top_k=2, ntargets=3 lowerCamelCase__: List[str] =sorted(vocab.keys())[:3] lowerCamelCase__: List[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=UpperCAmelCase_) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__: Union[str, Any] =[el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_).issubset(UpperCAmelCase_): lowerCamelCase__: int =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=UpperCAmelCase_) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__: Optional[Any] =sorted(vocab.keys())[:3] lowerCamelCase__: Optional[Any] =[targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__: Union[str, Any] =fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=UpperCAmelCase_ , top_k=10) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCAmelCase_) , 3) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , )
10
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xlnet""" __lowerCAmelCase = ["""mems"""] __lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = n_layer UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase = d_model // n_head UpperCamelCase = ff_activation UpperCamelCase = d_inner UpperCamelCase = untie_r UpperCamelCase = attn_type UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = dropout UpperCamelCase = mem_len UpperCamelCase = reuse_len UpperCamelCase = bi_data UpperCamelCase = clamp_len UpperCamelCase = same_length UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_last_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs["""use_cache"""] UpperCamelCase = use_mems_eval UpperCamelCase = use_mems_train super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
343
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> Optional[int]: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) _A : str = field _A : Dict = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase) else {self.split: path_or_paths} _A : Tuple = Json( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , field=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self) -> Optional[Any]: # Build iterable dataset if self.streaming: _A : Optional[Any] = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _A : List[Any] = None _A : Any = None _A : Union[str, Any] = None _A : Dict = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) _A : Any = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0.") _A : Optional[int] = dataset _A : Optional[Any] = path_or_buf _A : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : Dict = num_proc _A : Optional[Any] = "utf-8" _A : str = to_json_kwargs def _lowerCamelCase ( self) -> int: _A : Tuple = self.to_json_kwargs.pop("path_or_buf" , __lowerCamelCase) _A : int = self.to_json_kwargs.pop("orient" , "records") _A : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False) _A : Optional[Any] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True) _A : List[Any] = self.to_json_kwargs.pop("compression" , __lowerCamelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression") if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , "wb" , compression=__lowerCamelCase) as buffer: _A : int = self._write(file_obj=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead.") _A : Dict = self._write( file_obj=self.path_or_buf , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs) return written def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A , _A , _A , _A , _A : str = args _A : Any = query_table( table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _A : Optional[int] = batch.to_pandas().to_json( path_or_buf=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **__lowerCamelCase) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase , ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): _A : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(__lowerCamelCase) else: _A , _A : List[str] = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(__lowerCamelCase) return written
11
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCAmelCase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : bool = field(default=__lowerCamelCase , metadata={'help': 'Whether to use SortishSampler or not.'}) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'}) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCamelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = v.to_dict() return d
12
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
0
lowerCAmelCase : Any = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def A_ ( ): SCREAMING_SNAKE_CASE_: int = input("Enter message: " ) SCREAMING_SNAKE_CASE_: Optional[int] = input("Enter key [alphanumeric]: " ) SCREAMING_SNAKE_CASE_: List[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = "encrypt" SCREAMING_SNAKE_CASE_: List[str] = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith("d" ): SCREAMING_SNAKE_CASE_: Any = "decrypt" SCREAMING_SNAKE_CASE_: Any = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) print(f"\n{mode.title()}ed message:" ) print(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return translate_message(_UpperCAmelCase , _UpperCAmelCase , "encrypt" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return translate_message(_UpperCAmelCase , _UpperCAmelCase , "decrypt" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 SCREAMING_SNAKE_CASE_: Tuple = key.upper() for symbol in message: SCREAMING_SNAKE_CASE_: str = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = 0 else: translated.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": main()
13
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = None ) -> Dict: """simple docstring""" A__ = tesseract_config if tesseract_config is not None else '''''' # apply OCR A__ = to_pil_image(lowercase_ ) A__ , A__ = pil_image.size A__ = pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) A__ , A__ , A__ , A__ , A__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates A__ = [idx for idx, word in enumerate(lowercase_ ) if not word.strip()] A__ = [word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] A__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] A__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] A__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] A__ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format A__ = [] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): A__ = [x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes A__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''pixel_values'''] def __init__( self : Tuple , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "" , **UpperCAmelCase__ : Any , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = size if size is not None else {'''height''': 224, '''width''': 224} A__ = get_size_dict(UpperCAmelCase__) A__ = do_resize A__ = size A__ = resample A__ = apply_ocr A__ = ocr_lang A__ = tesseract_config def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) ->np.ndarray: '''simple docstring''' A__ = get_size_dict(UpperCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") A__ = (size['''height'''], size['''width''']) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Dict , ) ->PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(UpperCAmelCase__) A__ = resample if resample is not None else self.resample A__ = apply_ocr if apply_ocr is not None else self.apply_ocr A__ = ocr_lang if ocr_lang is not None else self.ocr_lang A__ = tesseract_config if tesseract_config is not None else self.tesseract_config A__ = make_list_of_images(UpperCAmelCase__) if not valid_images(UpperCAmelCase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCAmelCase__) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''') A__ = [] A__ = [] for image in images: A__ , A__ = apply_tesseract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) words_batch.append(UpperCAmelCase__) boxes_batch.append(UpperCAmelCase__) if do_resize: A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) A__ = [flip_channel_order(UpperCAmelCase__) for image in images] A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__) for image in images] A__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase__) if apply_ocr: A__ = words_batch A__ = boxes_batch return data
14
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["pixel_values"] def __init__( self : List[str] ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PIL.Image.BICUBIC ,A : bool = True ,A : Dict[str, int] = None ,A : Union[int, float] = 1 / 2_55 ,A : bool = True ,A : bool = True ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,**A : Optional[int] ,): super().__init__(**A ) __A = size if size is not None else {"height": 2_56, "width": 2_56} __A = get_size_dict(A ) __A = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __A = get_size_dict(A ,param_name="crop_size" ) __A = do_resize __A = size __A = resample __A = do_center_crop __A = crop_size __A = do_rescale __A = rescale_factor __A = do_normalize __A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : Optional[Any] ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PIL.Image.BICUBIC ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[Any] ,): __A = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( A ,size=(size["height"], size["width"]) ,resample=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Optional[int] ,A : np.ndarray ,A : Dict[str, int] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[int] ,): __A = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(A ,size=(size["height"], size["width"]) ,data_format=A ,**A ) def UpperCamelCase_ ( self : int ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Any ,): return rescale(A ,scale=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Tuple ,A : np.ndarray ,A : Union[float, List[float]] ,A : Union[float, List[float]] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Union[str, Any] ,): return normalize(A ,mean=A ,std=A ,data_format=A ,**A ) def UpperCamelCase_ ( self : Tuple ,A : ImageInput ,A : bool = None ,A : Dict[str, int] = None ,A : Optional[Any]=None ,A : bool = None ,A : Dict[str, int] = None ,A : bool = None ,A : float = None ,A : bool = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[float, List[float]]] = None ,A : Optional[Union[str, TensorType]] = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : Optional[Any] ,): __A = do_resize if do_resize is not None else self.do_resize __A = resample if resample is not None else self.resample __A = do_center_crop if do_center_crop is not None else self.do_center_crop __A = do_rescale if do_rescale is not None else self.do_rescale __A = rescale_factor if rescale_factor is not None else self.rescale_factor __A = do_normalize if do_normalize is not None else self.do_normalize __A = image_mean if image_mean is not None else self.image_mean __A = image_std if image_std is not None else self.image_std __A = size if size is not None else self.size __A = get_size_dict(A ) __A = crop_size if crop_size is not None else self.crop_size __A = get_size_dict(A ,param_name="crop_size" ) __A = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __A = [to_numpy_array(A ) for image in images] if do_resize: __A = [self.resize(image=A ,size=A ,resample=A ) for image in images] if do_center_crop: __A = [self.center_crop(image=A ,size=A ) for image in images] if do_rescale: __A = [self.rescale(image=A ,scale=A ) for image in images] if do_normalize: __A = [self.normalize(image=A ,mean=A ,std=A ) for image in images] __A = [to_channel_dimension_format(A ,A ) for image in images] __A = {"pixel_values": images} return BatchFeature(data=A ,tensor_type=A )
