code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(a_ ) ) def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = 0.0 for coeff in reversed(a_ ): A_ : List[Any] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : List[str] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionDiffEditPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase = frozenset([] ) def UpperCAmelCase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCamelCase , ) A_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) A_ : Tuple = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowerCamelCase , set_alpha_to_zero=_lowerCamelCase , ) torch.manual_seed(0 ) A_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A_ : Any = CLIPTextModel(_lowerCamelCase ) A_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> List[Any]: A_ : Union[str, Any] = floats_tensor((1, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith("""mps""" ): A_ : Tuple = torch.manual_seed(_lowerCamelCase ) else: A_ : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : Any = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> Tuple: A_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Any = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("""RGB""" ) if str(_lowerCamelCase ).startswith("""mps""" ): A_ : Any = torch.manual_seed(_lowerCamelCase ) else: A_ : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : Optional[int] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> List[str]: A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Optional[int] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("""RGB""" ) if str(_lowerCamelCase ).startswith("""mps""" ): A_ : str = torch.manual_seed(_lowerCamelCase ) else: A_ : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) A_ : Tuple = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase_ ( self ) -> Optional[Any]: if not hasattr(self.pipeline_class , """_optional_components""" ): return A_ : Tuple = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) A_ : str = self.get_dummy_inputs(_lowerCamelCase ) A_ : int = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) A_ : int = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F"`{optional_component}` did not stay set to None after loading." , ) A_ : List[str] = self.get_dummy_inputs(_lowerCamelCase ) A_ : Tuple = pipe_loaded(**_lowerCamelCase )[0] A_ : Optional[int] = np.abs(output - output_loaded ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[Any] = """cpu""" A_ : int = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : List[Any] = self.get_dummy_mask_inputs(_lowerCamelCase ) A_ : Optional[int] = pipe.generate_mask(**_lowerCamelCase ) A_ : Optional[int] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) A_ : Tuple = np.array([0] * 9 ) A_ : int = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = """cpu""" A_ : Optional[Any] = self.get_dummy_components() A_ : str = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[int] = self.get_dummy_inversion_inputs(_lowerCamelCase ) A_ : Optional[Any] = pipe.invert(**_lowerCamelCase ).images A_ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) A_ : str = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) A_ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def UpperCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Any = """cpu""" A_ : Union[str, Any] = self.get_dummy_components() A_ : Union[str, Any] = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} A_ : Optional[Any] = DPMSolverMultistepScheduler(**_lowerCamelCase ) A_ : List[Any] = DPMSolverMultistepInverseScheduler(**_lowerCamelCase ) A_ : Tuple = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Union[str, Any] = self.get_dummy_inversion_inputs(_lowerCamelCase ) A_ : List[Any] = pipe.invert(**_lowerCamelCase ).images A_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) A_ : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) A_ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase_ ( cls ) -> Dict: A_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) A_ : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) ) A_ : Tuple = raw_image def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Tuple = torch.manual_seed(0 ) A_ : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) A_ : Optional[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) A_ : Any = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : str = """a bowl of fruit""" A_ : Optional[int] = """a bowl of pears""" A_ : str = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) A_ : Tuple = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase ).latents A_ : Optional[int] = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] A_ : List[str] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) A_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A_ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) A_ : Optional[Any] = """a bowl of fruit""" A_ : Dict = """a bowl of pears""" A_ : List[str] = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) A_ : Any = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase , num_inference_steps=25 , ).latents A_ : int = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] A_ : Any = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
344
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" A_ : str = tmp_path / """cache""" A_ : int = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Optional[Any] = TextDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_ ).read() _check_text_dataset(a_ , a_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Any = tmp_path / """cache""" A_ : Dict = {"""text""": """string"""} A_ : Any = features.copy() if features else default_expected_features A_ : Union[str, Any] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : List[str] = TextDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() _check_text_dataset(a_ , a_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[Any] = tmp_path / """cache""" A_ : Optional[int] = {"""text""": """string"""} A_ : List[str] = TextDatasetReader(a_ , cache_dir=a_ , split=a_ ).read() _check_text_dataset(a_ , a_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" if issubclass(a_ , a_ ): A_ : Optional[Any] = text_path elif issubclass(a_ , a_ ): A_ : Tuple = [text_path] A_ : str = tmp_path / """cache""" A_ : Optional[Any] = {"""text""": """string"""} A_ : Union[str, Any] = TextDatasetReader(a_ , cache_dir=a_ ).read() _check_text_dataset(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_=("train",) ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) for split in splits: A_ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : Optional[int] = tmp_path / """cache""" A_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : int = TextDatasetReader({"""train""": text_path} , cache_dir=a_ , keep_in_memory=a_ ).read() _check_text_datasetdict(a_ , a_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : Union[str, Any] = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" A_ : Tuple = {"""text""": """string"""} A_ : Optional[Any] = features.copy() if features else default_expected_features A_ : Dict = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : List[str] = TextDatasetReader({"""train""": text_path} , features=a_ , cache_dir=a_ ).read() _check_text_datasetdict(a_ , a_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if split: A_ : int = {split: text_path} else: A_ : str = """train""" A_ : Any = {"""train""": text_path, """test""": text_path} A_ : List[Any] = tmp_path / """cache""" A_ : Dict = {"""text""": """string"""} A_ : Optional[Any] = TextDatasetReader(a_ , cache_dir=a_ ).read() _check_text_datasetdict(a_ , a_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : int = '▁' UpperCamelCase__ : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCamelCase__ : List[str] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } UpperCamelCase__ : Union[str, Any] = { 'facebook/m2m100_418M': 1_024, } # fmt: off UpperCamelCase__ : Optional[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = ['''input_ids''', '''attention_mask'''] lowerCamelCase = [] lowerCamelCase = [] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<unk>" , _lowerCamelCase="m2m100" , _lowerCamelCase = None , _lowerCamelCase=8 , **_lowerCamelCase , ) -> None: A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs A_ : int = language_codes A_ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] A_ : Optional[int] = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} A_ : Optional[Any] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowerCamelCase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowerCamelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , language_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowerCamelCase , **_lowerCamelCase , ) A_ : str = vocab_file A_ : Dict = load_json(_lowerCamelCase ) A_ : List[Any] = {v: k for k, v in self.encoder.items()} A_ : str = spm_file A_ : str = load_spm(_lowerCamelCase , self.sp_model_kwargs ) A_ : Tuple = len(self.encoder ) A_ : Optional[int] = { self.get_lang_token(_lowerCamelCase ): self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase ) } A_ : Union[str, Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase )} A_ : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} A_ : Union[str, Any] = src_lang if src_lang is not None else """en""" A_ : List[str] = tgt_lang A_ : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A_ : Dict = num_madeup_words @property def UpperCAmelCase_ ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase_ ( self ) -> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowerCamelCase , self.unk_token ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: A_ : Union[str, Any] = [] A_ : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: A_ : Any = self.__dict__.copy() A_ : Union[str, Any] = None return state def __setstate__( self , _lowerCamelCase ) -> None: A_ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Tuple = {} A_ : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: A_ : Dict = Path(_lowerCamelCase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) A_ : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A_ : List[str] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : int = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = "en" , _lowerCamelCase = None , _lowerCamelCase = "ro" , **_lowerCamelCase , ) -> BatchEncoding: A_ : Tuple = src_lang A_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A_ : List[Any] = src_lang A_ : List[Any] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase ) A_ : Tuple = self.get_lang_id(_lowerCamelCase ) A_ : Any = tgt_lang_id return inputs def UpperCAmelCase_ ( self ) -> Optional[Any]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self ) -> int: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : Union[str, Any] = self.get_lang_token(_lowerCamelCase ) A_ : Union[str, Any] = self.lang_token_to_id[lang_token] A_ : Any = [self.cur_lang_id] A_ : List[Any] = [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: A_ : List[str] = self.get_lang_token(_lowerCamelCase ) A_ : Dict = self.lang_token_to_id[lang_token] A_ : List[str] = [self.cur_lang_id] A_ : Union[str, Any] = [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: return self.lang_code_to_token[lang] def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: A_ : Tuple = self.get_lang_token(_lowerCamelCase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase ( a_ , a_ ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A_ : Any = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def UpperCAmelCase ( a_ ) -> Union[Dict, List]: """simple docstring""" with open(a_ , """r""" ) as f: return json.load(a_ ) def UpperCAmelCase ( a_ , a_ ) -> None: """simple docstring""" with open(a_ , """w""" ) as f: json.dump(a_ , a_ , indent=2 )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , """num_encoder_blocks""" ) ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=64 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[2, 2, 2, 2] , _lowerCamelCase=[8, 4, 2, 1] , _lowerCamelCase=[16, 32, 64, 128] , _lowerCamelCase=[1, 4, 8, 16] , _lowerCamelCase=[1, 2, 4, 8] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> int: A_ : Optional[Any] = parent A_ : str = batch_size A_ : List[str] = image_size A_ : Union[str, Any] = num_channels A_ : Tuple = num_encoder_blocks A_ : Union[str, Any] = sr_ratios A_ : Any = depths A_ : str = hidden_sizes A_ : str = downsampling_rates A_ : List[Any] = num_attention_heads A_ : Tuple = is_training A_ : Dict = use_labels A_ : Union[str, Any] = hidden_act A_ : int = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Any = initializer_range A_ : str = num_labels A_ : Optional[Any] = scope def UpperCAmelCase_ ( self ) -> Tuple: A_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : List[Any] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ : List[str] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: A_ : Optional[int] = SegformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = model(_lowerCamelCase ) A_ : List[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Optional[int] = self.num_labels A_ : Union[str, Any] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A_ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[Any] = 1 A_ : Optional[Any] = SegformerForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_lowerCamelCase ) A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = self.prepare_config_and_inputs() A_ , A_ , A_ : Tuple = config_and_inputs A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase = True lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[Any] = SegformerModelTester(self ) A_ : List[Any] = SegformerConfigTester(self , config_class=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowerCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : int = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[Any] = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = True for model_class in self.all_model_classes: A_ : Any = True A_ : List[Any] = False A_ : List[str] = True A_ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : str = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : Tuple = outputs.attentions A_ : List[str] = sum(self.model_tester.depths ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : Dict = True A_ : int = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : int = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first attentions (first block, first layer) A_ : Dict = (self.model_tester.image_size // 4) ** 2 A_ : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A_ : Optional[int] = (self.model_tester.image_size // 32) ** 2 A_ : Tuple = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A_ : Optional[Any] = len(_lowerCamelCase ) # Check attention is always last and order is fine A_ : List[Any] = True A_ : Union[str, Any] = True A_ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Any = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCamelCase ) ) A_ : List[Any] = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first attentions (first block, first layer) A_ : Dict = (self.model_tester.image_size // 4) ** 2 A_ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : List[str] = outputs.hidden_states A_ : int = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: if not self.model_tester.is_training: return A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ): continue A_ : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : int = model(**_lowerCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass @slow def UpperCAmelCase_ ( self ) -> Dict: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = SegformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> List[str]: # only resize + normalize A_ : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) A_ : List[str] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowerCamelCase ) A_ : str = prepare_img() A_ : Optional[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : str = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): A_ : Any = model(_lowerCamelCase ) A_ : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ) -> str: # only resize + normalize A_ : List[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) A_ : List[Any] = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(_lowerCamelCase ) A_ : Optional[int] = prepare_img() A_ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : List[Any] = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): A_ : str = model(_lowerCamelCase ) A_ : List[str] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : str = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-1 ) ) @slow def UpperCAmelCase_ ( self ) -> List[str]: # only resize + normalize A_ : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) A_ : str = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowerCamelCase ) A_ : List[str] = prepare_img() A_ : Optional[int] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Any = encoded_inputs.pixel_values.to(_lowerCamelCase ) with torch.no_grad(): A_ : List[str] = model(_lowerCamelCase ) A_ : List[str] = outputs.logits.detach().cpu() A_ : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(500, 300)] ) A_ : str = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) A_ : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) A_ : Dict = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Union[str, Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Optional[int] = 'sshleifer/student_marian_en_ro_6_1' UpperCamelCase__ : Tuple = 'sshleifer/tiny-mbart' @require_torch class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , ) -> List[Any]: A_ : List[str] = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowerCamelCase , num_train_epochs=1 , distributed=_lowerCamelCase , extra_args_str=_lowerCamelCase , predict_with_generate=_lowerCamelCase , do_train=_lowerCamelCase , do_eval=_lowerCamelCase , do_predict=_lowerCamelCase , ) A_ : List[str] = TrainerState.load_from_json(os.path.join(_lowerCamelCase , """trainer_state.json""" ) ).log_history if not do_eval: return A_ : List[Any] = [log for log in logs if """eval_loss""" in log.keys()] A_ : List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A_ : Optional[int] = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , _lowerCamelCase ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCAmelCase_ ( self ) -> int: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCAmelCase_ ( self ) -> Tuple: self.run_seqaseq_quick(distributed=_lowerCamelCase ) @require_torch_multi_gpu def UpperCAmelCase_ ( self ) -> Tuple: self.run_seqaseq_quick(distributed=_lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase_ ( self ) -> Optional[int]: self.run_seqaseq_quick(distributed=_lowerCamelCase , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase_ ( self ) -> Optional[int]: self.run_seqaseq_quick(distributed=_lowerCamelCase , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase_ ( self ) -> int: self.run_seqaseq_quick(distributed=_lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=_lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCAmelCase_ ( self ) -> Tuple: self.run_seqaseq_quick( distributed=_lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=_lowerCamelCase ) @require_apex @require_torch_gpu def UpperCAmelCase_ ( self ) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout A_ : Optional[Any] = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } A_ : Dict = experiments[experiment_id] A_ : Union[str, Any] = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} A_ : List[str] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowerCamelCase , extra_args_str=data["""extra_args_str"""] ) A_ : List[str] = len(re.findall(_lowerCamelCase , cl.err ) ) self.assertEqual(_lowerCamelCase , data["""n_matches"""] ) @slow def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowerCamelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=_lowerCamelCase , ) # Check metrics A_ : Tuple = TrainerState.load_from_json(os.path.join(_lowerCamelCase , """trainer_state.json""" ) ).log_history A_ : int = [log for log in logs if """eval_loss""" in log.keys()] A_ : Tuple = eval_metrics[0] A_ : str = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , _lowerCamelCase ) # test if do_predict saves generations and metrics A_ : str = os.listdir(_lowerCamelCase ) A_ : int = {os.path.basename(_lowerCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowerCamelCase ) -> Tuple[int, float]: A_ : int = """--skip_memory_metrics 0""" A_ : Optional[Any] = self.run_trainer( max_len=128 , model_name=_lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=_lowerCamelCase , distributed=_lowerCamelCase , extra_args_str=_lowerCamelCase , do_eval=_lowerCamelCase , do_predict=_lowerCamelCase , n_gpus_to_use=1 , ) # Check metrics A_ : List[str] = TrainerState.load_from_json(Path(_lowerCamelCase , """trainer_state.json""" ) ).log_history A_ : Dict = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) A_ : List[str] = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) A_ : int = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A_ , A_ , A_ : str = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A_ , A_ , A_ : str = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A_ : Optional[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A_ : Dict = gpu_peak_mem_orig + gpu_alloc_mem_orig A_ : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A_ : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A_ : Any = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowerCamelCase , _lowerCamelCase , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowerCamelCase , _lowerCamelCase , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowerCamelCase , _lowerCamelCase , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3e-3 , _lowerCamelCase = "adafactor" , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , ) -> List[str]: A_ : Tuple = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" A_ : str = self.get_auto_remove_tmp_dir() A_ : int = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowerCamelCase )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowerCamelCase )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() A_ : Any = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowerCamelCase )}\n ".split() A_ : int = """ --do_predict """.split() A_ : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A_ : str = get_gpu_count() A_ : Dict = get_torch_dist_unique_port() A_ : Union[str, Any] = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() A_ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) else: A_ : Dict = ["""run_translation.py"""] + args with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase ): main() return output_dir
344
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BioGptTokenizer lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A_ : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: A_ : Union[str, Any] = """lower newer""" A_ : Any = """lower newer""" return input_text, output_text def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = BioGptTokenizer(self.vocab_file , self.merges_file ) A_ : Union[str, Any] = """lower""" A_ : List[Any] = ["""low""", """er</w>"""] A_ : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = tokens + ["""<unk>"""] A_ : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A_ : Any = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) A_ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> Dict: A_ : Any = 0 A_ : List[str] = 0 A_ : List[str] = {} def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Tuple: if vertex not in self.adjacency: A_ : List[Any] = {} self.num_vertices += 1 def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: self.add_vertex(_lowerCamelCase ) self.add_vertex(_lowerCamelCase ) if head == tail: return A_ : Optional[Any] = weight A_ : Dict = weight def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = self.get_edges() for edge in edges: A_ , A_ , A_ : Optional[int] = edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCamelCase ) ): A_ : str = list(edges[i] ) edges.sort(key=lambda _lowerCamelCase : e[2] ) for i in range(len(_lowerCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A_ : List[Any] = edges[i][2] + 1 for edge in edges: A_ , A_ , A_ : Optional[int] = edge A_ : Union[str, Any] = weight A_ : List[Any] = weight def __str__( self ) -> List[Any]: A_ : Dict = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A_ : List[Any] = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip("""\n""" ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCAmelCase_ ( self ) -> Any: return self.adjacency.keys() @staticmethod def UpperCAmelCase_ ( _lowerCamelCase=None , _lowerCamelCase=None ) -> Dict: A_ : Tuple = Graph() if vertices is None: A_ : List[str] = [] if edges is None: A_ : List[Any] = [] for vertex in vertices: g.add_vertex(_lowerCamelCase ) for edge in edges: g.add_edge(*_lowerCamelCase ) return g class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: A_ : Union[str, Any] = {} A_ : Any = {} def __len__( self ) -> List[str]: return len(self.parent ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: if item in self.parent: return self.find(_lowerCamelCase ) A_ : Optional[Any] = item A_ : List[str] = 0 return item def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: if item not in self.parent: return self.make_set(_lowerCamelCase ) if item != self.parent[item]: A_ : Optional[int] = self.find(self.parent[item] ) return self.parent[item] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Union[str, Any] = self.find(_lowerCamelCase ) A_ : List[Any] = self.find(_lowerCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A_ : List[str] = roota return roota if self.rank[roota] < self.rank[roota]: A_ : List[str] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A_ : List[str] = roota return roota return None @staticmethod def UpperCAmelCase_ ( _lowerCamelCase ) -> Any: A_ : int = graph.num_vertices A_ : Optional[int] = Graph.UnionFind() A_ : Any = [] while num_components > 1: A_ : int = {} for vertex in graph.get_vertices(): A_ : str = -1 A_ : List[Any] = graph.get_edges() for edge in edges: A_ , A_ , A_ : Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: A_ , A_ , A_ : str = edge A_ : Tuple = union_find.find(_lowerCamelCase ) A_ : str = union_find.find(_lowerCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A_ : List[str] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A_ : int = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A_ , A_ , A_ : List[str] = cheap_edge[vertex] if union_find.find(_lowerCamelCase ) != union_find.find(_lowerCamelCase ): union_find.union(_lowerCamelCase , _lowerCamelCase ) mst_edges.append(cheap_edge[vertex] ) A_ : Tuple = num_components - 1 A_ : Optional[Any] = Graph.build(edges=_lowerCamelCase ) return mst
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' UpperCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Optional[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : Optional[Any] = _calculate(days - 1 , a_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : str = _calculate(days - 1 , a_ , 0 ) A_ : Union[str, Any] = state_late + state_absent + state_ontime A_ : List[str] = prizestrings return prizestrings def UpperCAmelCase ( a_ = 3_0 ) -> int: """simple docstring""" return _calculate(a_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.0 , _lowerCamelCase = None , _lowerCamelCase = "geglu" , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = "layer_norm" , _lowerCamelCase = False , ) -> str: super().__init__() A_ : Tuple = only_cross_attention A_ : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A_ : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A_ : Union[str, Any] = AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ : Optional[Any] = AdaLayerNormZero(_lowerCamelCase , _lowerCamelCase ) else: A_ : Dict = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : List[str] = Attention( query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A_ : List[Any] = ( AdaLayerNorm(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) ) A_ : Optional[int] = Attention( query_dim=_lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCamelCase , dim_head=_lowerCamelCase , dropout=_lowerCamelCase , bias=_lowerCamelCase , upcast_attention=_lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: A_ : Tuple = None A_ : Any = None # 3. Feed-forward A_ : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) A_ : Any = FeedForward(_lowerCamelCase , dropout=_lowerCamelCase , activation_fn=_lowerCamelCase , final_dropout=_lowerCamelCase ) # let chunk size default to None A_ : Optional[Any] = None A_ : int = 0 def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: # Sets chunk feed-forward A_ : Union[str, Any] = chunk_size A_ : List[str] = dim def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A_ : List[Any] = self.norma(_lowerCamelCase , _lowerCamelCase ) elif self.use_ada_layer_norm_zero: A_ , A_ , A_ , A_ , A_ : Dict = self.norma( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hidden_dtype=hidden_states.dtype ) else: A_ : List[Any] = self.norma(_lowerCamelCase ) A_ : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} A_ : int = self.attna( _lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) if self.use_ada_layer_norm_zero: A_ : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output A_ : int = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A_ : Optional[Any] = ( self.norma(_lowerCamelCase , _lowerCamelCase ) if self.use_ada_layer_norm else self.norma(_lowerCamelCase ) ) A_ : Optional[int] = self.attna( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Tuple = attn_output + hidden_states # 3. Feed-forward A_ : List[str] = self.norma(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) A_ : List[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A_ : List[str] = torch.cat( [self.ff(_lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A_ : Optional[int] = self.ff(_lowerCamelCase ) if self.use_ada_layer_norm_zero: A_ : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output A_ : Tuple = ff_output + hidden_states return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 4 , _lowerCamelCase = 0.0 , _lowerCamelCase = "geglu" , _lowerCamelCase = False , ) -> int: super().__init__() A_ : List[str] = int(dim * mult ) A_ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A_ : Any = GELU(_lowerCamelCase , _lowerCamelCase ) if activation_fn == "gelu-approximate": A_ : Dict = GELU(_lowerCamelCase , _lowerCamelCase , approximate="""tanh""" ) elif activation_fn == "geglu": A_ : int = GEGLU(_lowerCamelCase , _lowerCamelCase ) elif activation_fn == "geglu-approximate": A_ : Tuple = ApproximateGELU(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = nn.ModuleList([] ) # project in self.net.append(_lowerCamelCase ) # project dropout self.net.append(nn.Dropout(_lowerCamelCase ) ) # project out self.net.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCamelCase ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: for module in self.net: A_ : Dict = module(_lowerCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "none" ) -> Optional[Any]: super().__init__() A_ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = approximate def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: if gate.device.type != "mps": return F.gelu(_lowerCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.proj(_lowerCamelCase ) A_ : Any = self.gelu(_lowerCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> str: super().__init__() A_ : Any = nn.Linear(_lowerCamelCase , dim_out * 2 ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: if gate.device.type != "mps": return F.gelu(_lowerCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ , A_ : List[str] = self.proj(_lowerCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCamelCase ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> int: super().__init__() A_ : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: A_ : str = self.proj(_lowerCamelCase ) return x * torch.sigmoid(1.702 * x ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> int: super().__init__() A_ : Dict = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) A_ : int = nn.SiLU() A_ : int = nn.Linear(_lowerCamelCase , embedding_dim * 2 ) A_ : str = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Dict = self.linear(self.silu(self.emb(_lowerCamelCase ) ) ) A_ , A_ : Any = torch.chunk(_lowerCamelCase , 2 ) A_ : Union[str, Any] = self.norm(_lowerCamelCase ) * (1 + scale) + shift return x class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: super().__init__() A_ : Tuple = CombinedTimestepLabelEmbeddings(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = nn.SiLU() A_ : Union[str, Any] = nn.Linear(_lowerCamelCase , 6 * embedding_dim , bias=_lowerCamelCase ) A_ : Any = nn.LayerNorm(_lowerCamelCase , elementwise_affine=_lowerCamelCase , eps=1e-6 ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[str]: A_ : Optional[Any] = self.linear(self.silu(self.emb(_lowerCamelCase , _lowerCamelCase , hidden_dtype=_lowerCamelCase ) ) ) A_ , A_ , A_ , A_ , A_ , A_ : int = emb.chunk(6 , dim=1 ) A_ : List[Any] = self.norm(_lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1e-5 ) -> int: super().__init__() A_ : Tuple = num_groups A_ : Union[str, Any] = eps if act_fn is None: A_ : List[str] = None else: A_ : Dict = get_activation(_lowerCamelCase ) A_ : Optional[Any] = nn.Linear(_lowerCamelCase , out_dim * 2 ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: if self.act: A_ : Dict = self.act(_lowerCamelCase ) A_ : Union[str, Any] = self.linear(_lowerCamelCase ) A_ : Tuple = emb[:, :, None, None] A_ , A_ : int = emb.chunk(2 , dim=1 ) A_ : Union[str, Any] = F.group_norm(_lowerCamelCase , self.num_groups , eps=self.eps ) A_ : Any = x * (1 + scale) + shift return x
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ : Optional[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCamelCase__ : Tuple = { 'allenai/led-base-16384': 16_384, } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = LEDTokenizer lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) -> Dict: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) A_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space: A_ : Dict = getattr(_lowerCamelCase , pre_tok_state.pop("""type""" ) ) A_ : Tuple = add_prefix_space A_ : Optional[Any] = pre_tok_class(**_lowerCamelCase ) A_ : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : Any = """post_processor""" A_ : Optional[Any] = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: A_ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : Union[str, Any] = tuple(state["""sep"""] ) if "cls" in state: A_ : List[str] = tuple(state["""cls"""] ) A_ : str = False if state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space: A_ : Tuple = add_prefix_space A_ : Dict = True if state.get("""trim_offsets""" , _lowerCamelCase ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[int] = getattr(_lowerCamelCase , state.pop("""type""" ) ) A_ : str = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCAmelCase_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: A_ : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value A_ : Optional[Any] = value def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> BatchEncoding: A_ : List[Any] = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> BatchEncoding: A_ : List[str] = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: A_ : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> str: A_ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: A_ : Optional[int] = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) -> dict: A_ : List[Any] = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: A_ : Tuple = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A_ : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(_lowerCamelCase ) if needs_to_be_padded: A_ : str = len(_lowerCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A_ : Dict = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A_ : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
344
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : int = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" A_ : Union[str, Any] = """https://pypi.org/pypi/diffusers/json""" A_ : List[str] = json.loads(request.urlopen(a_ ).read() )["""releases"""].keys() return sorted(a_ , key=lambda a_ : version.Version(a_ ) ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_ , exist_ok=a_ ) A_ : Any = Path(a_ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" init_hf_modules() A_ : Optional[Any] = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_ , exist_ok=a_ ) A_ : Optional[int] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : Union[str, Any] = f.read() # Imports of the form `import .xxx` A_ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : str = False A_ : List[str] = [module_file] A_ : int = [] # Let's recurse through all relative imports while not no_change: A_ : Optional[int] = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) A_ : Tuple = Path(a_ ).parent A_ : Any = [str(module_path / m ) for m in new_imports] A_ : str = [f for f in new_import_files if f not in all_relative_imports] A_ : int = [F"{f}.py" for f in new_import_files] A_ : Dict = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def UpperCAmelCase ( a_ ) -> str: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : Optional[int] = f.read() # Imports of the form `import xxx` A_ : Dict = re.findall("""^\s*import\s+(\S+)\s*$""" , a_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , a_ , flags=re.MULTILINE ) # Only keep the top-level module A_ : int = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A_ : List[str] = list(set(a_ ) ) A_ : List[Any] = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`" ) return get_relative_imports(a_ ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : Dict = module_path.replace(os.path.sep , """.""" ) A_ : int = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_ , a_ ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline A_ : Optional[Any] = dict(inspect.getmembers(a_ , inspect.isclass ) ) A_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a_ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) A_ : Dict = cls return pipeline_class def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = str(a_ ) A_ : str = os.path.join(a_ , a_ ) if os.path.isfile(a_ ): A_ : Union[str, Any] = module_file_or_url A_ : Tuple = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A_ : Optional[Any] = get_diffusers_versions() # cut ".dev0" A_ : Dict = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A_ : Dict = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: A_ : List[Any] = F"v{revision}" elif revision == "main": A_ : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub A_ : Optional[int] = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ ) try: A_ : Optional[Any] = cached_download( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : List[Any] = """git""" A_ : List[str] = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached A_ : List[str] = hf_hub_download( a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) A_ : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment A_ : Optional[int] = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. A_ : List[str] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) A_ : int = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_ , submodule_path / module_file ) for module_needed in modules_needed: A_ : Any = F"{module_needed}.py" shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_ , a_ ): A_ : List[str] = use_auth_token elif use_auth_token is True: A_ : str = HfFolder.get_token() else: A_ : Optional[Any] = None A_ : Optional[Any] = model_info(a_ , revision=a_ , token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ : Union[str, Any] = submodule_path / commit_hash A_ : List[str] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_ , F"{module_needed}.py" , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return os.path.join(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> List[str]: """simple docstring""" A_ : Tuple = get_cached_module_file( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return get_class_in_module(a_ , final_module.replace(""".py""" , """""" ) )