15
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase_ = random.Random() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=None ) -> int: if rng is None: lowercase__ : List[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : Dict ,_snake_case : Optional[Any]=7 ,_snake_case : int=400 ,_snake_case : Dict=2_000 ,_snake_case : Dict=24 ,_snake_case : Any=24 ,_snake_case : str=0.0 ,_snake_case : Optional[Any]=16_000 ,_snake_case : List[str]=True ,_snake_case : Dict=True ,) -> Dict: """simple docstring""" lowercase__ : str = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = min_seq_length lowercase__ : int = max_seq_length lowercase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : Tuple = feature_size lowercase__ : str = num_mel_bins lowercase__ : List[Any] = padding_value lowercase__ : Tuple = sampling_rate lowercase__ : List[Any] = return_attention_mask lowercase__ : Dict = do_normalize def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self : Any ,_snake_case : Any=False ,_snake_case : int=False ) -> Tuple: """simple docstring""" def _flatten(_snake_case : Optional[Any] ): return list(itertools.chain(*_snake_case ) ) if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: lowercase__ : Optional[Any] = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Any = SpeechaTextFeatureExtractionTester(self ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(_snake_case ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case ,axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : Any = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size lowercase__ : List[str] = feature_extractor(_snake_case ,padding=_snake_case ,return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowercase__ : Dict = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_features lowercase__ : str = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) # Test batched lowercase__ : Optional[int] = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features lowercase__ : Union[str, Any] = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_snake_case ,_snake_case ): self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Dict = np.asarray(_snake_case ) lowercase__ : str = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features lowercase__ : Tuple = feature_extractor(_snake_case ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_snake_case ,_snake_case ): self.assertTrue(np.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : str = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ : Union[str, Any] = [None, 16, None] for max_length, padding in zip(_snake_case ,_snake_case ): lowercase__ : Union[str, Any] = feature_extractor( _snake_case ,padding=_snake_case ,max_length=_snake_case ,return_attention_mask=_snake_case ) lowercase__ : Any = inputs.input_features lowercase__ : Any = inputs.attention_mask lowercase__ : Optional[Any] = [np.sum(_snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ : Optional[int] = [None, 16, None] for max_length, padding in zip(_snake_case ,_snake_case ): lowercase__ : Optional[int] = feature_extractor( _snake_case ,max_length=_snake_case ,padding=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ) lowercase__ : Any = inputs.input_features lowercase__ : Any = inputs.attention_mask lowercase__ : Tuple = [np.sum(_snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = feature_extractor( _snake_case ,padding='''max_length''' ,max_length=4 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : Optional[int] = inputs.input_features lowercase__ : Optional[Any] = inputs.attention_mask lowercase__ : str = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : str = feature_extractor( _snake_case ,padding='''longest''' ,max_length=4 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : Optional[Any] = inputs.input_features lowercase__ : List[str] = inputs.attention_mask lowercase__ : int = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) lowercase__ : Dict = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ : List[Any] = feature_extractor( _snake_case ,padding='''longest''' ,max_length=16 ,truncation=_snake_case ,return_tensors='''np''' ,return_attention_mask=_snake_case ,) lowercase__ : List[str] = inputs.input_features lowercase__ : List[Any] = inputs.attention_mask lowercase__ : Dict = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" import torch lowercase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : int = np.random.rand(100 ,32 ).astype(np.floataa ) lowercase__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ : Union[str, Any] = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase ( self : Any ,_snake_case : str ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech lowercase__ : int = ds.sort('''id''' ).select(range(_snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : str = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[Any] = feature_extractor(_snake_case ,return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape ,(1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,_snake_case ,atol=1e-4 ) )
16
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' __lowercase = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder"): __lowercase = key.replace("module.encoder", "glpn.encoder") if key.startswith("module.decoder"): __lowercase = key.replace("module.decoder", "decoder.stages") if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowercase = key[key.find("patch_embed") + len("patch_embed")] __lowercase = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(UpperCamelCase_)-1}""") if "norm" in key: __lowercase = key.replace("norm", "layer_norm") if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowercase = key[key.find("glpn.encoder.layer_norm") + len("glpn.encoder.layer_norm")] __lowercase = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(UpperCamelCase_)-1}""") if "layer_norm1" in key: __lowercase = key.replace("layer_norm1", "layer_norm_1") if "layer_norm2" in key: __lowercase = key.replace("layer_norm2", "layer_norm_2") if "block" in key: # replace for example block1 by block.0 __lowercase = key[key.find("block") + len("block")] __lowercase = key.replace(F"""block{idx}""", F"""block.{int(UpperCamelCase_)-1}""") if "attn.q" in key: __lowercase = key.replace("attn.q", "attention.self.query") if "attn.proj" in key: __lowercase = key.replace("attn.proj", "attention.output.dense") if "attn" in key: __lowercase = key.replace("attn", "attention.self") if "fc1" in key: __lowercase = key.replace("fc1", "dense1") if "fc2" in key: __lowercase = key.replace("fc2", "dense2") if "linear_pred" in key: __lowercase = key.replace("linear_pred", "classifier") if "linear_fuse" in key: __lowercase = key.replace("linear_fuse.conv", "linear_fuse") __lowercase = key.replace("linear_fuse.bn", "batch_norm") if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowercase = key[key.find("linear_c") + len("linear_c")] __lowercase = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(UpperCamelCase_)-1}""") if "bot_conv" in key: __lowercase = key.replace("bot_conv", "0.convolution") if "skip_conv1" in key: __lowercase = key.replace("skip_conv1", "1.convolution") if "skip_conv2" in key: __lowercase = key.replace("skip_conv2", "2.convolution") if "fusion1" in key: __lowercase = key.replace("fusion1", "1.fusion") if "fusion2" in key: __lowercase = key.replace("fusion2", "2.fusion") if "fusion3" in key: __lowercase = key.replace("fusion3", "3.fusion") if "fusion" in key and "conv" in key: __lowercase = key.replace("conv", "convolutional_layer") if key.startswith("module.last_layer_depth"): __lowercase = key.replace("module.last_layer_depth", "head.head") __lowercase = value return new_state_dict def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowercase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""") __lowercase = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""") # next, add keys and values (in that order) to the state dict __lowercase = kv_weight[ : config.hidden_sizes[i], : ] __lowercase = kv_bias[: config.hidden_sizes[i]] __lowercase = kv_weight[ config.hidden_sizes[i] :, : ] __lowercase = kv_bias[config.hidden_sizes[i] :] def _A ( ) -> Union[str, Any]: '''simple docstring''' __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) return image @torch.no_grad() def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : int, UpperCamelCase_ : int=False, UpperCamelCase_ : str=None) -> Any: '''simple docstring''' __lowercase = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3]) # load image processor (only resize + rescale) __lowercase = GLPNImageProcessor() # prepare image __lowercase = prepare_img() __lowercase = image_processor(images=UpperCamelCase_, return_tensors="pt").pixel_values logger.info("Converting model...") # load original state dict __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) # rename keys __lowercase = rename_keys(UpperCamelCase_) # key and value matrices need special treatment read_in_k_v(UpperCamelCase_, UpperCamelCase_) # create HuggingFace model and load state dict __lowercase = GLPNForDepthEstimation(UpperCamelCase_) model.load_state_dict(UpperCamelCase_) model.eval() # forward pass __lowercase = model(UpperCamelCase_) __lowercase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __lowercase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]]) elif "kitti" in model_name: __lowercase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]]) else: raise ValueError(F"""Unknown model name: {model_name}""") __lowercase = torch.Size([1, 480, 640]) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], UpperCamelCase_, atol=1E-4) print("Looks ok!") # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub...") model.push_to_hub( repo_path_or_name=Path(UpperCamelCase_, UpperCamelCase_), organization="nielsr", commit_message="Add model", use_temp_dir=UpperCamelCase_, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase_, UpperCamelCase_), organization="nielsr", commit_message="Add image processor", use_temp_dir=UpperCamelCase_, ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """trocr""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = activation_function UpperCamelCase = max_position_embeddings UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = init_std UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = scale_embedding UpperCamelCase = use_learned_position_embeddings UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCamelCase : Tuple = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase_ ( lowerCamelCase__ ): return (data["data"], data["target"]) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(lowerCamelCase__ , lowerCamelCase__ ) # Predict target for test data lowerCamelCase_ = xgb.predict(lowerCamelCase__ ) lowerCamelCase_ = predictions.reshape(len(lowerCamelCase__ ) , 1 ) return predictions def lowerCamelCase_ ( ): lowerCamelCase_ = fetch_california_housing() lowerCamelCase_ , lowerCamelCase_ = data_handling(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split( lowerCamelCase__ , lowerCamelCase__ , test_size=0.25 , random_state=1 ) lowerCamelCase_ = xgboost(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Error printing print(F'Mean Absolute Error : {mean_absolute_error(lowerCamelCase__ , lowerCamelCase__ )}' ) print(F'Mean Square Error : {mean_squared_error(lowerCamelCase__ , lowerCamelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
19
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
0
from __future__ import annotations from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if not postfix_notation: return 0 lowercase : int = {"""+""", """-""", """*""", """/"""} lowercase : list[Any] = [] for token in postfix_notation: if token in operations: lowercase , lowercase : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ ) -> List[int]: if isinstance(lowerCamelCase_ , np.ndarray ): return list(tensor.shape ) _lowercase : Optional[Any] = tf.shape(lowerCamelCase_ ) if tensor.shape == tf.TensorShape(lowerCamelCase_ ): return dynamic _lowercase : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase_ )] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase_ , name=lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1e-5 , lowerCamelCase_=-1 ) -> Tuple: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _lowercase , _lowercase : Tuple = tf.nn.moments(lowerCamelCase_ , axes=[axis] , keepdims=lowerCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowercase : Optional[Any] = [1] * inputs.shape.rank _lowercase : Any = shape_list(lowerCamelCase_ )[axis] _lowercase : List[str] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) # Compute layer normalization using the batch_normalization # function. _lowercase : List[str] = tf.nn.batch_normalization( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , offset=lowerCamelCase_ , scale=lowerCamelCase_ , variance_epsilon=lowerCamelCase_ , ) return outputs def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=0 , lowerCamelCase_=-1 ) -> Optional[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowercase : Optional[int] = tf.shape(lowerCamelCase_ ) _lowercase : Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowercase : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> tf.Tensor: if not isinstance(lowerCamelCase_ , tf.Tensor ): _lowercase : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowercase : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowercase : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "input_ids" ) -> None: tf.debugging.assert_less( lowerCamelCase_ , tf.cast(lowerCamelCase_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : List[str] = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowercase : Union[str, Any] = [x for x in data if len(lowerCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _lowercase : int = np.asarray(lowerCamelCase_ ) _lowercase : Optional[int] = 1 _lowercase : str = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowercase : Tuple = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase_ ): _lowercase : Optional[int] = chunk_data else: _lowercase : int = data def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if name in group.attrs: _lowercase : Optional[int] = [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _lowercase : List[str] = [] _lowercase : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(lowerCamelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: def _expand_single_ad_tensor(lowerCamelCase_ ): if isinstance(lowerCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase_ )
21
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class A_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self : int ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , snake_case_ : int ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = jax.image.resize( snake_case_ , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) _UpperCAmelCase = self.conv(snake_case_ ) return hidden_states class A_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self : Dict ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , snake_case_ : Tuple ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCAmelCase = self.conv(snake_case_ ) return hidden_states class A_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int = None _lowerCamelCase : float = 0.0 _lowerCamelCase : bool = None _lowerCamelCase : jnp.dtype = jnp.floataa def lowercase ( self : List[str] ): _UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) _UpperCAmelCase = nn.Conv( snake_case_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = nn.Dense(snake_case_ , dtype=self.dtype ) _UpperCAmelCase = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) _UpperCAmelCase = nn.Dropout(self.dropout_prob ) _UpperCAmelCase = nn.Conv( snake_case_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase = None if use_nin_shortcut: _UpperCAmelCase = nn.Conv( snake_case_ , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[Any]=True ): _UpperCAmelCase = hidden_states _UpperCAmelCase = self.norma(snake_case_ ) _UpperCAmelCase = nn.swish(snake_case_ ) _UpperCAmelCase = self.conva(snake_case_ ) _UpperCAmelCase = self.time_emb_proj(nn.swish(snake_case_ ) ) _UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(snake_case_ , 1 ) , 1 ) _UpperCAmelCase = hidden_states + temb _UpperCAmelCase = self.norma(snake_case_ ) _UpperCAmelCase = nn.swish(snake_case_ ) _UpperCAmelCase = self.dropout(snake_case_ , snake_case_ ) _UpperCAmelCase = self.conva(snake_case_ ) if self.conv_shortcut is not None: _UpperCAmelCase = self.conv_shortcut(snake_case_ ) return hidden_states + residual
22
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCamelCase__: List[Any] = "src/transformers" UpperCamelCase__: Optional[int] = "docs/source/en/tasks" def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> int: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.readlines() # Find the start prompt. UpperCAmelCase : Any = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 UpperCAmelCase : Union[str, Any] = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__: List[Any] = direct_transformers_import(TRANSFORMERS_PATH) UpperCamelCase__: Union[str, Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCamelCase__: Any = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def snake_case_ ( _lowerCAmelCase : Any ) -> Dict: UpperCAmelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() ) UpperCAmelCase : int = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=False ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) UpperCAmelCase : Union[str, Any] = get_model_list_for_task(_lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": UpperCamelCase__: Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase__: str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
23
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ShapEPipeline __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase = False @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 8 @property def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase = PriorTransformer(**lowerCamelCase_ ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase = ShapERenderer(**lowerCamelCase_ ) return model def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_prior UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_renderer UpperCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) UpperCamelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase = output.images[0] UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch_device == """cpu""" UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase = batch_size * [inputs[key]] UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = pipe( """a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
343
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = 'lxmert' A_ : List[Any] = {} def __init__(self : int , a__ : Any=3_0522 , a__ : Optional[int]=768 , a__ : Dict=12 , a__ : int=9500 , a__ : Dict=1600 , a__ : Any=400 , a__ : List[str]=3072 , a__ : List[str]="gelu" , a__ : int=0.1 , a__ : Dict=0.1 , a__ : str=512 , a__ : Any=2 , a__ : Any=0.0_2 , a__ : Union[str, Any]=1E-12 , a__ : str=9 , a__ : Optional[Any]=5 , a__ : int=5 , a__ : Optional[int]=2048 , a__ : Union[str, Any]=4 , a__ : Any=6.6_7 , a__ : List[Any]=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Dict=True , a__ : Dict=True , a__ : int=True , a__ : Union[str, Any]=True , **a__ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = num_qa_labels __snake_case = num_object_labels __snake_case = num_attr_labels __snake_case = l_layers __snake_case = x_layers __snake_case = r_layers __snake_case = visual_feat_dim __snake_case = visual_pos_dim __snake_case = visual_loss_normalizer __snake_case = task_matched __snake_case = task_mask_lm __snake_case = task_obj_predict __snake_case = task_qa __snake_case = visual_obj_loss __snake_case = visual_attr_loss __snake_case = visual_feat_loss __snake_case = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a__ )
24