344
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Tuple = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=a_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=a_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=a_ ) return parser.parse_args() def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : List[Any] = parse_args() # Import training_script as a module. A_ : Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A_ : Optional[Any] = script_fpath.stem A_ : int = importlib.import_module(a_ ) # Patch sys.argv A_ : Any = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ : int = 16 UpperCamelCase__ : str = 32 def UpperCAmelCase ( a_ , a_ = 1_6 , a_ = "bert-base-cased" ) -> Optional[int]: """simple docstring""" A_ : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) A_ : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) A_ : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A_ : str = datasets.map( a_ , batched=a_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(a_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A_ : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) A_ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" A_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Any = config["""lr"""] A_ : Tuple = int(config["""num_epochs"""] ) A_ : int = int(config["""seed"""] ) A_ : Optional[Any] = int(config["""batch_size"""] ) A_ : int = args.model_name_or_path set_seed(a_ ) A_ , A_ : str = get_dataloaders(a_ , a_ , a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Dict = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ ) # Instantiate optimizer A_ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A_ : Optional[int] = optimizer_cls(params=model.parameters() , lr=a_ ) if accelerator.state.deepspeed_plugin is not None: A_ : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A_ : str = 1 A_ : str = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A_ : str = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: A_ : Any = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ : Any = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # We need to keep track of how many total steps we have iterated over A_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly A_ : List[str] = 0 # Now we train the model A_ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) A_ : Union[str, Any] = 0 A_ : int = {} for epoch in range(a_ , a_ ): model.train() for step, batch in enumerate(a_ ): A_ : Any = model(**a_ ) A_ : Union[str, Any] = outputs.loss A_ : str = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A_ : str = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : List[str] = model(**a_ ) A_ : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A_ , A_ : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: A_ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] A_ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_ , references=a_ , ) A_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , a_ ) A_ : Union[str, Any] = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: A_ : Tuple = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(a_ , a_ ) def UpperCAmelCase ( ) -> str: """simple docstring""" A_ : Dict = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=a_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a_ , ) parser.add_argument( """--output_dir""" , type=a_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=a_ , default=a_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=a_ , default=3 , help="""Number of train epochs.""" , ) A_ : Union[str, Any] = parser.parse_args() A_ : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCAmelCase ( a_ , a_ ) -> str | Literal[False]: """simple docstring""" A_ : Union[str, Any] = list(a_ ) A_ : int = list(a_ ) A_ : str = 0 for i in range(len(a_ ) ): if lista[i] != lista[i]: count += 1 A_ : Tuple = """_""" if count > 1: return False else: return "".join(a_ ) def UpperCAmelCase ( a_ ) -> list[str]: """simple docstring""" A_ : List[Any] = [] while True: A_ : List[Any] = ["""$"""] * len(a_ ) A_ : List[Any] = [] for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): A_ : str = compare_string(binary[i] , binary[j] ) if k is False: A_ : int = """*""" A_ : Optional[int] = """*""" temp.append("""X""" ) for i in range(len(a_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a_ ) == 0: return pi A_ : List[Any] = list(set(a_ ) ) def UpperCAmelCase ( a_ , a_ ) -> list[str]: """simple docstring""" A_ : Union[str, Any] = [] for minterm in minterms: A_ : str = """""" for _ in range(a_ ): A_ : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(a_ ) return temp def UpperCAmelCase ( a_ , a_ , a_ ) -> bool: """simple docstring""" A_ : Optional[int] = list(a_ ) A_ : List[Any] = list(a_ ) A_ : List[str] = 0 for i in range(len(a_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCAmelCase ( a_ , a_ ) -> list[str]: """simple docstring""" A_ : Tuple = [] A_ : Any = [0] * len(a_ ) for i in range(len(chart[0] ) ): A_ : List[str] = 0 A_ : str = -1 for j in range(len(a_ ) ): if chart[j][i] == 1: count += 1 A_ : List[str] = j if count == 1: A_ : Optional[Any] = 1 for i in range(len(a_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a_ ) ): A_ : Any = 0 temp.append(prime_implicants[i] ) while True: A_ : List[str] = 0 A_ : Dict = -1 A_ : List[str] = 0 for i in range(len(a_ ) ): A_ : List[Any] = chart[i].count(1 ) if count_n > max_n: A_ : Union[str, Any] = count_n A_ : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a_ ) ): A_ : Union[str, Any] = 0 def UpperCAmelCase ( a_ , a_ ) -> list[list[int]]: """simple docstring""" A_ : int = [[0 for x in range(len(a_ ) )] for x in range(len(a_ ) )] for i in range(len(a_ ) ): A_ : List[str] = prime_implicants[i].count("""_""" ) for j in range(len(a_ ) ): if is_for_table(prime_implicants[i] , binary[j] , a_ ): A_ : List[Any] = 1 return chart def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Optional[int] = int(input("""Enter the no. of variables\n""" ) ) A_ : int = [ float(a_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] A_ : Any = decimal_to_binary(a_ , a_ ) A_ : int = check(a_ ) print("""Prime Implicants are:""" ) print(a_ ) A_ : Any = prime_implicant_chart(a_ , a_ ) A_ : Union[str, Any] = selection(a_ , a_ ) print("""Essential Prime Implicants are:""" ) print(a_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
344
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase__ : str = '.' if __name__ == "__main__": UpperCamelCase__ : List[str] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') UpperCamelCase__ : Tuple = [] UpperCamelCase__ : List[Any] = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase__ : Any = line.strip() UpperCamelCase__ : Optional[int] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase__ : Any = '\n'.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
344
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=16 , _lowerCamelCase=36 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) -> List[str]: A_ : Dict = parent A_ : Any = batch_size A_ : Union[str, Any] = seq_length A_ : Optional[int] = is_training A_ : Any = use_input_mask A_ : Dict = use_token_type_ids A_ : Optional[Any] = use_labels A_ : int = vocab_size A_ : List[Any] = embedding_size A_ : Tuple = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_hidden_groups A_ : Union[str, Any] = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Tuple = max_position_embeddings A_ : Dict = type_vocab_size A_ : str = type_sequence_label_size A_ : Dict = initializer_range A_ : Union[str, Any] = num_labels A_ : Optional[Any] = num_choices A_ : Dict = scope def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[Any] = None if self.use_input_mask: A_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Union[str, Any] = None if self.use_token_type_ids: A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : List[str] = None A_ : Tuple = None A_ : Tuple = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Tuple: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : str = AlbertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : int = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : str = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Union[str, Any] = AlbertForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , sentence_order_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Dict = AlbertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : Optional[Any] = AlbertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Dict = self.num_labels A_ : Tuple = AlbertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Dict = self.num_labels A_ : List[Any] = AlbertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: A_ : int = self.num_choices A_ : List[Any] = AlbertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> str: A_ : Tuple = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): A_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) A_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def UpperCAmelCase_ ( self ) -> List[Any]: A_ : List[Any] = AlbertModelTester(self ) A_ : Any = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : int = type self.model_tester.create_and_check_model(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Any: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[Any] = AlbertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> List[Any]: A_ : int = AlbertModel.from_pretrained("""albert-base-v2""" ) A_ : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A_ : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : List[str] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
344
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
1
'''simple docstring''' from maths.prime_check import is_prime def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not isinstance(a_ , a_ ): A_ : int = F"Input value of [number={number}] must be an integer" raise TypeError(a_ ) if is_prime(a_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) A_ : Any = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("""sample_euler""" ) A_ : List[str] = """A painting of a squirrel eating a burger""" A_ : Tuple = torch.manual_seed(0 ) A_ : Dict = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) A_ : Optional[int] = output.images A_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : Tuple = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self ) -> str: A_ : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("""sample_euler""" ) A_ : Optional[int] = """A painting of a squirrel eating a burger""" A_ : int = torch.manual_seed(0 ) A_ : Dict = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) A_ : int = output.images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCAmelCase_ ( self ) -> int: A_ : str = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) A_ : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) A_ : Dict = """A painting of a squirrel eating a burger""" A_ : Optional[int] = torch.manual_seed(0 ) A_ : Optional[Any] = sd_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=_lowerCamelCase , ) A_ : Optional[Any] = output.images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : Any = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
344
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
1
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCAmelCase ( a_ ) -> Callable: """simple docstring""" @wraps(a_ ) def _inner_fn(*a_ , **a_ ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , a_ , ) return fn(*a_ , **a_ ) return _inner_fn
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 @flax_register_to_config class _lowerCAmelCase ( nn.Module, __A, __A ): """simple docstring""" lowerCamelCase = 32 lowerCamelCase = 4 lowerCamelCase = 4 lowerCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCamelCase = False lowerCamelCase = (320, 640, 1280, 1280) lowerCamelCase = 2 lowerCamelCase = 8 lowerCamelCase = None lowerCamelCase = 1280 lowerCamelCase = 0.0 lowerCamelCase = False lowerCamelCase = jnp.floataa lowerCamelCase = True lowerCamelCase = 0 lowerCamelCase = False def UpperCAmelCase_ ( self , _lowerCamelCase ) -> FrozenDict: # init input tensors A_ : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) A_ : Optional[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) A_ : str = jnp.ones((1,) , dtype=jnp.intaa ) A_ : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ , A_ : int = jax.random.split(_lowerCamelCase ) A_ : Dict = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def UpperCAmelCase_ ( self ) -> List[Any]: A_ : str = self.block_out_channels A_ : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ : List[str] = self.num_attention_heads or self.attention_head_dim # input A_ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ : Dict = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ : Optional[int] = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) A_ : str = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Any = (num_attention_heads,) * len(self.down_block_types ) # down A_ : List[Any] = [] A_ : str = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): A_ : int = output_channel A_ : Tuple = block_out_channels[i] A_ : str = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ : Dict = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A_ : List[Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) A_ : Any = down_blocks # mid A_ : str = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up A_ : Any = [] A_ : str = list(reversed(_lowerCamelCase ) ) A_ : int = list(reversed(_lowerCamelCase ) ) A_ : Dict = list(reversed(_lowerCamelCase ) ) A_ : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): A_ : List[str] = output_channel A_ : List[Any] = reversed_block_out_channels[i] A_ : List[Any] = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] A_ : List[Any] = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": A_ : int = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A_ : Dict = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) A_ : str = output_channel A_ : str = up_blocks # out A_ : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) A_ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): A_ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ : Dict = timesteps.astype(dtype=jnp.floataa ) A_ : str = jnp.expand_dims(_lowerCamelCase , 0 ) A_ : List[str] = self.time_proj(_lowerCamelCase ) A_ : List[Any] = self.time_embedding(_lowerCamelCase ) # 2. pre-process A_ : str = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) A_ : Dict = self.conv_in(_lowerCamelCase ) # 3. down A_ : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ , A_ : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: A_ , A_ : List[str] = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: A_ : Optional[Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) A_ : List[str] = new_down_block_res_samples # 4. mid A_ : Union[str, Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: A_ : Dict = down_block_res_samples[-(self.layers_per_block + 1) :] A_ : str = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: A_ : int = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process A_ : int = self.conv_norm_out(_lowerCamelCase ) A_ : Optional[int] = nn.silu(_lowerCamelCase ) A_ : Tuple = self.conv_out(_lowerCamelCase ) A_ : Dict = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import sys def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" A_ : Any = len(a_ ) A_ : Any = [[0 for x in range(a_ )] for x in range(a_ )] A_ : Any = [[0 for x in range(a_ )] for x in range(a_ )] for chain_length in range(2 , a_ ): for a in range(1 , n - chain_length + 1 ): A_ : List[str] = a + chain_length - 1 A_ : str = sys.maxsize for c in range(a_ , a_ ): A_ : List[str] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A_ : Dict = cost A_ : Union[str, Any] = c return matrix, sol def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" if i == j: print("""A""" + str(a_ ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(a_ , a_ , optimal_solution[i][j] ) print_optiomal_solution(a_ , optimal_solution[i][j] + 1 , a_ ) print(""")""" , end=""" """ ) def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] A_ : int = len(a_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A_ , A_ : Optional[Any] = matrix_chain_order(a_ ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(a_ , 1 , n - 1 ) if __name__ == "__main__": main()
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) UpperCamelCase__ : Union[str, Any] = parser.parse_args() UpperCamelCase__ : Any = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
344
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def UpperCAmelCase ( a_ , a_ , a_=None , **a_ ) -> Optional[int]: """simple docstring""" A_ : Any = [x.strip() for x in open(a_ ).readlines()] A_ : Optional[int] = [x.strip() for x in open(a_ ).readlines()][: len(a_ )] A_ : List[str] = calculate_rouge(a_ , a_ , **a_ ) if save_path is not None: save_json(a_ , a_ , indent=a_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
344
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[Any]: debug_launcher(test_script.main ) def UpperCAmelCase_ ( self ) -> Dict: debug_launcher(test_ops.main )
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''beit''' def __init__( self , _lowerCamelCase=8192 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=[3, 5, 7, 11] , _lowerCamelCase=[1, 2, 3, 6] , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=256 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=255 , **_lowerCamelCase , ) -> Any: super().__init__(**_lowerCamelCase ) A_ : List[str] = vocab_size A_ : Any = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : Tuple = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : int = initializer_range A_ : int = layer_norm_eps A_ : Any = image_size A_ : Union[str, Any] = patch_size A_ : Optional[int] = num_channels A_ : Tuple = use_mask_token A_ : int = use_absolute_position_embeddings A_ : str = use_relative_position_bias A_ : Union[str, Any] = use_shared_relative_position_bias A_ : List[Any] = layer_scale_init_value A_ : Any = drop_path_rate A_ : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Optional[int] = out_indices A_ : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Tuple = use_auxiliary_head A_ : int = auxiliary_loss_weight A_ : int = auxiliary_channels A_ : Dict = auxiliary_num_convs A_ : Any = auxiliary_concat_input A_ : Any = semantic_loss_ignore_index class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" lowerCamelCase = None class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase = PandasConfig def UpperCAmelCase_ ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[Any]: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) A_ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : List[str] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A_ : List[str] = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ : Dict = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase_ ( self , _lowerCamelCase ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: for i, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , """rb""" ) as f: A_ : Union[str, Any] = pa.Table.from_pandas(pd.read_pickle(_lowerCamelCase ) ) yield i, self._cast_table(_lowerCamelCase )