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = KandinskyVaaInpaintPipeline __UpperCamelCase : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __UpperCamelCase : List[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __UpperCamelCase : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase : Any = False @property def __magic_name__ (self ) -> Any: """simple docstring""" return 32 @property def __magic_name__ (self ) -> int: """simple docstring""" return 32 @property def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" return self.time_input_dim @property def __magic_name__ (self ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def __magic_name__ (self ) -> List[str]: """simple docstring""" return 1_00 @property def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ : Any = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def __magic_name__ (self ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_movq SCREAMING_SNAKE_CASE__ : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Any = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask SCREAMING_SNAKE_CASE__ : str = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = 0 if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = """cpu""" SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Any = output.images SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.ones((7_68, 7_68) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : str = """a hat""" SCREAMING_SNAKE_CASE__ : int = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = pipe_prior( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE__ : Tuple = pipeline( image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
25
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "trocr" A_ = ["past_key_values"] A_ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __a=5_0265 , __a=1024 , __a=12 , __a=16 , __a=4096 , __a="gelu" , __a=512 , __a=0.1 , __a=0.0 , __a=0.0 , __a=2 , __a=0.02 , __a=0.0 , __a=True , __a=False , __a=True , __a=True , __a=1 , __a=0 , __a=2 , **__a , ): '''simple docstring''' __a : Union[str, Any] = vocab_size __a : Dict = d_model __a : Optional[Any] = decoder_layers __a : Tuple = decoder_attention_heads __a : int = decoder_ffn_dim __a : Union[str, Any] = activation_function __a : List[str] = max_position_embeddings __a : List[Any] = dropout __a : Union[str, Any] = attention_dropout __a : Optional[int] = activation_dropout __a : Optional[Any] = init_std __a : List[Any] = decoder_layerdrop __a : int = use_cache __a : List[Any] = scale_embedding __a : Any = use_learned_position_embeddings __a : List[str] = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
27
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
0
'''simple docstring''' _lowerCamelCase : Union[str, Any] = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
28
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=3 , _UpperCamelCase=3_2 , _UpperCamelCase=3 , _UpperCamelCase=1_0 , _UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , _UpperCamelCase=[1, 1, 2, 1] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=3 , _UpperCamelCase=None , ) -> Union[str, Any]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : int = embeddings_size UpperCAmelCase_ : Optional[int] = hidden_sizes UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Any = len(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values def __UpperCAmelCase ( self ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = FlaxRegNetModel(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = FlaxRegNetForImageClassification(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = config_and_inputs UpperCAmelCase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _snake_case : int = False _snake_case : Optional[Any] = False _snake_case : Optional[int] = False def __UpperCAmelCase ( self ) -> None: UpperCAmelCase_ : List[Any] = FlaxRegNetModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> str: return def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_UpperCamelCase ) UpperCAmelCase_ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = model_class(_UpperCamelCase ) UpperCAmelCase_ : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) UpperCAmelCase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Dict = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = model_class(_UpperCamelCase ) @jax.jit def model_jitted(_UpperCamelCase , **_UpperCamelCase ): return model(pixel_values=_UpperCamelCase , **_UpperCamelCase ) with self.subTest('JIT Enabled' ): UpperCAmelCase_ : Optional[int] = model_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase_ : int = model_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Tuple = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=_UpperCamelCase , return_tensors='np' ) UpperCAmelCase_ : int = model(**_UpperCamelCase ) # verify the logits UpperCAmelCase_ : Union[str, Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : Tuple = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
29
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) requires_backends(self , '''decord''' ) self.check_model_type(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Union[str, Any]: lowercase_ = {} if frame_sampling_rate is not None: lowercase_ = frame_sampling_rate if num_frames is not None: lowercase_ = num_frames lowercase_ = {} if top_k is not None: lowercase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , **SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 ) -> int: if num_frames is None: lowercase_ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowercase_ = BytesIO(requests.get(SCREAMING_SNAKE_CASE_ ).content ) lowercase_ = VideoReader(SCREAMING_SNAKE_CASE_ ) videoreader.seek(0 ) lowercase_ = 0 lowercase_ = num_frames * frame_sampling_rate - 1 lowercase_ = np.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num=SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) lowercase_ = videoreader.get_batch(SCREAMING_SNAKE_CASE_ ).asnumpy() lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework ) return model_inputs def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: lowercase_ = self.model(**SCREAMING_SNAKE_CASE_ ) return model_outputs def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: lowercase_ = self.model.config.num_labels if self.framework == "pt": lowercase_ = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ = probs.topk(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ = scores.tolist() lowercase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
30
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: int = ["speech"] def __init__( self : str , *A : Any , **A : Any ): requires_backends(self , ["speech"] ) class lowerCamelCase_ (metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = ["speech"] def __init__( self : str , *A : Union[str, Any] , **A : str ): requires_backends(self , ["speech"] )
31
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''owlvit_text_model''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=4_9_4_0_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=8 , SCREAMING_SNAKE_CASE__ : str=1_6 , SCREAMING_SNAKE_CASE__ : Any="quick_gelu" , SCREAMING_SNAKE_CASE__ : Any=1E-5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_9_4_0_6 , SCREAMING_SNAKE_CASE__ : Dict=4_9_4_0_7 , **SCREAMING_SNAKE_CASE__ : str , ) -> Union[str, Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[Any] = hidden_size a_ : Dict = intermediate_size a_ : Dict = num_hidden_layers a_ : List[str] = num_attention_heads a_ : Any = max_position_embeddings a_ : str = hidden_act a_ : Optional[int] = layer_norm_eps a_ : Tuple = attention_dropout a_ : Any = initializer_range a_ : Optional[Any] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": a_ : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[Any] = '''owlvit_vision_model''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=7_6_8 , SCREAMING_SNAKE_CASE__ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : Any="quick_gelu" , SCREAMING_SNAKE_CASE__ : Tuple=1E-5 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = hidden_size a_ : Optional[Any] = intermediate_size a_ : Optional[Any] = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : List[str] = num_channels a_ : Tuple = image_size a_ : str = patch_size a_ : str = hidden_act a_ : Dict = layer_norm_eps a_ : List[str] = attention_dropout a_ : List[str] = initializer_range a_ : List[str] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": a_ : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[Any] = '''owlvit''' snake_case__ : Dict = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=5_1_2 , SCREAMING_SNAKE_CASE__ : Dict=2.6592 , SCREAMING_SNAKE_CASE__ : List[str]=True , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: a_ : Optional[int] = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: a_ : int = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) a_ : Union[str, Any] = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Any = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : str = projection_dim a_ : Any = logit_scale_init_value a_ : List[Any] = return_dict a_ : Optional[int] = 1.0 @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: a_ : List[Any] = {} a_ : List[str] = text_config a_ : Any = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : Optional[int] = copy.deepcopy(self.__dict__ ) a_ : Tuple = self.text_config.to_dict() a_ : Optional[Any] = self.vision_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1E-4 def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : "ProcessorMixin" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : int = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return 1_4
32
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xlnet""" __lowerCAmelCase = ["""mems"""] __lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = n_layer UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase = d_model // n_head UpperCamelCase = ff_activation UpperCamelCase = d_inner UpperCamelCase = untie_r UpperCamelCase = attn_type UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = dropout UpperCamelCase = mem_len UpperCamelCase = reuse_len UpperCamelCase = bi_data UpperCamelCase = clamp_len UpperCamelCase = same_length UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_last_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs["""use_cache"""] UpperCamelCase = use_mems_eval UpperCamelCase = use_mems_train super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
343
0
"""simple docstring""" from __future__ import annotations def lowercase ( __snake_case : tuple[int, int] , __snake_case : int ): lowercase_ , lowercase_ : int = position lowercase_ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase_ : Union[str, Any] = [] for position in positions: lowercase_ , lowercase_ : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase ( __snake_case : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def lowercase ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): lowercase_ , lowercase_ : str = position if board[y][x] == 0: lowercase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True lowercase_ : Optional[int] = 0 return False def lowercase ( __snake_case : int ): lowercase_ : Optional[Any] = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): lowercase_ : Dict = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board lowercase_ : Optional[int] = 0 lowercase_ : int = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
34
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCamelCase ( cls : Optional[Any] ): snake_case__ : Tuple = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCamelCase ( cls : int ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case__ : Any = FlaxBertModel(snake_case_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) snake_case__ : Optional[Any] = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) snake_case__ : Optional[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case_ , repo_id="""test-model-flax""" , push_to_hub=snake_case_ , use_auth_token=self._token ) snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) snake_case__ : List[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) def lowerCamelCase ( self : List[str] ): snake_case__ : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case__ : List[Any] = FlaxBertModel(snake_case_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) snake_case__ : List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) snake_case__ : List[Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=snake_case_ , use_auth_token=self._token ) snake_case__ : Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) snake_case__ : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) snake_case__ : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case__ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case_ , 1E-3 , msg=f"{key} not identical" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Optional[int] = True snake_case__ : List[str] = flatten_dict(modela.params ) snake_case__ : Tuple = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case__ : List[Any] = False return models_are_equal @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case__ : Optional[int] = FlaxBertModel(snake_case_ ) snake_case__ : List[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) ) with self.assertRaises(snake_case_ ): snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case__ : List[Any] = FlaxBertModel(snake_case_ ) snake_case__ : Optional[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case_ , snake_case_ ) , max_shard_size="""10KB""" ) with self.assertRaises(snake_case_ ): snake_case__ : List[str] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertTrue(check_models_equal(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[str] = """bert""" snake_case__ : Union[str, Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(snake_case_ ): snake_case__ : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : str = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCamelCase ( self : Dict ): snake_case__ : Optional[int] = """bert""" snake_case__ : Optional[int] = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(snake_case_ ): snake_case__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case_ ) snake_case__ : Tuple = FlaxBertModel.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.assertIsNotNone(snake_case_ )
35
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") _lowerCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") _lowerCAmelCase : Any = "xvjiarui/stable-diffusion-2-inpainting" _lowerCAmelCase , _lowerCAmelCase : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(__a, safety_checker=__a) _lowerCAmelCase : List[Any] = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCAmelCase : List[Any] = jax.random.PRNGKey(0) _lowerCAmelCase : int = 50 _lowerCAmelCase : Optional[Any] = jax.device_count() _lowerCAmelCase : Dict = num_samples * [prompt] _lowerCAmelCase : Dict = num_samples * [init_image] _lowerCAmelCase : Any = num_samples * [mask_image] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = pipeline.prepare_inputs(__a, __a, __a) # shard inputs and rng _lowerCAmelCase : Any = replicate(__a) _lowerCAmelCase : List[Any] = jax.random.split(__a, jax.device_count()) _lowerCAmelCase : Optional[int] = shard(__a) _lowerCAmelCase : List[str] = shard(__a) _lowerCAmelCase : Optional[int] = shard(__a) _lowerCAmelCase : int = pipeline( __a, __a, __a, __a, __a, __a, jit=__a) _lowerCAmelCase : Dict = output.images.reshape(__a, 512, 512, 3) _lowerCAmelCase : Optional[Any] = images[0, 253:256, 253:256, -1] _lowerCAmelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCAmelCase : Dict = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084]) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1E-2
36
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''convnextv2''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=224 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : List[Any] = num_stages lowerCAmelCase__ : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ : str = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : List[Any] = drop_path_rate lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Any = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
37
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> Tuple: """simple docstring""" def is_in_circle(__magic_name__ : float , __magic_name__ : float ) -> bool: UpperCamelCase :Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase :List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__magic_name__ ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase :Dict = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : Callable[[float], float] , __magic_name__ : float = 0.0 , __magic_name__ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(__magic_name__ , __magic_name__ ) ) for _ in range(__magic_name__ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : float = 0.0 , __magic_name__ : float = 1.0 ) -> None: """simple docstring""" def identity_function(__magic_name__ : float ) -> float: return x UpperCamelCase :Optional[int] = area_under_curve_estimator( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) UpperCamelCase :List[str] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> None: """simple docstring""" def function_to_integrate(__magic_name__ : float ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase :str = area_under_curve_estimator( __magic_name__ , __magic_name__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
38
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = 42 class __lowerCamelCase ( snake_case__ , snake_case__): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 3 , UpperCAmelCase = 3 , UpperCAmelCase = ("DownEncoderBlock2D",) , UpperCAmelCase = ("UpDecoderBlock2D",) , UpperCAmelCase = (64,) , UpperCAmelCase = 1 , UpperCAmelCase = "silu" , UpperCAmelCase = 3 , UpperCAmelCase = 32 , UpperCAmelCase = 256 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = 0.1_82_15 , UpperCAmelCase = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder _UpperCAmelCase = Encoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , down_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , double_z=UpperCAmelCase , ) _UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _UpperCAmelCase = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) _UpperCAmelCase = VectorQuantizer(UpperCAmelCase , UpperCAmelCase , beta=0.25 , remap=UpperCAmelCase , sane_index_shape=UpperCAmelCase ) _UpperCAmelCase = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) # pass init params to Decoder _UpperCAmelCase = Decoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , up_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , norm_type=UpperCAmelCase , ) @apply_forward_hook def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = True ): """simple docstring""" _UpperCAmelCase = self.encoder(UpperCAmelCase ) _UpperCAmelCase = self.quant_conv(UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase ) @apply_forward_hook def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ): """simple docstring""" if not force_not_quantize: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.quantize(UpperCAmelCase ) else: _UpperCAmelCase = h _UpperCAmelCase = self.post_quant_conv(UpperCAmelCase ) _UpperCAmelCase = self.decoder(UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = True ): """simple docstring""" _UpperCAmelCase = sample _UpperCAmelCase = self.encode(UpperCAmelCase ).latents _UpperCAmelCase = self.decode(UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase )
39
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """trocr""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int]=5_0265 , lowerCamelCase_ : Optional[int]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Any=16 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : List[str]=512 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = activation_function UpperCamelCase = max_position_embeddings UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = init_std UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = scale_embedding UpperCamelCase = use_learned_position_embeddings UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
343
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: a : Tuple = (l + r) // 2 if v[m] >= key: a : str = m else: a : Tuple = m # noqa: E741 return r def lowercase ( A_ )-> int: '''simple docstring''' if len(A_ ) == 0: return 0 a : str = [0] * len(A_ ) a : List[Any] = 1 a : List[Any] = v[0] for i in range(1 , len(A_ ) ): if v[i] < tail[0]: a : List[str] = v[i] elif v[i] > tail[length - 1]: a : Optional[Any] = v[i] length += 1 else: a : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
40
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
0
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) ) def SCREAMING_SNAKE_CASE_ () -> None: lowerCamelCase__ : Optional[Any] = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase__ : Tuple = math.log(len(UpperCamelCase ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: _SCREAMING_SNAKE_CASE = """Abnormality detected"""
343