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = '▁' UpperCamelCase__ : Union[str, Any] = {'vocab_file': 'spiece.model'} UpperCamelCase__ : Optional[Any] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCamelCase__ : int = { 'google/reformer-crime-and-punishment': 524_288, } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase=[] , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: A_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self ) -> Dict[str, int]: A_ : Optional[int] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: A_ : Tuple = self.__dict__.copy() A_ : str = None return state def __setstate__( self , _lowerCamelCase ) -> Optional[int]: A_ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : List[Any] = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: return self.sp_model.piece_to_id(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: if index < self.sp_model.get_piece_size(): A_ : List[Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Tuple: A_ : List[Any] = [] A_ : int = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token A_ : List[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A_ : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = 3_8_4 if "tiny" in model_name: A_ : Union[str, Any] = [3, 3, 9, 3] A_ : int = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: A_ : List[str] = [3, 3, 2_7, 3] A_ : str = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: A_ : str = [3, 3, 2_7, 3] A_ : List[Any] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] A_ : Optional[Any] = 5_1_2 if "large" in model_name: A_ : int = [3, 3, 2_7, 3] A_ : int = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] A_ : Union[str, Any] = 7_6_8 if "xlarge" in model_name: A_ : str = [3, 3, 2_7, 3] A_ : Optional[Any] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] A_ : Union[str, Any] = 1_0_2_4 # set label information A_ : Tuple = 1_5_0 A_ : List[Any] = """huggingface/label-files""" A_ : Tuple = """ade20k-id2label.json""" A_ : Union[str, Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : Optional[Any] = {int(a_ ): v for k, v in idalabel.items()} A_ : List[str] = {v: k for k, v in idalabel.items()} A_ : List[Any] = ConvNextConfig( depths=a_ , hidden_sizes=a_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) A_ : Any = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : str = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Tuple = dct.pop(a_ ) A_ : Dict = val def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" A_ : List[Any] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } A_ : Dict = model_name_to_url[model_name] A_ : str = torch.hub.load_state_dict_from_url(a_ , map_location="""cpu""" )["""state_dict"""] A_ : List[str] = get_upernet_config(a_ ) A_ : Union[str, Any] = UperNetForSemanticSegmentation(a_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ : Tuple = state_dict.pop(a_ ) if "bn" in key: A_ : List[Any] = key.replace("""bn""" , """batch_norm""" ) A_ : int = val # rename keys A_ : int = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) model.load_state_dict(a_ ) # verify on image A_ : List[str] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A_ : Union[str, Any] = Image.open(requests.get(a_ , stream=a_ ).raw ).convert("""RGB""" ) A_ : Union[str, Any] = SegformerImageProcessor() A_ : List[str] = processor(a_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A_ : List[str] = model(a_ ) if model_name == "upernet-convnext-tiny": A_ : Union[str, Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A_ : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A_ : int = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A_ : str = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A_ : Optional[int] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(a_ ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase__ : Any = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
344
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = False, False, False @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = None lowerCamelCase = True lowerCamelCase = True lowerCamelCase = None # Automatically constructed lowerCamelCase = "dict" lowerCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCamelCase = field(default='''Audio''', init=__A, repr=__A ) def __call__( self ) -> Union[str, Any]: return self.pa_type def UpperCAmelCase_ ( self , _lowerCamelCase ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(_lowerCamelCase , _lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes A_ : Any = BytesIO() sf.write(_lowerCamelCase , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) A_ : List[str] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: A_ : Optional[int] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2767 A_ : int = BytesIO(bytes() ) sf.write(_lowerCamelCase , _lowerCamelCase , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) A_ , A_ : Union[str, Any] = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err A_ : List[str] = xsplitext(_lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: A_ : Optional[int] = token_per_repo_id or {} A_ : Tuple = path.split("""::""" )[-1] try: A_ : Optional[Any] = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""] A_ : str = token_per_repo_id[repo_id] except (ValueError, KeyError): A_ : Any = None with xopen(_lowerCamelCase , """rb""" , use_auth_token=_lowerCamelCase ) as f: A_ , A_ : str = sf.read(_lowerCamelCase ) else: A_ , A_ : Optional[Any] = sf.read(_lowerCamelCase ) A_ : List[Any] = array.T if self.mono: A_ : int = librosa.to_mono(_lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: A_ : List[str] = librosa.resample(_lowerCamelCase , orig_sr=_lowerCamelCase , target_sr=self.sampling_rate ) A_ : Any = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def UpperCAmelCase_ ( self , _lowerCamelCase ) -> pa.StructArray: if pa.types.is_string(storage.type ): A_ : Any = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) A_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ : List[str] = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) A_ : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): A_ : List[str] = pa.array([Audio().encode_example(_lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A_ : Optional[Any] = storage.field("""bytes""" ) else: A_ : Dict = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A_ : List[str] = storage.field("""path""" ) else: A_ : Tuple = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) A_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase ): with xopen(_lowerCamelCase , """rb""" ) as f: A_ : Optional[int] = f.read() return bytes_ A_ : Dict = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ : Tuple = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type )
344
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
1
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" A_ : List[str] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( a_ , a_ , a_ ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) A_ : List[Any] = b * b - 4 * a * c A_ : Tuple = (-b + sqrt(a_ )) / (2 * a) A_ : List[Any] = (-b - sqrt(a_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ , A_ : List[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase__ : Optional[Any] = get_tests_dir('fixtures/dummy-config.json') class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Any: A_ : List[str] = 0 def UpperCAmelCase_ ( self ) -> List[Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[Any] = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Dict = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : List[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A_ : Tuple = os.path.join(_lowerCamelCase , """fake-roberta""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) A_ : Any = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertEqual(type(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: try: AutoConfig.register("""custom""" , _lowerCamelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCamelCase ): AutoConfig.register("""model""" , _lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCamelCase ): AutoConfig.register("""bert""" , _lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API A_ : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCamelCase ) A_ : int = AutoConfig.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase_ ( self ) -> List[Any]: with self.assertRaisesRegex( _lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): A_ : List[str] = AutoConfig.from_pretrained("""bert-base""" ) def UpperCAmelCase_ ( self ) -> int: with self.assertRaisesRegex( _lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ : Dict = AutoConfig.from_pretrained(_lowerCamelCase , revision="""aaaaaa""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _lowerCamelCase , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): A_ : Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCamelCase ): A_ : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCamelCase ): A_ : Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_lowerCamelCase ) A_ : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCamelCase ) A_ : Tuple = AutoConfig.from_pretrained(_lowerCamelCase , trust_remote_code=_lowerCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''new-model''' try: AutoConfig.register("""new-model""" , _lowerCamelCase ) # If remote code is not set, the default is to use local A_ : Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. A_ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub A_ : int = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
344
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]: # noqa: E741 """simple docstring""" while r - l > 1: A_ : Optional[int] = (l + r) // 2 if v[m] >= key: A_ : int = m else: A_ : List[str] = m # noqa: E741 return r def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if len(a_ ) == 0: return 0 A_ : List[Any] = [0] * len(a_ ) A_ : Union[str, Any] = 1 A_ : Dict = v[0] for i in range(1 , len(a_ ) ): if v[i] < tail[0]: A_ : Dict = v[i] elif v[i] > tail[length - 1]: A_ : int = v[i] length += 1 else: A_ : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: import torch A_ : Optional[Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) A_ : Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off A_ : int = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase_ ( self ) -> int: import torch A_ : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) A_ : Any = tokenizer(**self.metas )["""input_ids"""] # fmt: off A_ : List[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
344
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> Any: super().__init__() A_ : Tuple = nn.Linear(3 , 4 ) A_ : Optional[Any] = nn.BatchNormad(4 ) A_ : Dict = nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> int: return self.lineara(self.batchnorm(self.lineara(_lowerCamelCase ) ) ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> Any: return (args[0] + 1,) + args[1:], kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: return output + 1 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Union[str, Any] = ModelForTest() A_ : Optional[Any] = ModelHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(test_model._hf_hook , _lowerCamelCase ) self.assertTrue(hasattr(_lowerCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCamelCase ) self.assertFalse(hasattr(_lowerCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCamelCase , """_old_forward""" ) ) def UpperCAmelCase_ ( self ) -> Any: A_ : int = ModelForTest() A_ : int = ModelHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) add_hook_to_module(_lowerCamelCase , _lowerCamelCase , append=_lowerCamelCase ) self.assertEqual(isinstance(test_model._hf_hook , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowerCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCamelCase ) self.assertFalse(hasattr(_lowerCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCamelCase , """_old_forward""" ) ) def UpperCAmelCase_ ( self ) -> str: A_ : List[Any] = ModelForTest() A_ : List[Any] = torch.randn(2 , 3 ) A_ : Optional[int] = test_model(x + 1 ) A_ : Dict = test_model(x + 2 ) A_ : int = PreForwardHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = test_model(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A_ : str = PreForwardHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = test_model(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A_ : Tuple = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = test_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = ModelForTest() A_ : Optional[Any] = torch.randn(2 , 3 ) A_ : int = test_model(_lowerCamelCase ) A_ : List[Any] = PostForwardHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = test_model(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A_ : Dict = PostForwardHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : Any = test_model(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A_ : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = test_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , output + 2 , atol=1e-5 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = ModelForTest() A_ : Tuple = torch.randn(2 , 3 ) A_ : Optional[Any] = test_model(_lowerCamelCase ) A_ : Optional[Any] = PostForwardHook() add_hook_to_module(_lowerCamelCase , _lowerCamelCase ) A_ : Any = test_model(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) A_ : Dict = True A_ : Optional[Any] = test_model(_lowerCamelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A_ : Dict = torch.randn(2 , 3 ) A_ : List[Any] = model(_lowerCamelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowerCamelCase , AlignDevicesHook(io_same_device=_lowerCamelCase ) ) A_ : int = torch.randn(2 , 3 ).to(0 ) A_ : Optional[Any] = model(_lowerCamelCase ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : Dict = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCamelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : List[str] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCamelCase ) A_ : Any = torch.randn(2 , 3 ) A_ : Optional[int] = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload A_ : List[Any] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCamelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A_ : List[Any] = torch.randn(2 , 3 ) A_ : int = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowerCamelCase , execution_device=_lowerCamelCase , offload=_lowerCamelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : Optional[Any] = torch.device(_lowerCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCamelCase ) A_ : Tuple = torch.randn(2 , 3 ) A_ : Any = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowerCamelCase , execution_device=_lowerCamelCase , offload=_lowerCamelCase , offload_buffers=_lowerCamelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A_ : Tuple = torch.randn(2 , 3 ) A_ : Optional[int] = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase_ ( self ) -> str: A_ : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A_ : List[Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowerCamelCase , execution_device=_lowerCamelCase , offload=_lowerCamelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A_ : Optional[Any] = torch.device(_lowerCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCamelCase ) A_ : Tuple = torch.randn(2 , 3 ) A_ : int = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowerCamelCase , execution_device=_lowerCamelCase , offload=_lowerCamelCase , weights_map=model.state_dict() , offload_buffers=_lowerCamelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A_ : Tuple = torch.randn(2 , 3 ) A_ : List[Any] = model(_lowerCamelCase ) self.assertEqual(output.device , _lowerCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
344
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
'''simple docstring''' def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if index == number_of_items: return 0 A_ : Union[str, Any] = 0 A_ : str = 0 A_ : Optional[int] = knapsack(a_ , a_ , a_ , a_ , index + 1 ) if weights[index] <= max_weight: A_ : Optional[Any] = values[index] + knapsack( a_ , a_ , a_ , max_weight - weights[index] , index + 1 ) return max(a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , ) -> Tuple: A_ : str = size if size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : List[Any] = batch_size A_ : Tuple = num_channels A_ : List[str] = image_size A_ : Union[str, Any] = min_resolution A_ : List[Any] = max_resolution A_ : int = do_resize A_ : Optional[Any] = size A_ : List[str] = apply_ocr def UpperCAmelCase_ ( self ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[int] = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Tuple: A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """apply_ocr""" ) ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase_ ( self ) -> Any: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _lowerCamelCase ) self.assertIsInstance(encoding.boxes , _lowerCamelCase ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[Any]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Dict = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: # with apply_OCR = True A_ : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset A_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) A_ : List[str] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ : str = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 A_ : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCamelCase ) self.assertListEqual(encoding.boxes , _lowerCamelCase ) # with apply_OCR = False A_ : Any = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
344
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
1
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Dict = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCAmelCase_ ( self ) -> str: A_ : Dict = None ops.enable_eager_execution_internal() A_ : Tuple = tf.config.list_physical_devices("""CPU""" ) if len(_lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) A_ : str = tf.config.list_logical_devices(device_type="""CPU""" ) A_ : Union[str, Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): A_ : Any = GradientAccumulator() A_ : List[Any] = tf.Variable([4.0, 3.0] ) A_ , A_ : Optional[Any] = create_optimizer(5e-5 , 10 , 5 ) A_ : Tuple = tf.Variable([0.0, 0.0] , trainable=_lowerCamelCase ) def accumulate_on_replica(_lowerCamelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowerCamelCase , _lowerCamelCase ): with strategy.scope(): A_ : Union[str, Any] = strategy.experimental_local_results(_lowerCamelCase ) local_variables[0].assign(_lowerCamelCase ) local_variables[1].assign(_lowerCamelCase ) strategy.run(_lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowerCamelCase ) def _check_local_values(_lowerCamelCase , _lowerCamelCase ): A_ : Dict = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCamelCase__ : List[Any] = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def UpperCAmelCase ( a_=True ) -> List[str]: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__A ) ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = None lowerCamelCase = None def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Any: with TemporaryDirectory() as tmp_dir: A_ : Optional[Any] = dataset_module_factory(_lowerCamelCase , cache_dir=_lowerCamelCase ) A_ : List[Any] = import_main_class(dataset_module.module_path , dataset=_lowerCamelCase ) A_ : DatasetBuilder = builder_cls( cache_dir=_lowerCamelCase , config_name=_lowerCamelCase , hash=dataset_module.hash , ) A_ : str = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCamelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) A_ : Union[str, Any] = cached_path(_lowerCamelCase , cache_dir=_lowerCamelCase ) self.assertTrue(os.path.exists(_lowerCamelCase ) ) @pytest.mark.integration def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" A_ : int = dataset_module_factory("""wikipedia""" , cache_dir=a_ ) A_ : Tuple = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=a_ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : Any = None builder_instance.download_and_prepare() A_ : List[str] = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = dataset_module_factory("""wikipedia""" , cache_dir=a_ ) A_ : List[str] = import_main_class(dataset_module.module_path , dataset=a_ ) A_ : DatasetBuilder = builder_cls( cache_dir=a_ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) A_ : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a_ , a_ ) assert "train" in ds assert isinstance(ds["""train"""] , a_ ) assert next(iter(ds["""train"""] ) )
344
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def UpperCAmelCase ( a_ ) -> typing.Counter[int]: """simple docstring""" A_ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a_ , max_perimeter + 1 ): A_ : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a_ ): A_ : Any = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" A_ : Dict = pythagorean_triple(a_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'Perimeter {solution()} has maximum solutions')
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Union[str, Any] = """ylacombe/bark-small""" A_ : Union[str, Any] = tempfile.mkdtemp() A_ : Any = """en_speaker_1""" A_ : List[str] = """This is a test string""" A_ : Optional[int] = """speaker_embeddings_path.json""" A_ : List[str] = """speaker_embeddings""" def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> int: return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.get_tokenizer() A_ : int = BarkProcessor(tokenizer=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A_ : Any = 35 A_ : Dict = 2 A_ : int = 8 A_ : Union[str, Any] = { """semantic_prompt""": np.ones(_lowerCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A_ : Optional[Any] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) A_ : Any = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file A_ : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[int] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) A_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub A_ : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase_ ( self ) -> int: A_ : Dict = self.get_tokenizer() A_ : Union[str, Any] = BarkProcessor(tokenizer=_lowerCamelCase ) A_ : List[Any] = processor(text=self.input_string ) A_ : Dict = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
'''simple docstring''' def UpperCAmelCase ( a_ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) A_ : Optional[Any] = [True] * (num + 1) A_ : Tuple = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): A_ : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : List[str] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
344
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'vocab_file': 'spiece.model'} UpperCamelCase__ : Optional[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } UpperCamelCase__ : List[str] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = 2 UpperCamelCase__ : List[str] = 3 UpperCamelCase__ : Tuple = 4 class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<sep>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<cls>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<eop>", "<eod>"] , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it A_ : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Tuple = 3 A_ : int = do_lower_case A_ : Optional[int] = remove_space A_ : int = keep_accents A_ : Optional[int] = vocab_file A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> Dict: return len(self.sp_model ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Any = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: A_ : Optional[int] = self.__dict__.copy() A_ : Union[str, Any] = None return state def __setstate__( self , _lowerCamelCase ) -> Optional[Any]: A_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : List[str] = {} A_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: if self.remove_space: A_ : Union[str, Any] = """ """.join(inputs.strip().split() ) else: A_ : Dict = inputs A_ : List[Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A_ : Dict = unicodedata.normalize("""NFKD""" , _lowerCamelCase ) A_ : List[str] = """""".join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : List[str] = outputs.lower() return outputs def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Union[str, Any] = self.preprocess_text(_lowerCamelCase ) A_ : Union[str, Any] = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : Dict = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : int = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: return self.sp_model.PieceToId(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Union[str, Any] = """""".join(_lowerCamelCase ).replace(_lowerCamelCase , """ """ ).strip() return out_string def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) -> str: A_ : Any = kwargs.pop("""use_source_tokenizer""" , _lowerCamelCase ) A_ : Optional[Any] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Tuple = [] A_ : Union[str, Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : Any = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = """""".join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Union[str, Any] = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: A_ : List[Any] = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: A_ : int = [self.sep_token_id] A_ : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
344
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Dict = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[str]: """simple docstring""" for attribute in key.split(""".""" ): A_ : List[str] = getattr(a_ , a_ ) if weight_type is not None: A_ : int = getattr(a_ , a_ ).shape else: A_ : str = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Tuple = value elif weight_type == "weight_g": A_ : Dict = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : str = value else: A_ : Optional[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" A_ : Union[str, Any] = [] A_ : int = fairseq_model.state_dict() A_ : Optional[int] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Any = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == """group""" , ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): A_ : Dict = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): A_ : Dict = True if "*" in mapped_key: A_ : Optional[int] = name.split(a_ )[0].split(""".""" )[-2] A_ : int = mapped_key.replace("""*""" , a_ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : List[str] = """weight_v""" elif "weight" in name: A_ : int = """weight""" elif "bias" in name: A_ : Union[str, Any] = """bias""" else: A_ : Any = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Tuple: """simple docstring""" A_ : str = full_name.split("""conv_layers.""" )[-1] A_ : Tuple = name.split(""".""" ) A_ : Tuple = int(items[0] ) A_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_=None , a_=None , a_=True ) -> Tuple: """simple docstring""" if config_path is not None: A_ : Tuple = HubertConfig.from_pretrained(a_ ) else: A_ : List[str] = HubertConfig() if is_finetuned: if dict_path: A_ : Dict = Dictionary.load(a_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : Optional[Any] = target_dict.pad_index A_ : List[Any] = target_dict.bos_index A_ : Any = target_dict.eos_index A_ : Optional[Any] = len(target_dict.symbols ) A_ : Any = os.path.join(a_ , """vocab.json""" ) if not os.path.isdir(a_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a_ ) ) return os.makedirs(a_ , exist_ok=a_ ) with open(a_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , a_ ) A_ : Optional[Any] = WavaVecaCTCTokenizer( a_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=a_ , ) A_ : int = True if config.feat_extract_norm == """layer""" else False A_ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=a_ , return_attention_mask=a_ , ) A_ : int = WavaVecaProcessor(feature_extractor=a_ , tokenizer=a_ ) processor.save_pretrained(a_ ) A_ : int = HubertForCTC(a_ ) else: A_ : Tuple = HubertModel(a_ ) if is_finetuned: A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A_ , A_ , A_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ : Optional[Any] = model[0].eval() recursively_load_weights(a_ , a_ , a_ ) hf_wavavec.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ : int = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
'''simple docstring''' def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) -> Tuple: A_ : str = parent A_ : Tuple = batch_size A_ : int = seq_length A_ : List[Any] = is_training A_ : Dict = use_input_mask A_ : Any = use_token_type_ids A_ : List[str] = use_labels A_ : Dict = vocab_size A_ : Optional[int] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : str = num_attention_heads A_ : Tuple = intermediate_size A_ : Dict = hidden_act A_ : List[str] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : List[Any] = num_labels A_ : Union[str, Any] = num_choices A_ : str = scope def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Union[str, Any] = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Optional[int] = None A_ : Dict = None A_ : List[Any] = None if self.use_labels: A_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> List[str]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Dict = DistilBertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : Optional[Any] = DistilBertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[Any] = DistilBertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[Any] = self.num_labels A_ : Any = DistilBertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Dict = self.num_labels A_ : Optional[int] = DistilBertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.num_choices A_ : List[str] = DistilBertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Tuple = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) : Dict = config_and_inputs A_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = DistilBertModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , dim=37 ) def UpperCAmelCase_ ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> List[str]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = DistilBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> List[Any]: A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A_ : str = True A_ : Optional[int] = model_class(config=_lowerCamelCase ) A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = torch.jit.trace( _lowerCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase , os.path.join(_lowerCamelCase , """traced_model.pt""" ) ) A_ : Union[str, Any] = torch.jit.load(os.path.join(_lowerCamelCase , """traced_model.pt""" ) , map_location=_lowerCamelCase ) loaded(inputs_dict["""input_ids"""].to(_lowerCamelCase ) , inputs_dict["""attention_mask"""].to(_lowerCamelCase ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ : Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A_ : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) A_ : Tuple = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" while a != 0: A_ , A_ : Union[str, Any] = b % a, a return b def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if gcd(a_ , a_ ) != 1: A_ : Any = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(a_ ) A_ , A_ , A_ : str = 1, 0, a A_ , A_ , A_ : Tuple = 0, 1, m while va != 0: A_ : str = ua // va A_ , A_ , A_ , A_ , A_ , A_ : Optional[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) A_ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) A_ : str = 0.01 with locka.acquire(): with pytest.raises(a_ ): A_ : Any = time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Any = """a""" * 1_0_0_0 + """.lock""" A_ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 A_ : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
344
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
1
'''simple docstring''' import operator as op UpperCamelCase__ : Union[str, Any] = 'scaler.pt' UpperCamelCase__ : Any = 'pytorch_model' UpperCamelCase__ : Any = 'random_states' UpperCamelCase__ : Tuple = 'optimizer' UpperCamelCase__ : Any = 'scheduler' UpperCamelCase__ : Any = 'pytorch_model.bin' UpperCamelCase__ : Dict = 'pytorch_model.bin.index.json' UpperCamelCase__ : Optional[Any] = 'model.safetensors' UpperCamelCase__ : str = 'model.safetensors.index.json' UpperCamelCase__ : Any = '1.10.2' UpperCamelCase__ : str = 'py38' UpperCamelCase__ : List[Any] = '4.17.0' UpperCamelCase__ : str = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] UpperCamelCase__ : str = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] UpperCamelCase__ : str = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] UpperCamelCase__ : str = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] UpperCamelCase__ : List[str] = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] UpperCamelCase__ : Optional[Any] = '2.0.1' UpperCamelCase__ : List[Any] = ['pdsh', 'standard', 'openmpi', 'mvapich'] UpperCamelCase__ : List[Any] = ['default', 'reduce-overhead', 'max-autotune'] UpperCamelCase__ : Union[str, Any] = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase__ : Any = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] UpperCamelCase__ : Optional[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] UpperCamelCase__ : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
344
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = None A_ : List[Any] = None A_ : List[str] = graph self._normalize_graph(_lowerCamelCase , _lowerCamelCase ) A_ : str = len(_lowerCamelCase ) A_ : str = None def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[str]: if sources is int: A_ : Tuple = [sources] if sinks is int: A_ : List[str] = [sinks] if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) == 0: return A_ : Optional[Any] = sources[0] A_ : List[str] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCamelCase ) > 1 or len(_lowerCamelCase ) > 1: A_ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A_ : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A_ : int = max_input_flow A_ : str = 0 A_ : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A_ : Optional[Any] = max_input_flow A_ : str = size - 1 def UpperCAmelCase_ ( self ) -> str: if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: A_ : Union[str, Any] = algorithm(self ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Tuple: A_ : List[Any] = flow_network A_ : Union[str, Any] = flow_network.verticesCount A_ : List[Any] = flow_network.sourceIndex A_ : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A_ : Optional[int] = flow_network.graph A_ : Optional[int] = False def UpperCAmelCase_ ( self ) -> Optional[int]: if not self.executed: self._algorithm() A_ : Optional[Any] = True def UpperCAmelCase_ ( self ) -> List[str]: pass class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase ) -> List[Any]: super().__init__(_lowerCamelCase ) # use this to save your result A_ : Dict = -1 def UpperCAmelCase_ ( self ) -> Any: if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: super().__init__(_lowerCamelCase ) A_ : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] A_ : List[Any] = [0] * self.verticies_count A_ : Union[str, Any] = [0] * self.verticies_count def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : List[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A_ : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A_ : List[Any] = 0 while i < len(_lowerCamelCase ): A_ : str = vertices_list[i] A_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(_lowerCamelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCamelCase ) ) A_ : Union[str, Any] = 0 else: i += 1 A_ : Any = sum(self.preflow[self.source_index] ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCamelCase , _lowerCamelCase ) self.relabel(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Dict = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A_ : List[Any] = self.heights[to_index] if min_height is not None: A_ : Optional[Any] = min_height + 1 if __name__ == "__main__": UpperCamelCase__ : List[Any] = [0] UpperCamelCase__ : List[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase__ : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase__ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase__ : Any = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
'''simple docstring''' import math class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 A_ : Optional[Any] = n A_ : List[str] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # adjacency matrix for weight A_ : Tuple = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Optional[int] = w def UpperCAmelCase_ ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: return self.dp[u][v] if __name__ == "__main__": UpperCamelCase__ : Any = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase ( a_ , a_=False ) -> Optional[Any]: """simple docstring""" A_ : Dict = OmegaConf.load(a_ ) if display: print(yaml.dump(OmegaConf.to_container(a_ ) ) ) return config def UpperCAmelCase ( a_ , a_=None , a_=None ) -> Union[str, Any]: """simple docstring""" if conf_path is None: A_ : Any = """./model_checkpoints/vqgan_only.yaml""" A_ : str = load_config(a_ , display=a_ ) A_ : int = VQModel(**config.model.params ) if ckpt_path is None: A_ : str = """./model_checkpoints/vqgan_only.pt""" A_ : int = torch.load(a_ , map_location=a_ ) if ".ckpt" in ckpt_path: A_ : Tuple = sd["""state_dict"""] model.load_state_dict(a_ , strict=a_ ) model.to(a_ ) del sd return model def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ , A_ , A_ : Dict = model.encode(a_ ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) A_ : List[Any] = model.decode(a_ ) return xrec def UpperCAmelCase ( a_ , a_=False ) -> Union[str, Any]: """simple docstring""" A_ , A_ : Optional[int] = string.rsplit(""".""" , 1 ) if reload: A_ : Optional[int] = importlib.import_module(a_ ) importlib.reload(a_ ) return getattr(importlib.import_module(a_ , package=a_ ) , cls ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def UpperCAmelCase ( a_ , a_ , a_=True , a_=True ) -> Optional[int]: """simple docstring""" A_ : str = instantiate_from_config(a_ ) if sd is not None: model.load_state_dict(a_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if ckpt: A_ : str = torch.load(a_ , map_location="""cpu""" ) A_ : List[Any] = pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: A_ : Optional[Any] = {"""state_dict""": None} A_ : Optional[Any] = None A_ : int = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=a_ , eval_mode=a_ )["""model"""] return model, global_step
344