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase : Dict = logging.get_logger(__name__) enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 4 _snake_case = 3 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } _snake_case = self.dummy_input return init_dict, inputs_dict class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 4 _snake_case = 4 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] ).to(lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (4, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (4, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase_ ) _snake_case = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) _snake_case = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ ) model_accelerate.to(lowerCAmelCase_ ) model_accelerate.eval() _snake_case = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _snake_case = noise.to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) _snake_case = model_accelerate(lowerCAmelCase_ , lowerCAmelCase_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _snake_case , _snake_case = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=lowerCAmelCase_ , low_cpu_mem_usage=lowerCAmelCase_ ) model_normal_load.to(lowerCAmelCase_ ) model_normal_load.eval() _snake_case = model_normal_load(lowerCAmelCase_ , lowerCAmelCase_ )['sample'] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(lowerCAmelCase_ ) _snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _snake_case = noise.to(lowerCAmelCase_ ) _snake_case = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _snake_case = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = UNetaDModel __lowercase = """sample""" @property def lowerCamelCase ( self , lowerCAmelCase_=(32, 32) ): """simple docstring""" _snake_case = 4 _snake_case = 3 _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowerCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self ): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self ): """simple docstring""" _snake_case = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } _snake_case = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase_ ) _snake_case = self.dummy_input _snake_case = floats_tensor((4, 3) + (2_56, 2_56) ).to(lowerCAmelCase_ ) _snake_case = noise _snake_case = model(**lowerCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(lowerCAmelCase_ ) _snake_case = 4 _snake_case = 3 _snake_case = (2_56, 2_56) _snake_case = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _snake_case = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-2 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(lowerCAmelCase_ ) _snake_case = 4 _snake_case = 3 _snake_case = (32, 32) _snake_case = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) _snake_case = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase_ ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _snake_case = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-2 ) ) def lowerCamelCase ( self ): """simple docstring""" pass
42
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=[1, 1, 2] , a__=1 , a__=32 , a__=4 , a__=8 , a__=37 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=0.0 , a__=512 , a__=3 , a__=0.0_2 , a__=3 , a__=4 , a__=None , a__=False , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = block_sizes _lowerCAmelCase : List[str] = num_decoder_layers _lowerCAmelCase : List[Any] = d_model _lowerCAmelCase : List[Any] = n_head _lowerCAmelCase : Any = d_head _lowerCAmelCase : Union[str, Any] = d_inner _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : Optional[int] = attention_dropout _lowerCAmelCase : int = activation_dropout _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Dict = num_choices _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : List[str] = initializer_std # Used in the tests to check the size of the first attention layer _lowerCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state _lowerCAmelCase : Union[str, Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions _lowerCAmelCase : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _lowerCAmelCase : List[Any] = self.num_hidden_layers + 2 def __A ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Tuple = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = TFFunnelModel(config=a__ ) _lowerCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[Any] = model(a__ ) _lowerCAmelCase : Tuple = [input_ids, input_mask] _lowerCAmelCase : List[str] = model(a__ ) _lowerCAmelCase : Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase : str = False _lowerCAmelCase : List[str] = TFFunnelModel(config=a__ ) _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = TFFunnelModel(config=a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[Any] = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Any = model(a__ ) _lowerCAmelCase : Optional[int] = [input_ids, input_mask] _lowerCAmelCase : Any = model(a__ ) _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : int = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _lowerCAmelCase : Any = False _lowerCAmelCase : Optional[Any] = TFFunnelBaseModel(config=a__ ) _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Union[str, Any] = TFFunnelForPreTraining(config=a__ ) _lowerCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Optional[int] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Any = TFFunnelForMaskedLM(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : List[str] = TFFunnelForSequenceClassification(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : List[Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[str] = self.num_choices _lowerCAmelCase : Dict = TFFunnelForMultipleChoice(config=a__ ) _lowerCAmelCase : Any = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : int = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : str = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : List[Any] = TFFunnelForTokenClassification(config=a__ ) _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = TFFunnelForQuestionAnswering(config=a__ ) _lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase : int = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Dict = TFFunnelModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=a__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @require_tf class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False def __A ( self ): _lowerCAmelCase : Tuple = TFFunnelModelTester(self , base=a__ ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a__ ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ )
44
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowercase ( lowerCAmelCase__ : Dataset , lowerCAmelCase__ : Dict[str, str] ) -> Dict: __a = args.log_outputs __a = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __a = load_metric('''wer''' ) __a = load_metric('''cer''' ) # compute metrics __a = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __a = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __a = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowerCAmelCase__ ) with open(f'''{dataset_id}_eval_results.txt''' , '''w''' ) as f: f.write(lowerCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __a = f'''log_{dataset_id}_predictions.txt''' __a = f'''log_{dataset_id}_targets.txt''' with open(lowerCAmelCase__ , '''w''' ) as p, open(lowerCAmelCase__ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ): p.write(f'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCAmelCase__ , with_indices=lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str ) -> str: __a = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __a = re.sub(lowerCAmelCase__ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __a = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __a = ''' '''.join(text.split(lowerCAmelCase__ ) ) return text def lowercase ( lowerCAmelCase__ : int ) -> Any: # load dataset __a = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __a = AutoFeatureExtractor.from_pretrained(args.model_id ) __a = feature_extractor.sampling_rate # resample audio __a = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCAmelCase__ ) ) # load eval pipeline if args.device is None: __a = 0 if torch.cuda.is_available() else -1 __a = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCAmelCase__ : Any ): __a = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __a = prediction['''text'''] __a = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __a = dataset.map(lowerCAmelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) lowercase_ = parser.parse_args() main(args)
45
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ShapEPipeline __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase = False @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 8 @property def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase = PriorTransformer(**lowerCamelCase_ ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase = ShapERenderer(**lowerCamelCase_ ) return model def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_prior UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_renderer UpperCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) UpperCamelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase = output.images[0] UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch_device == """cpu""" UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase = batch_size * [inputs[key]] UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = pipe( """a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
343
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = "cpu" , SCREAMING_SNAKE_CASE : Union[str, None] = None ): '''simple docstring''' lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCAmelCase = v.half() if save_path is None: # overwrite src_path lowerCAmelCase = src_path torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
46
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return input_list UpperCamelCase = list(UpperCamelCase_ ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): UpperCamelCase = i UpperCamelCase = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
343
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : int = Mapping[str, np.ndarray] lowerCamelCase : Union[str, Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Dict = 0.0_1 @dataclasses.dataclass(frozen=A__ ) class A__ : A__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ = None # Optional remark about the protein. Included as a comment in output PDB # files A__ = None # Templates used to generate this protein (prediction-only) A__ = None # Chain corresponding to each parent A__ = None def _lowerCAmelCase ( _UpperCamelCase : str ) -> Protein: """simple docstring""" _SCREAMING_SNAKE_CASE =r'(\[[A-Z]+\]\n)' _SCREAMING_SNAKE_CASE =[tag.strip() for tag in re.split(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0] _SCREAMING_SNAKE_CASE =zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _SCREAMING_SNAKE_CASE =["N", "CA", "C"] _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None for g in groups: if "[PRIMARY]" == g[0]: _SCREAMING_SNAKE_CASE =g[1][0].strip() for i in range(len(_UpperCamelCase ) ): if seq[i] not in residue_constants.restypes: _SCREAMING_SNAKE_CASE ='X' # FIXME: strings are immutable _SCREAMING_SNAKE_CASE =np.array( [residue_constants.restype_order.get(_UpperCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _SCREAMING_SNAKE_CASE =[] for axis in range(3 ): tertiary.append(list(map(_UpperCamelCase , g[1][axis].split() ) ) ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _SCREAMING_SNAKE_CASE =np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _SCREAMING_SNAKE_CASE =np.zeros( ( len(_UpperCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_UpperCamelCase , atom_mask=_UpperCamelCase , aatype=_UpperCamelCase , residue_index=np.arange(len(_UpperCamelCase ) ) , b_factors=_UpperCamelCase , ) def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : int = 0 