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' def UpperCAmelCase ( a_ , a_ = 0 ) -> list: """simple docstring""" A_ : int = length or len(a_ ) A_ : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A_ , A_ : Optional[Any] = list_data[i + 1], list_data[i] A_ : Tuple = True return list_data if not swapped else bubble_sort(a_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: A_ : Optional[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCamelCase ) A_ : List[Any] = self.values[key] def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( sum(self.charge_factor - len(_lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCamelCase ) == 0 ): return key return super()._collision_resolution(_lowerCamelCase , _lowerCamelCase )
344
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase__ : List[Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCAmelCase ( a_ , a_=None ) -> Dict: """simple docstring""" require_version(deps[pkg] , a_ )
344
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (DDPMParallelScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Optional[Any]: A_ : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def UpperCAmelCase_ ( self ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Any = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Tuple: A_ : Tuple = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Union[str, Any] = scheduler_class(**_lowerCamelCase ) A_ : Optional[int] = len(_lowerCamelCase ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = self.dummy_sample_deter + 0.1 A_ : Optional[Any] = self.dummy_sample_deter - 0.1 A_ : List[Any] = samplea.shape[0] A_ : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) A_ : Optional[Any] = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) A_ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A_ : str = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) A_ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def UpperCAmelCase_ ( self ) -> str: A_ : int = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**_lowerCamelCase ) A_ : Union[str, Any] = len(_lowerCamelCase ) A_ : Dict = self.dummy_model() A_ : Any = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Union[str, Any] = pred_prev_sample A_ : int = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[Any] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ : int = scheduler_class(**_lowerCamelCase ) A_ : Dict = len(_lowerCamelCase ) A_ : Union[str, Any] = self.dummy_model() A_ : List[str] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual A_ : str = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[str] = pred_prev_sample A_ : str = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : List[Any] = scheduler_class(**_lowerCamelCase ) A_ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) A_ : List[str] = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: A_ : int = -1 else: A_ : Dict = timesteps[i + 1] A_ : Union[str, Any] = scheduler.previous_timestep(_lowerCamelCase ) A_ : str = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[Any] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) A_ : List[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : str = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = [100, 87, 50, 1, 0] A_ : List[str] = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : str = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
344
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : Optional[int] = cst_fwd.get(a_ , np.inf ) A_ : Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ : str = new_cost_f A_ : List[Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" A_ : Tuple = -1 A_ : Union[str, Any] = set() A_ : Tuple = set() A_ : List[str] = {source: 0} A_ : Union[str, Any] = {destination: 0} A_ : Optional[Any] = {source: None} A_ : Any = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Any = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ : Dict = queue_forward.get() visited_forward.add(a_ ) A_ , A_ : Optional[Any] = queue_backward.get() visited_backward.add(a_ ) A_ : int = pass_and_relaxation( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) A_ : Any = pass_and_relaxation( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : Optional[int] = shortest_distance return shortest_path_distance UpperCamelCase__ : int = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } UpperCamelCase__ : Optional[int] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
1
'''simple docstring''' import pytest UpperCamelCase__ : Optional[int] = '__dummy_dataset1__' UpperCamelCase__ : List[Any] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase ( ) -> str: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" A_ : Union[str, Any] = dataset_loading_script_name A_ : Dict = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=a_ ) A_ : str = script_dir / F"{script_name}.py" with open(a_ , """w""" ) as f: f.write(a_ ) return str(a_ )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCAmelCase : """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Any: return self.get_dummy_input() @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def UpperCAmelCase_ ( self , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , ) -> str: A_ : Union[str, Any] = 4 A_ : str = 32 A_ : Optional[Any] = (32, 32) A_ : str = torch.manual_seed(0 ) A_ : Dict = torch.device(_lowerCamelCase ) A_ : Optional[Any] = (batch_size, num_channels) + sizes A_ : Dict = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase ) A_ : Any = {"""hidden_states""": hidden_states} if include_temb: A_ : str = 128 A_ : Tuple = randn_tensor((batch_size, temb_channels) , generator=_lowerCamelCase , device=_lowerCamelCase ) if include_res_hidden_states_tuple: A_ : int = torch.manual_seed(1 ) A_ : Tuple = (randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase ),) if include_encoder_hidden_states: A_ : Union[str, Any] = floats_tensor((batch_size, 32, 32) ).to(_lowerCamelCase ) if include_skip_sample: A_ : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCamelCase , device=_lowerCamelCase ) return dummy_input def UpperCAmelCase_ ( self ) -> Any: A_ : Union[str, Any] = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A_ : List[Any] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A_ : Tuple = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Any: A_ , A_ : List[Any] = self.prepare_init_args_and_inputs_for_common() A_ : str = self.block_class(**_lowerCamelCase ) unet_block.to(_lowerCamelCase ) unet_block.eval() with torch.no_grad(): A_ : List[str] = unet_block(**_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = output[0] self.assertEqual(output.shape , self.output_shape ) A_ : Dict = output[0, -1, -3:, -3:] A_ : Dict = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) assert torch_all_close(output_slice.flatten() , _lowerCamelCase , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : int = self.prepare_init_args_and_inputs_for_common() A_ : Optional[int] = self.block_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : Optional[Any] = model(**_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = output[0] A_ : Optional[Any] = torch.device(_lowerCamelCase ) A_ : Tuple = randn_tensor(output.shape , device=_lowerCamelCase ) A_ : List[Any] = torch.nn.functional.mse_loss(_lowerCamelCase , _lowerCamelCase ) loss.backward()
344
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''deformable_detr''' lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.25 , _lowerCamelCase=False , **_lowerCamelCase , ) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = backbone_config.get("""model_type""" ) A_ : Tuple = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(_lowerCamelCase ) A_ : int = use_timm_backbone A_ : str = backbone_config A_ : List[str] = num_channels A_ : Dict = num_queries A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = d_model A_ : Any = encoder_ffn_dim A_ : Optional[int] = encoder_layers A_ : int = encoder_attention_heads A_ : Dict = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : int = decoder_attention_heads A_ : Optional[int] = dropout A_ : List[str] = attention_dropout A_ : int = activation_dropout A_ : Optional[int] = activation_function A_ : str = init_std A_ : Any = init_xavier_std A_ : List[str] = encoder_layerdrop A_ : Any = auxiliary_loss A_ : Optional[int] = position_embedding_type A_ : List[Any] = backbone A_ : Optional[int] = use_pretrained_backbone A_ : Optional[int] = dilation # deformable attributes A_ : int = num_feature_levels A_ : Optional[int] = encoder_n_points A_ : int = decoder_n_points A_ : Union[str, Any] = two_stage A_ : List[Any] = two_stage_num_proposals A_ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher A_ : Optional[int] = class_cost A_ : List[str] = bbox_cost A_ : Tuple = giou_cost # Loss coefficients A_ : Optional[Any] = mask_loss_coefficient A_ : Any = dice_loss_coefficient A_ : str = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : Tuple = eos_coefficient A_ : str = focal_alpha A_ : Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self ) -> int: return self.d_model def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A_ : Optional[Any] = self.backbone_config.to_dict() A_ : Optional[int] = self.__class__.model_type return output
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase__ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' UpperCamelCase__ : Tuple = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' UpperCamelCase__ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="auto" , _lowerCamelCase=-1 , _lowerCamelCase=0.9 , _lowerCamelCase=5 , _lowerCamelCase=500 , _lowerCamelCase="gpt2-large" , _lowerCamelCase=-1 , _lowerCamelCase=1024 , _lowerCamelCase=25 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase=25 , ) -> List[str]: A_ : str = compute_mauve( p_text=_lowerCamelCase , q_text=_lowerCamelCase , p_features=_lowerCamelCase , q_features=_lowerCamelCase , p_tokens=_lowerCamelCase , q_tokens=_lowerCamelCase , num_buckets=_lowerCamelCase , pca_max_data=_lowerCamelCase , kmeans_explained_var=_lowerCamelCase , kmeans_num_redo=_lowerCamelCase , kmeans_max_iter=_lowerCamelCase , featurize_model_name=_lowerCamelCase , device_id=_lowerCamelCase , max_text_length=_lowerCamelCase , divergence_curve_discretization_size=_lowerCamelCase , mauve_scaling_factor=_lowerCamelCase , verbose=_lowerCamelCase , seed=_lowerCamelCase , ) return out
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Tuple = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCamelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''git_vision_model''' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=3072 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase="quick_gelu" , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , **_lowerCamelCase , ) -> Any: super().__init__(**_lowerCamelCase ) A_ : List[str] = hidden_size A_ : Tuple = intermediate_size A_ : Tuple = num_hidden_layers A_ : Tuple = num_attention_heads A_ : int = num_channels A_ : Optional[int] = patch_size A_ : str = image_size A_ : List[Any] = initializer_range A_ : Union[str, Any] = attention_dropout A_ : List[str] = layer_norm_eps A_ : Dict = hidden_act @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowerCamelCase ) A_ , A_ : Union[str, Any] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": A_ : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''git''' def __init__( self , _lowerCamelCase=None , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1024 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=101 , _lowerCamelCase=102 , _lowerCamelCase=None , **_lowerCamelCase , ) -> str: super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , pad_token_id=_lowerCamelCase , **_lowerCamelCase ) if vision_config is None: A_ : Optional[Any] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) A_ : List[Any] = GitVisionConfig(**_lowerCamelCase ) A_ : List[Any] = vocab_size A_ : Tuple = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = hidden_act A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[int] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[Any] = position_embedding_type A_ : Optional[Any] = use_cache A_ : Any = tie_word_embeddings A_ : List[Any] = num_image_with_embedding A_ : Optional[int] = bos_token_id A_ : Tuple = eos_token_id def UpperCAmelCase_ ( self ) -> int: A_ : Optional[int] = copy.deepcopy(self.__dict__ ) A_ : Any = self.vision_config.to_dict() A_ : Any = self.__class__.model_type return output
344
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
1
'''simple docstring''' import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" A_ : List[Any] = end or len(a_ ) for i in range(a_ , a_ ): A_ : Optional[int] = i A_ : Dict = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: A_ : List[Any] = array[temp_index - 1] temp_index -= 1 A_ : Tuple = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" A_ : List[Any] = index A_ : List[str] = 2 * index + 1 # Left Node A_ : List[str] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: A_ : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: A_ : Optional[int] = right_index if largest != index: A_ , A_ : List[str] = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" A_ : List[str] = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): A_ , A_ : str = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" A_ : str = low A_ : List[Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i A_ , A_ : Dict = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array A_ : Dict = 2 * math.ceil(math.loga(len(a_ ) ) ) A_ : Tuple = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 A_ : Union[str, Any] = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) A_ : Optional[int] = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) A_ : Any = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Tuple = input('Enter numbers separated by a comma : ').strip() UpperCamelCase__ : Optional[int] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
344
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
1
'''simple docstring''' from sklearn.metrics import recall_score import datasets UpperCamelCase__ : str = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' UpperCamelCase__ : Dict = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' UpperCamelCase__ : Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase="binary" , _lowerCamelCase=None , _lowerCamelCase="warn" , ) -> Tuple: A_ : Dict = recall_score( _lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase , pos_label=_lowerCamelCase , average=_lowerCamelCase , sample_weight=_lowerCamelCase , zero_division=_lowerCamelCase , ) return {"recall": float(_lowerCamelCase ) if score.size == 1 else score}
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase__ : str = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: super().__init__(**_lowerCamelCase ) A_ : int = size if size is not None else {"""shortest_edge""": 256} A_ : Dict = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A_ : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Union[str, Any] = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) A_ : int = do_resize A_ : Any = size A_ : Optional[int] = resample A_ : List[Any] = do_center_crop A_ : List[Any] = crop_size A_ : List[Any] = do_rescale A_ : Tuple = rescale_factor A_ : Optional[Any] = do_normalize A_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ) -> np.ndarray: A_ : List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) A_ : Any = get_resize_output_image_size(_lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) -> np.ndarray: A_ : Optional[int] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(_lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ) -> np.ndarray: return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) -> np.ndarray: return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) -> Optional[Any]: A_ : Dict = do_resize if do_resize is not None else self.do_resize A_ : str = size if size is not None else self.size A_ : str = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A_ : Optional[Any] = resample if resample is not None else self.resample A_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : int = crop_size if crop_size is not None else self.crop_size A_ : Optional[Any] = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) A_ : str = do_rescale if do_rescale is not None else self.do_rescale A_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize A_ : List[Any] = image_mean if image_mean is not None else self.image_mean A_ : Optional[Any] = image_std if image_std is not None else self.image_std A_ : List[Any] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A_ : List[str] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: A_ : Optional[Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: A_ : Optional[int] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: A_ : Tuple = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: A_ : Dict = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] A_ : Optional[int] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] A_ : Any = {"""pixel_values""": images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[str]: A_ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowerCamelCase ): A_ : Union[str, Any] = target_sizes.numpy() A_ : Any = [] for idx in range(len(_lowerCamelCase ) ): A_ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowerCamelCase ) A_ : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCamelCase ) else: A_ : List[Any] = logits.argmax(dim=1 ) A_ : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> str: """simple docstring""" A_ : Any = 0 A_ : Tuple = 0 while num > 0: A_ : Tuple = num % 8 A_ : List[str] = octal + (remainder * math.floor(math.pow(1_0 , a_ ) )) counter += 1 A_ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(a_ )}" def UpperCAmelCase ( ) -> None: """simple docstring""" print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(6_5 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(2_1_6 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> Optional[int]: super().__init__(**_lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A_ : Union[str, Any] = kwargs.pop("""encoder""" ) A_ : int = encoder_config.pop("""model_type""" ) A_ : Dict = kwargs.pop("""decoder""" ) A_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[int] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : Optional[Any] = True A_ : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : int = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : List[str] = self.__class__.model_type return output
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : Optional[Any] = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['ViTFeatureExtractor'] UpperCamelCase__ : Optional[Any] = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = XLMTokenizer lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A_ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Dict = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : List[Any] = """lower newer""" A_ : Dict = """lower newer""" return input_text, output_text def UpperCAmelCase_ ( self ) -> int: A_ : List[str] = XLMTokenizer(self.vocab_file , self.merges_file ) A_ : Tuple = """lower""" A_ : Any = ["""low""", """er</w>"""] A_ : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = tokens + ["""<unk>"""] A_ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) A_ : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) A_ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) A_ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Any = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
344