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =prot.parents _SCREAMING_SNAKE_CASE =prot.parents_chain_index if parents is not None and parents_chain_index is not None: _SCREAMING_SNAKE_CASE =[p for i, p in zip(_UpperCamelCase , _UpperCamelCase ) if i == chain_id] if parents is None or len(_UpperCamelCase ) == 0: _SCREAMING_SNAKE_CASE =['N/A'] pdb_headers.append(f"PARENT {' '.join(_UpperCamelCase )}" ) return pdb_headers def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =pdb_str.split('\n' ) _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =42 if prot.parents is not None and len(prot.parents ) > 0: _SCREAMING_SNAKE_CASE =[] if prot.parents_chain_index is not None: _SCREAMING_SNAKE_CASE ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_UpperCamelCase ) , [] ) parent_dict[str(_UpperCamelCase )].append(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =max([int(_UpperCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _SCREAMING_SNAKE_CASE =parent_dict.get(str(_UpperCamelCase ) , ['N/A'] ) parents_per_chain.append(_UpperCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _SCREAMING_SNAKE_CASE =[['N/A']] def make_parent_line(_UpperCamelCase : Sequence[str] ) -> str: return f"PARENT {' '.join(_UpperCamelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _SCREAMING_SNAKE_CASE =0 for i, l in enumerate(_UpperCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_UpperCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =parents_per_chain[chain_counter] else: _SCREAMING_SNAKE_CASE =['N/A'] out_pdb_lines.append(make_parent_line(_UpperCamelCase ) ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =residue_constants.restypes + ['X'] def res_atoa(_UpperCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _SCREAMING_SNAKE_CASE =residue_constants.atom_types _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.atom_mask _SCREAMING_SNAKE_CASE =prot.aatype _SCREAMING_SNAKE_CASE =prot.atom_positions _SCREAMING_SNAKE_CASE =prot.residue_index.astype(np.intaa ) _SCREAMING_SNAKE_CASE =prot.b_factors _SCREAMING_SNAKE_CASE =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _SCREAMING_SNAKE_CASE =get_pdb_headers(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: pdb_lines.extend(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =aatype.shape[0] _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =string.ascii_uppercase _SCREAMING_SNAKE_CASE =None # Add all atom sites. for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_UpperCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _SCREAMING_SNAKE_CASE ='ATOM' _SCREAMING_SNAKE_CASE =atom_name if len(_UpperCamelCase ) == 4 else f" {atom_name}" _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =1.00 _SCREAMING_SNAKE_CASE =atom_name[0] # Protein supports only C, N, O, S, this works. _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='A' if chain_index is not None: _SCREAMING_SNAKE_CASE =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _SCREAMING_SNAKE_CASE =( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 _SCREAMING_SNAKE_CASE =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =chain_index[i + 1] if should_terminate: # Close the chain. _SCREAMING_SNAKE_CASE ='TER' _SCREAMING_SNAKE_CASE =( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_UpperCamelCase , _UpperCamelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( _UpperCamelCase : FeatureDict , _UpperCamelCase : ModelOutput , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Sequence[str]] = None , _UpperCamelCase : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_UpperCamelCase , remark=_UpperCamelCase , parents=_UpperCamelCase , parents_chain_index=_UpperCamelCase , )
47
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=() ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="no" ,_SCREAMING_SNAKE_CASE="29500" ) -> Optional[int]: lowerCamelCase : Optional[Any] = False lowerCamelCase : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): lowerCamelCase : Dict = True elif "IPython" in sys.modules: lowerCamelCase : Dict = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: lowerCamelCase : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,_SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: lowerCamelCase : Any = 8 lowerCamelCase : Tuple = PrepareForLaunch(_SCREAMING_SNAKE_CASE ,distributed_type="TPU" ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,nprocs=_SCREAMING_SNAKE_CASE ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*_SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_SCREAMING_SNAKE_CASE ,master_addr="127.0.01" ,master_port=_SCREAMING_SNAKE_CASE ,mixed_precision=_SCREAMING_SNAKE_CASE ): lowerCamelCase : List[str] = PrepareForLaunch(_SCREAMING_SNAKE_CASE ,distributed_type="MULTI_GPU" ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,nprocs=_SCREAMING_SNAKE_CASE ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase : List[str] = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=() ,_SCREAMING_SNAKE_CASE=2 ) -> List[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_SCREAMING_SNAKE_CASE ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): lowerCamelCase : List[Any] = PrepareForLaunch(_SCREAMING_SNAKE_CASE ,debug=_SCREAMING_SNAKE_CASE ) start_processes(_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,nprocs=_SCREAMING_SNAKE_CASE ,start_method="fork" )
48
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=[10, 20, 30, 40] , lowerCamelCase_ : Tuple=[1, 1, 2, 1] , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : Tuple="relu" , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = TFResNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case :Any = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Dict = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __snake_case :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
49
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : List[str] = 0 while b > 0: if b & 1: lowerCamelCase__ : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
50
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = GPTaTokenizerFast.from_pretrained('''gpt2''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : Tuple): """simple docstring""" try: UpperCAmelCase_ = tempfile.mktemp() with open(_snake_case , '''wb''') as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _snake_case) UpperCAmelCase_ = AlbertTokenizer.from_pretrained(_snake_case) finally: os.remove(_snake_case) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json'''): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''') as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''') @is_staging_test class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase ( cls : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''') except HTTPError: pass def lowerCamelCase ( self : Tuple): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizer(_snake_case) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case , repo_id='''test-tokenizer''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""") self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def lowerCamelCase ( self : List[Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizer(_snake_case) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _snake_case , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def lowerCamelCase ( self : int): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = CustomTokenizer(_snake_case) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = os.path.join(_snake_case , '''vocab.txt''') with open(_snake_case , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) UpperCAmelCase_ = BertTokenizerFast.from_pretrained(_snake_case) bert_tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = CustomTokenizerFast.from_pretrained(_snake_case) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token) UpperCAmelCase_ = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=_snake_case , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''') class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''Hello 友達''') self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) trie.add('''Hello''') trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}}) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS] This is a extra_id_100''']) trie.add('''[CLS]''') trie.add('''extra_id_1''') trie.add('''extra_id_100''') self.assertEqual(trie.split('''[CLS] This is a extra_id_100''') , ['''[CLS]''', ''' This is a ''', '''extra_id_100''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''A''') self.assertEqual(trie.split('''ABC''') , ['''A''', '''BC''']) self.assertEqual(trie.split('''BCA''') , ['''BC''', '''A''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''TOKEN]''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''A''') trie.add('''P''') trie.add('''[SPECIAL_TOKEN]''') self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''') , ['''This is something ''', '''[SPECIAL_TOKEN]''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''AB''') trie.add('''B''') trie.add('''C''') self.assertEqual(trie.split('''ABC''') , ['''AB''', '''C''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() trie.add('''ABC''') trie.add('''B''') trie.add('''CD''') self.assertEqual(trie.split('''ABCD''') , ['''ABC''', '''D''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = Trie() UpperCAmelCase_ = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3]) self.assertEqual(_snake_case , ['''AB''', '''C'''])
51
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = KandinskyVaaControlnetPipeline _UpperCAmelCase :Dict = ['image_embeds', 'negative_image_embeds', 'hint'] _UpperCAmelCase :Tuple = ['image_embeds', 'negative_image_embeds', 'hint'] _UpperCAmelCase :str = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :Optional[int] = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : Dict = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.dummy_unet UpperCamelCase : Optional[int] = self.dummy_movq UpperCamelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create hint UpperCamelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith("mps" ): UpperCamelCase : int = torch.manual_seed(A_ ) else: UpperCamelCase : Union[str, Any] = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Dict = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = "cpu" UpperCamelCase : Dict = self.get_dummy_components() UpperCamelCase : int = self.pipeline_class(**A_ ) UpperCamelCase : Any = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : int = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : Tuple = output.images UpperCamelCase : List[str] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : Tuple = image[0, -3:, -3:, -1] UpperCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : str = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCamelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCamelCase : Optional[int] = torch.from_numpy(np.array(A_ ) ).float() / 2_55.0 UpperCamelCase : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCamelCase : Tuple = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : str = "A robot, 4k photo" UpperCamelCase : Optional[Any] = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Dict = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : int = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase : str = pipeline( image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=100 , output_type="np" , ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A_ , A_ )