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: A_ : List[Any] = parent A_ : int = config_class A_ : int = has_text_modality A_ : str = kwargs A_ : int = common_properties def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : Optional[int] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: A_ : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F"`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = self.config_class(**self.inputs_dict ) A_ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = os.path.join(_lowerCamelCase , """config.json""" ) config_first.to_json_file(_lowerCamelCase ) A_ : Dict = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) A_ : Union[str, Any] = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.config_class(**self.inputs_dict ) A_ : List[Any] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) A_ : Any = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ : str = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_class.is_composition: return A_ : Dict = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = copy.deepcopy(_lowerCamelCase ) A_ : Tuple = self.config_class(**_lowerCamelCase ) A_ : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: A_ : List[Any] = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def UpperCAmelCase_ ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''unispeech''' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=0 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=0.5 , **_lowerCamelCase , ) -> Optional[Any]: super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) A_ : Any = hidden_size A_ : Any = feat_extract_norm A_ : Dict = feat_extract_activation A_ : Any = list(_lowerCamelCase ) A_ : Tuple = list(_lowerCamelCase ) A_ : Union[str, Any] = list(_lowerCamelCase ) A_ : List[Any] = conv_bias A_ : List[str] = num_conv_pos_embeddings A_ : Dict = num_conv_pos_embedding_groups A_ : Union[str, Any] = len(self.conv_dim ) A_ : List[Any] = num_hidden_layers A_ : Optional[int] = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Tuple = num_attention_heads A_ : Optional[int] = hidden_dropout A_ : Optional[int] = attention_dropout A_ : List[str] = activation_dropout A_ : int = feat_proj_dropout A_ : List[str] = final_dropout A_ : Optional[int] = layerdrop A_ : Optional[int] = layer_norm_eps A_ : Tuple = initializer_range A_ : Dict = num_ctc_classes A_ : Any = vocab_size A_ : Union[str, Any] = do_stable_layer_norm A_ : Tuple = use_weighted_layer_sum A_ : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Optional[int] = apply_spec_augment A_ : Dict = mask_time_prob A_ : Tuple = mask_time_length A_ : Optional[Any] = mask_time_min_masks A_ : List[str] = mask_feature_prob A_ : Any = mask_feature_length A_ : str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ : Tuple = num_codevectors_per_group A_ : Union[str, Any] = num_codevector_groups A_ : Dict = contrastive_logits_temperature A_ : List[str] = feat_quantizer_dropout A_ : Optional[Any] = num_negatives A_ : Optional[Any] = codevector_dim A_ : Dict = proj_codevector_dim A_ : Union[str, Any] = diversity_loss_weight # ctc loss A_ : int = ctc_loss_reduction A_ : Optional[Any] = ctc_zero_infinity # pretraining loss A_ : Any = replace_prob @property def UpperCAmelCase_ ( self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
344
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" try: with open(a_ , """rb""" ) as flax_state_f: A_ : Tuple = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> Any: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights A_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) A_ : str = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) A_ : Any = """""" A_ : Optional[int] = flatten_dict(a_ , sep=""".""" ) A_ : List[str] = pt_model.state_dict() # keep track of unexpected & missing keys A_ : Union[str, Any] = [] A_ : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ : List[Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[Any] = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ : int = flax_key_tuple_array[:-1] + ["""weight"""] A_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): A_ : Tuple = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) A_ : Dict = """.""".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict A_ : Optional[Any] = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor A_ : Tuple = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list A_ : Dict = list(a_ ) if len(a_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(a_ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" """ use it for predictions and inference.""" ) return pt_model
344
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : Dict = UniSpeechSatForSequenceClassification.from_pretrained(a_ , config=a_ ) A_ : int = downstream_dict["""projector.weight"""] A_ : List[str] = downstream_dict["""projector.bias"""] A_ : List[str] = downstream_dict["""model.post_net.linear.weight"""] A_ : Optional[int] = downstream_dict["""model.post_net.linear.bias"""] return model def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = UniSpeechSatForAudioFrameClassification.from_pretrained(a_ , config=a_ ) A_ : Dict = downstream_dict["""model.linear.weight"""] A_ : Tuple = downstream_dict["""model.linear.bias"""] return model def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = UniSpeechSatForXVector.from_pretrained(a_ , config=a_ ) A_ : Optional[Any] = downstream_dict["""connector.weight"""] A_ : str = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A_ : Dict = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] A_ : str = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] A_ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] A_ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] A_ : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] A_ : Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] A_ : Any = downstream_dict["""objective.W"""] return model @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[Any] = torch.load(a_ , map_location="""cpu""" ) A_ : Optional[Any] = checkpoint["""Downstream"""] A_ : Optional[int] = UniSpeechSatConfig.from_pretrained(a_ ) A_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( a_ , return_attention_mask=a_ , do_normalize=a_ ) A_ : List[str] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): A_ : Any = convert_classification(a_ , a_ , a_ ) elif arch.endswith("""ForAudioFrameClassification""" ): A_ : Any = convert_diarization(a_ , a_ , a_ ) elif arch.endswith("""ForXVector""" ): A_ : Optional[int] = convert_xvector(a_ , a_ , a_ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: A_ : Any = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCamelCase__ : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Any = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''open-llama''' def __init__( self , _lowerCamelCase=10_0000 , _lowerCamelCase=4096 , _lowerCamelCase=1_1008 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase="silu" , _lowerCamelCase=2048 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) -> Optional[int]: A_ : List[str] = vocab_size A_ : Dict = max_position_embeddings A_ : Dict = hidden_size A_ : List[Any] = intermediate_size A_ : int = num_hidden_layers A_ : Dict = num_attention_heads A_ : Any = hidden_act A_ : int = initializer_range A_ : Dict = rms_norm_eps A_ : Optional[Any] = use_cache A_ : int = kwargs.pop( """use_memorry_efficient_attention""" , _lowerCamelCase ) A_ : Dict = hidden_dropout_prob A_ : Optional[Any] = attention_dropout_prob A_ : Optional[int] = use_stable_embedding A_ : List[Any] = shared_input_output_embedding A_ : int = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase_ ( self ) -> List[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"got {self.rope_scaling}" ) A_ : List[Any] = self.rope_scaling.get("""type""" , _lowerCamelCase ) A_ : Union[str, Any] = self.rope_scaling.get("""factor""" , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''funnel''' lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=64 , _lowerCamelCase=3072 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=None , _lowerCamelCase=1e-9 , _lowerCamelCase="mean" , _lowerCamelCase="relative_shift" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ) -> Optional[int]: A_ : Optional[Any] = vocab_size A_ : List[str] = block_sizes A_ : str = [1] * len(_lowerCamelCase ) if block_repeats is None else block_repeats assert len(_lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A_ : str = num_decoder_layers A_ : Tuple = d_model A_ : Dict = n_head A_ : Dict = d_head A_ : Any = d_inner A_ : Dict = hidden_act A_ : int = hidden_dropout A_ : Optional[int] = attention_dropout A_ : Dict = activation_dropout A_ : Tuple = initializer_range A_ : List[str] = initializer_std A_ : int = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." A_ : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." A_ : str = attention_type A_ : List[str] = separate_cls A_ : Optional[Any] = truncate_seq A_ : Dict = pool_q_only super().__init__(**_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> List[Any]: return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCAmelCase_ ( self ) -> List[str]: return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
344
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ : int = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Dict = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) A_ : Tuple = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A_ : Union[str, Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim A_ : List[str] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A_ : Optional[Any] = model(_lowerCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) A_ : List[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A_ : List[Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim A_ : Optional[int] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A_ : int = model(_lowerCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) )
344
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase__ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> str: A_ : Optional[int] = parent A_ : Dict = batch_size A_ : List[Any] = image_size A_ : Optional[int] = patch_size A_ : List[str] = num_channels A_ : List[Any] = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_size A_ : str = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Any = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = scope A_ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Tuple = (image_size // patch_size) ** 2 A_ : Union[str, Any] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[str] = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : int = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : Optional[int] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : int = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = self.type_sequence_label_size A_ : Tuple = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Dict = 1 A_ : Any = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : str = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: A_ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: if not self.model_tester.is_training: return A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> int: A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : Any = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : Dict = problem_type["""title"""] A_ : List[Any] = problem_type["""num_labels"""] A_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : List[str] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Tuple: A_ : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : Optional[int] = self.default_image_processor A_ : str = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : Any = model(**_lowerCamelCase ) # verify the logits A_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[str] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Union[str, Any] = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase )
344
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 32 , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowerCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=3 , ) -> Union[str, Any]: A_ : Optional[int] = parent A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} A_ : Tuple = size_divisor A_ : List[Any] = do_rescale A_ : Dict = rescale_factor A_ : List[Any] = do_normalize A_ : Dict = do_center_crop A_ : Optional[Any] = image_mean A_ : List[str] = image_std A_ : str = do_pad A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = min_resolution A_ : Union[str, Any] = max_resolution def UpperCAmelCase_ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: if not batched: A_ : Union[str, Any] = self.size["""shortest_edge"""] A_ : Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): A_ , A_ : Optional[Any] = image.size else: A_ , A_ : int = image.shape[1], image.shape[2] A_ : Optional[int] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: A_ , A_ : Optional[Any] = size, scale * w else: A_ , A_ : Dict = scale * h, size A_ : Union[str, Any] = int((1333 / 800) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: A_ : str = max_size / max(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = newh * scale A_ : Dict = neww * scale A_ , A_ : str = int(newh + 0.5 ), int(neww + 0.5 ) A_ , A_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] A_ : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size_divisor""" ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image processor A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image processor A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image processor A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values A_ , A_ : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
'''simple docstring''' def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] A_ : Dict = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ , A_ : Any = arr[k - 1], arr[i] else: # k is odd A_ , A_ : List[str] = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": UpperCamelCase__ : List[str] = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
344
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
1
'''simple docstring''' from __future__ import annotations import requests UpperCamelCase__ : str = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def UpperCAmelCase ( a_ , a_ = 1 , a_ = "new" , a_ = None ) -> dict: """simple docstring""" A_ : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a_ ) - valid_terms ) ): A_ : int = F"Invalid search term: {invalid_search_terms}" raise ValueError(a_ ) A_ : Union[str, Any] = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError A_ : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a_ )} A_ : int = {} for id_ in range(a_ ): A_ : int = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
344
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ : int = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ : Any = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ : Optional[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Optional[Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} A_ : List[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] A_ : int = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
344
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> int: A_ : str = tempfile.mkdtemp() A_ : Union[str, Any] = BlipImageProcessor() A_ : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) A_ : Dict = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) A_ : Any = InstructBlipProcessor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).tokenizer def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).qformer_tokenizer def UpperCAmelCase_ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ : Union[str, Any] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : str = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = self.get_qformer_tokenizer() A_ : Any = InstructBlipProcessor( tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Any = image_processor(_lowerCamelCase , return_tensors="""np""" ) A_ : List[Any] = processor(images=_lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : List[str] = self.get_qformer_tokenizer() A_ : List[str] = InstructBlipProcessor( tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase ) A_ : int = """lower newer""" A_ : Optional[int] = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) A_ : Any = qformer_tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase_ ( self ) -> Any: A_ : List[Any] = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : Optional[Any] = self.get_qformer_tokenizer() A_ : Union[str, Any] = InstructBlipProcessor( tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase ) A_ : Union[str, Any] = """lower newer""" A_ : Optional[Any] = self.prepare_image_inputs() A_ : Optional[int] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def UpperCAmelCase_ ( self ) -> Tuple: A_ : List[str] = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : Optional[Any] = self.get_qformer_tokenizer() A_ : Dict = InstructBlipProcessor( tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase ) A_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Optional[Any] = processor.batch_decode(_lowerCamelCase ) A_ : Any = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: A_ : List[Any] = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = self.get_qformer_tokenizer() A_ : Union[str, Any] = InstructBlipProcessor( tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase ) A_ : Union[str, Any] = """lower newer""" A_ : Optional[int] = self.prepare_image_inputs() A_ : int = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''blenderbot-small''' lowerCamelCase = ['''past_key_values'''] lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=512 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=512 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ) -> List[Any]: A_ : str = vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = d_model A_ : Any = encoder_ffn_dim A_ : Optional[int] = encoder_layers A_ : Dict = encoder_attention_heads A_ : int = decoder_ffn_dim A_ : str = decoder_layers A_ : Dict = decoder_attention_heads A_ : Union[str, Any] = dropout A_ : Tuple = attention_dropout A_ : List[str] = activation_dropout A_ : Optional[int] = activation_function A_ : Union[str, Any] = init_std A_ : Union[str, Any] = encoder_layerdrop A_ : Union[str, Any] = decoder_layerdrop A_ : str = use_cache A_ : Union[str, Any] = encoder_layers A_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A_ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ : str = {0: """batch"""} A_ : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : int = {0: """batch""", 1: """decoder_sequence"""} A_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[str] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ , A_ : List[str] = self.num_layers for i in range(_lowerCamelCase ): A_ : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A_ : Optional[int] = super().outputs else: A_ : str = super(_lowerCamelCase , self ).outputs if self.use_past: A_ , A_ : List[Any] = self.num_layers for i in range(_lowerCamelCase ): A_ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} A_ : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: A_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs A_ : Optional[int] = seq_length if not self.use_past else 1 A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : List[str] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} A_ : Optional[int] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ : int = common_inputs["""input_ids"""].shape A_ : Union[str, Any] = common_inputs["""decoder_input_ids"""].shape[1] A_ , A_ : List[Any] = self.num_attention_heads A_ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : List[Any] = decoder_seq_length + 3 A_ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) A_ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : Tuple = min(_lowerCamelCase , _lowerCamelCase ) A_ : Any = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers A_ : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. A_ : List[str] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: A_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : List[Any] = seqlen + 2 A_ , A_ : List[str] = self.num_layers A_ , A_ : List[Any] = self.num_attention_heads A_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Any = common_inputs["""attention_mask"""].dtype A_ : Tuple = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) A_ : Tuple = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : List[str] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Tuple = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : Dict = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : Dict = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": A_ : List[str] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: A_ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A_ : str = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