52
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
0
'''simple docstring''' import datasets from .evaluate import evaluate a__ : List[str] ='''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : Dict =''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] =''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _lowerCamelCase ( self : str , __A : Optional[Any] , __A : int ): __UpperCamelCase = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __UpperCamelCase = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __UpperCamelCase = evaluate(dataset=__A , predictions=__A ) return score
53
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> List[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) UpperCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase( ) -> Union[str, Any]: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> str: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) UpperCamelCase = os.path.join(UpperCamelCase_ , """poker_hands.txt""" ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) UpperCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
343
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a__ : List[str] = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
54
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """xlnet""" __lowerCAmelCase = ["""mems"""] __lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCamelCase_ : Any=3_2000 , lowerCamelCase_ : Dict=1024 , lowerCamelCase_ : List[str]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : List[Any]=4096 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]="bi" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=1E-12 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Union[str, Any]=512 , lowerCamelCase_ : Any=None , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=-1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Union[str, Any]="last" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str="tanh" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Dict=5 , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=5 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : int=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = n_layer UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase = d_model // n_head UpperCamelCase = ff_activation UpperCamelCase = d_inner UpperCamelCase = untie_r UpperCamelCase = attn_type UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = dropout UpperCamelCase = mem_len UpperCamelCase = reuse_len UpperCamelCase = bi_data UpperCamelCase = clamp_len UpperCamelCase = same_length UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_last_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs["""use_cache"""] UpperCamelCase = use_mems_eval UpperCamelCase = use_mems_train super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
343
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=1 ): """simple docstring""" lowerCamelCase_ = tokenizer lowerCamelCase_ = dataset lowerCamelCase_ = len(UpperCamelCase ) if n_tasks is None else n_tasks lowerCamelCase_ = n_copies def __iter__( self ): """simple docstring""" lowerCamelCase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) lowerCamelCase_ = self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = start_length lowerCamelCase_ = eof_strings lowerCamelCase_ = tokenizer def __call__( self , UpperCamelCase , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCamelCase ) def __snake_case ( UpperCAmelCase_ : Optional[Any] ): lowerCamelCase_ = re.split("(%s)" % "|".join(UpperCAmelCase_ ) , UpperCAmelCase_ ) # last string should be "" return "".join(string_list[:-2] ) def __snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : str=20 , **UpperCAmelCase_ : Optional[Any] ): lowerCamelCase_ = defaultdict(UpperCAmelCase_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCAmelCase_ ) ): with torch.no_grad(): lowerCamelCase_ = batch["ids"].shape[-1] lowerCamelCase_ = accelerator.unwrap_model(UpperCAmelCase_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=UpperCAmelCase_ , **UpperCAmelCase_ ) # each task is generated batch_size times lowerCamelCase_ = batch["task_id"].repeat(UpperCAmelCase_ ) lowerCamelCase_ = accelerator.pad_across_processes( UpperCAmelCase_ , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ = generated_tokens.cpu().numpy() lowerCamelCase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCAmelCase_ , UpperCAmelCase_ ): gen_token_dict[task].append(UpperCAmelCase_ ) lowerCamelCase_ = [[] for _ in range(UpperCAmelCase_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ = tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) code_gens[task].append(remove_last_block(UpperCAmelCase_ ) ) return code_gens def __snake_case ( ): # Setup configuration lowerCamelCase_ = HfArgumentParser(UpperCAmelCase_ ) lowerCamelCase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ = "false" if args.num_workers is None: lowerCamelCase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ = Accelerator() set_seed(args.seed , device_specific=UpperCAmelCase_ ) # Load model and tokenizer lowerCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ = tokenizer.eos_token lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCAmelCase_ , UpperCAmelCase_ )] ), } # Load evaluation dataset and metric lowerCamelCase_ = load_dataset("openai_humaneval" ) lowerCamelCase_ = load_metric("code_eval" ) lowerCamelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) lowerCamelCase_ = args.n_samples // args.batch_size lowerCamelCase_ = TokenizedDataset(UpperCAmelCase_ , human_eval["test"] , n_copies=UpperCAmelCase_ , n_tasks=UpperCAmelCase_ ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ = DataLoader(UpperCAmelCase_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = complete_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , n_tasks=UpperCAmelCase_ , batch_size=args.batch_size , **UpperCAmelCase_ , ) if accelerator.is_main_process: lowerCamelCase_ = [] for task in tqdm(range(UpperCAmelCase_ ) ): lowerCamelCase_ = human_eval["test"][task]["test"] lowerCamelCase_ = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_ ,lowerCamelCase_ = code_eval_metric.compute( references=UpperCAmelCase_ , predictions=UpperCAmelCase_ , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
55
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a : Dict = logging.get_logger(__name__) class a ( _lowerCamelCase ): def __init__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
56
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : Dict = logging.getLogger(__name__) @dataclass class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[float] =field( default=0.0 ,metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __UpperCAmelCase : bool =field(default=lowerCAmelCase__ ,metadata={"""help""": """Whether to SortishSamler or not."""} ) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __UpperCAmelCase : bool =field(default=lowerCAmelCase__ ,metadata={"""help""": """whether to use adafactor"""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field(default=lowerCAmelCase__ ,metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[float] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __UpperCAmelCase : Optional[str] =field( default="""linear""" ,metadata={"""help""": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} ,)
57
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Union[str, Any]=30 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Any=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Optional[Any]=0.0_2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = FlaxViTModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase = (self.patch_size, self.patch_size) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FlaxViTForImageClassification(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FlaxViTForImageClassification(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = FlaxViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): return model(pixel_values=lowerCamelCase_ , **lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase_ )
343
0
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : int ) ->str: if number > 0: raise ValueError("""input must be a negative integer""" ) _SCREAMING_SNAKE_CASE = len(bin(__lowerCamelCase )[3:] ) _SCREAMING_SNAKE_CASE = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] _SCREAMING_SNAKE_CASE = ( ( """1""" + """0""" * (binary_number_length - len(__lowerCamelCase )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
58
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
0
import os from pathlib import Path def UpperCamelCase ( ): from torch.utils.cpp_extension import load snake_case : str = Path(__lowerCamelCase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" snake_case : int = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __lowerCamelCase , with_cuda=__lowerCamelCase , extra_include_paths=[str(__lowerCamelCase )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
59
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : str=400 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=0.9 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 30} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
0
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case_: def __init__( self : List[Any] ): lowerCAmelCase : List[Any] = [2, 1, 2, -1] lowerCAmelCase : str = [1, 2, 3, 4] def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = len(self.first_signal ) lowerCAmelCase : Optional[Any] = len(self.second_signal ) lowerCAmelCase : Optional[int] = max(UpperCamelCase_ , UpperCamelCase_ ) # create a zero matrix of max_length x max_length lowerCAmelCase : Any = [[0] * max_length for i in range(UpperCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase_ ): lowerCAmelCase : str = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase_ ) for j, item in enumerate(UpperCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal lowerCAmelCase : Union[str, Any] = np.matmul(np.transpose(UpperCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
60
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
0