344
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=64 , _lowerCamelCase=None ) -> int: A_ : Tuple = np.random.default_rng(_lowerCamelCase ) A_ : Any = length A_ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) A_ : List[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> List[str]: return self.length def __getitem__( self , _lowerCamelCase ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class _lowerCAmelCase ( torch.nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=False ) -> Any: super().__init__() A_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A_ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A_ : str = True def UpperCAmelCase_ ( self , _lowerCamelCase=None ) -> Tuple: if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) A_ : Tuple = False return x * self.a[0] + self.b[0] class _lowerCAmelCase ( torch.nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=False ) -> List[str]: super().__init__() A_ : Any = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) A_ : List[str] = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) A_ : Optional[Any] = True def UpperCAmelCase_ ( self , _lowerCamelCase=None ) -> int: if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) A_ : Optional[Any] = False return x * self.a + self.b def UpperCAmelCase ( a_ , a_ = 1_6 ) -> List[str]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A_ : Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} A_ : str = load_dataset("""csv""" , data_files=a_ ) A_ : str = datasets["""train"""].unique("""label""" ) A_ : Union[str, Any] = {v: i for i, v in enumerate(a_ )} def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) A_ : Union[str, Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=a_ , max_length=a_ , padding="""max_length""" ) if "label" in examples: A_ : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A_ : List[Any] = datasets.map( a_ , batched=a_ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(a_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A_ : Union[str, Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=a_ , collate_fn=a_ , batch_size=2 ) A_ : str = DataLoader(tokenized_datasets["""validation"""] , shuffle=a_ , collate_fn=a_ , batch_size=1 ) return train_dataloader, eval_dataloader
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> List[Any]: A_ : List[str] = metric_id class _lowerCAmelCase : """simple docstring""" lowerCamelCase = [MetricMock(__A ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def UpperCAmelCase_ ( self ) -> str: return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> List[str]: """simple docstring""" if "tmp_path" in args: A_ : List[str] = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(a_ , match="""https://huggingface.co/docs/evaluate""" ): func(*a_ )
344
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" A_ : int = state_dict.pop(a_ ) A_ : Tuple = val def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) A_ : str = value else: A_ : int = value return new_state_dict def UpperCAmelCase ( a_ , a_=False ) -> Optional[int]: """simple docstring""" A_ : List[Any] = """""" if is_panoptic: A_ : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[:2_5_6, :] A_ : Tuple = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : int = in_proj_bias[2_5_6:5_1_2] A_ : int = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" A_ : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ : str = """resnet101""" if "dc5" in model_name: A_ : List[Any] = True A_ : str = """panoptic""" in model_name if is_panoptic: A_ : Dict = 2_5_0 else: A_ : Union[str, Any] = 9_1 A_ : str = """huggingface/label-files""" A_ : Union[str, Any] = """coco-detection-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : str = {int(a_ ): v for k, v in idalabel.items()} A_ : Optional[int] = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} # load image processor A_ : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" A_ : Any = ConditionalDetrImageProcessor(format=a_ ) # prepare image A_ : Tuple = prepare_img() A_ : Any = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Optional[int] = encoding["""pixel_values"""] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , a_ , pretrained=a_ ).eval() A_ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ : Union[str, Any] = """conditional_detr.""" + src rename_key(a_ , a_ , a_ ) A_ : Any = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): A_ : Dict = state_dict.pop(a_ ) A_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ : str = state_dict.pop(a_ ) A_ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: A_ : Optional[int] = state_dict.pop(a_ ) A_ : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): A_ : Tuple = state_dict.pop(a_ ) A_ : Dict = val # finally, create HuggingFace model and load state dict A_ : Union[str, Any] = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion A_ : str = conditional_detr(a_ ) A_ : str = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
344
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase__ : Dict = sys.version_info >= (3, 10) def UpperCAmelCase ( a_=None , a_=None ) -> Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=a_ ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = field(default='''toto''', metadata={'''help''': '''help message'''} ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''titi''' lowerCamelCase = '''toto''' class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''titi''' lowerCamelCase = '''toto''' lowerCamelCase = 42 @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = "toto" def UpperCAmelCase_ ( self ) -> Any: A_ : int = BasicEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = "toto" def UpperCAmelCase_ ( self ) -> Dict: A_ : Any = MixedTypeEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = None lowerCamelCase = field(default=__A, metadata={'''help''': '''help message'''} ) lowerCamelCase = None lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[] ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[1, 2, 3] ) lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCamelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = field() lowerCamelCase = field() lowerCamelCase = field() def UpperCAmelCase_ ( self ) -> Any: A_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = field() lowerCamelCase = None lowerCamelCase = field(default='''toto''', metadata={'''help''': '''help message'''} ) lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = None lowerCamelCase = field(default=__A, metadata={'''help''': '''help message'''} ) lowerCamelCase = None lowerCamelCase = list_field(default=[] ) lowerCamelCase = list_field(default=[] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): A_ : List[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != """container"""} A_ : Any = {k: v for k, v in vars(_lowerCamelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _lowerCamelCase ) and yy.get("""choices""" , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_lowerCamelCase ) , yy["""type"""](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--bar""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--baz""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--flag""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((A_) , ) : str = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Dict = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCamelCase , help="""help message""" ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_lowerCamelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=_lowerCamelCase , default=_lowerCamelCase ) A_ : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : int = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Tuple = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) A_ : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Dict = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) A_ : Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) A_ : Optional[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) A_ : Optional[Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) A_ : Union[str, Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) A_ : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self ) -> int: @dataclass class _lowerCAmelCase : """simple docstring""" lowerCamelCase = "toto" A_ : Dict = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) A_ : Tuple = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) A_ : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = HfArgumentParser(_lowerCamelCase ) A_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCamelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) A_ : str = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument("""--bar""" , default=_lowerCamelCase , type=_lowerCamelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) A_ : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: A_ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) A_ : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = HfArgumentParser(_lowerCamelCase ) A_ : Tuple = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--required_str""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> int: A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCamelCase , ) expected.add_argument("""--opt""" , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCamelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Dict = HfArgumentParser(_lowerCamelCase ) A_ : Union[str, Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } A_ : Dict = parser.parse_dict(_lowerCamelCase )[0] A_ : int = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : str = HfArgumentParser(_lowerCamelCase ) A_ : List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : int = HfArgumentParser(_lowerCamelCase ) A_ : Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : Any = os.path.join(_lowerCamelCase , """temp_json""" ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] A_ : Any = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Tuple = HfArgumentParser(_lowerCamelCase ) A_ : List[str] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: A_ : List[str] = os.path.join(_lowerCamelCase , """temp_yaml""" ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) A_ : int = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] A_ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ : Tuple = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
344
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = (UnCLIPScheduler,) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCamelCase , prev_timestep=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config(variance_type="""fixed_small_log""" ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(variance_type="""learned_range""" ) A_ : Dict = scheduler_class(**_lowerCamelCase ) A_ : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCamelCase ) - -0.001_0011 < 1e-5 def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**_lowerCamelCase ) A_ : int = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Any = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 A_ : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : List[Any] = pred_prev_sample A_ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Dict: A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Dict = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(25 ) A_ : List[str] = scheduler.timesteps A_ : List[Any] = self.dummy_model() A_ : List[Any] = self.dummy_sample_deter A_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowerCamelCase ): # 1. predict noise residual A_ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) if i + 1 == timesteps.shape[0]: A_ : List[str] = None else: A_ : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , prev_timestep=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample A_ : Optional[Any] = pred_prev_sample A_ : Dict = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> int: pass
344
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) -> Optional[Any]: A_ : Optional[int] = scheduler A_ : Tuple = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] A_ : Any = split_batches A_ : Optional[int] = step_with_optimizer A_ : int = GradientState() def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step A_ : Dict = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: return self.scheduler.get_last_lr() def UpperCAmelCase_ ( self ) -> str: return self.scheduler.state_dict() def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: self.scheduler.load_state_dict(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: return self.scheduler.get_lr() def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
344
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''blip_2_vision_model''' def __init__( self , _lowerCamelCase=1408 , _lowerCamelCase=6144 , _lowerCamelCase=39 , _lowerCamelCase=16 , _lowerCamelCase=224 , _lowerCamelCase=14 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_0001 , _lowerCamelCase=0.0 , _lowerCamelCase=1e-10 , _lowerCamelCase=True , **_lowerCamelCase , ) -> str: super().__init__(**_lowerCamelCase ) A_ : List[str] = hidden_size A_ : int = intermediate_size A_ : Tuple = num_hidden_layers A_ : int = num_attention_heads A_ : Optional[Any] = patch_size A_ : Dict = image_size A_ : Any = initializer_range A_ : Optional[int] = attention_dropout A_ : int = layer_norm_eps A_ : Tuple = hidden_act A_ : Any = qkv_bias @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowerCamelCase ) A_ , A_ : Union[str, Any] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": A_ : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''blip_2_qformer''' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=2 , _lowerCamelCase=1408 , **_lowerCamelCase , ) -> int: super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : Union[str, Any] = vocab_size A_ : Optional[Any] = hidden_size A_ : str = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Optional[Any] = hidden_act A_ : Dict = intermediate_size A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Tuple = initializer_range A_ : int = layer_norm_eps A_ : int = position_embedding_type A_ : Dict = cross_attention_frequency A_ : Union[str, Any] = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowerCamelCase ) A_ , A_ : int = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": A_ : List[str] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''blip-2''' lowerCamelCase = True def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=32 , **_lowerCamelCase ) -> List[str]: super().__init__(**_lowerCamelCase ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: A_ : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: A_ : Union[str, Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) A_ : List[str] = BlipaVisionConfig(**_lowerCamelCase ) A_ : List[str] = BlipaQFormerConfig(**_lowerCamelCase ) A_ : List[str] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" A_ : List[str] = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) A_ : Union[str, Any] = self.text_config.tie_word_embeddings A_ : Dict = self.text_config.is_encoder_decoder A_ : List[Any] = num_query_tokens A_ : List[Any] = self.vision_config.hidden_size A_ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A_ : Optional[int] = 1.0 A_ : Union[str, Any] = 0.02 @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) -> Optional[int]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCamelCase , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.vision_config.to_dict() A_ : List[str] = self.qformer_config.to_dict() A_ : Union[str, Any] = self.text_config.to_dict() A_ : Optional[int] = self.__class__.model_type return output
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( a_ , a_ , a_ = "x" , a_ = 1_0**-1_0 , a_ = 1 , ) -> complex: """simple docstring""" A_ : Tuple = symbols(a_ ) A_ : Optional[Any] = lambdify(a_ , a_ ) A_ : Dict = lambdify(a_ , diff(a_ , a_ ) ) A_ : List[Any] = starting_point while True: if diff_function(a_ ) != 0: A_ : Tuple = prev_guess - multiplicity * func(a_ ) / diff_function( a_ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess A_ : Tuple = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}') # Find value of e print( 'The root of log(y) - 1 = 0 is ', f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f'{newton_raphson("exp(x) - 1", 10, precision=0.0_0_5)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['YolosFeatureExtractor'] UpperCamelCase__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' from manim import * class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[str]: A_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) A_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ : str = [mem.copy() for i in range(6 )] A_ : Any = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Optional[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : int = Text("""CPU""" , font_size=24 ) A_ : Any = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) A_ : List[Any] = [mem.copy() for i in range(4 )] A_ : Dict = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Dict = Text("""GPU""" , font_size=24 ) A_ : Optional[Any] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCamelCase ) A_ : List[str] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : str = Text("""Model""" , font_size=24 ) A_ : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCamelCase ) A_ : Optional[int] = [] for i, rect in enumerate(_lowerCamelCase ): rect.set_stroke(_lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowerCamelCase , buff=0.0 ) self.add(_lowerCamelCase ) cpu_targs.append(_lowerCamelCase ) A_ : List[Any] = [mem.copy() for i in range(6 )] A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : int = Text("""Loaded Checkpoint""" , font_size=24 ) A_ : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , aligned_edge=_lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A_ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : List[Any] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A_ : Any = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.play(Write(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) ) A_ : List[str] = [] A_ : str = [] for i, rect in enumerate(_lowerCamelCase ): A_ : Union[str, Any] = fill.copy().set_fill(_lowerCamelCase , opacity=0.7 ) target.move_to(_lowerCamelCase ) first_animations.append(GrowFromCenter(_lowerCamelCase , run_time=1 ) ) A_ : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
344
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
1