code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""shortest_edge""": 224} _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(UpperCAmelCase , size["""shortest_edge"""] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: _snake_case = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> int: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(UpperCAmelCase ) if do_resize: _snake_case = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: _snake_case = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: _snake_case = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: _snake_case = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) _snake_case = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _snake_case = make_batched(UpperCAmelCase ) _snake_case = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] _snake_case = {"""pixel_values""": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _snake_case = precision _snake_case = ceil(precision / 14 ) _snake_case = 42_6880 * Decimal(1_0005 ).sqrt() _snake_case = 1 _snake_case = 1359_1409 _snake_case = Decimal(_SCREAMING_SNAKE_CASE ) for k in range(1 , _SCREAMING_SNAKE_CASE ): _snake_case = factorial(6 * k ) // (factorial(3 * k ) * factorial(_SCREAMING_SNAKE_CASE ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' from manim import * class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = Rectangle(height=0.5 , width=0.5 ) _snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = Text("""CPU""" , font_size=24 ) _snake_case = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) _snake_case = [mem.copy() for i in range(4 )] _snake_case = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = Text("""GPU""" , font_size=24 ) _snake_case = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = Text("""Model""" , font_size=24 ) _snake_case = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) _snake_case = [] for i, rect in enumerate(UpperCAmelCase ): rect.set_stroke(UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase , buff=0.0 ) self.add(UpperCAmelCase ) cpu_targs.append(UpperCAmelCase ) _snake_case = [mem.copy() for i in range(6 )] _snake_case = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) _snake_case = Text("""Loaded Checkpoint""" , font_size=24 ) _snake_case = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , aligned_edge=UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) _snake_case = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) , Write(UpperCAmelCase ) ) self.play(Write(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) ) _snake_case = [] _snake_case = [] for i, rect in enumerate(UpperCAmelCase ): _snake_case = fill.copy().set_fill(UpperCAmelCase , opacity=0.7 ) target.move_to(UpperCAmelCase ) first_animations.append(GrowFromCenter(UpperCAmelCase , run_time=1 ) ) _snake_case = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase , run_time=1.5 ) ) self.play(*UpperCAmelCase ) self.play(*UpperCAmelCase ) self.wait()
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] _snake_case = [] _snake_case = 0 _snake_case = sum(_SCREAMING_SNAKE_CASE ) create_state_space_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return result def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if sum(_SCREAMING_SNAKE_CASE ) > max_sum or (remaining_nums_sum + sum(_SCREAMING_SNAKE_CASE )) < max_sum: return if sum(_SCREAMING_SNAKE_CASE ) == max_sum: result.append(_SCREAMING_SNAKE_CASE ) return for index in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): create_state_space_tree( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , [*path, nums[index]] , _SCREAMING_SNAKE_CASE , remaining_nums_sum - nums[index] , ) __lowerCAmelCase = [3, 34, 4, 12, 5, 2] __lowerCAmelCase = 9 __lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __lowerCAmelCase = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) _snake_case = sorted(string.lower() ) return len(_SCREAMING_SNAKE_CASE ) == len(set(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __lowerCAmelCase = input('Enter a string ').strip() __lowerCAmelCase = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM _snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCAmelCase ): _snake_case = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _snake_case = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _snake_case = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , eta=UpperCAmelCase , use_clipped_model_output=UpperCAmelCase , generator=UpperCAmelCase ).prev_sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = JukeboxTokenizer lowerCAmelCase_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def lowercase (self ) -> Union[str, Any]: import torch _snake_case = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _snake_case = tokenizer(**self.metas )["""input_ids"""] # fmt: off _snake_case = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase (self ) -> Tuple: import torch _snake_case = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _snake_case = tokenizer(**self.metas )["""input_ids"""] # fmt: off _snake_case = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __lowerCAmelCase = '__DUMMY_TRANSFORMERS_USER__' __lowerCAmelCase = 'Dummy User' __lowerCAmelCase = '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' __lowerCAmelCase = 'https://hub-ci.huggingface.co' __lowerCAmelCase = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' __lowerCAmelCase = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' __lowerCAmelCase = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( ): return HfApi(endpoint=_SCREAMING_SNAKE_CASE ) @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = HfFolder.get_token() HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): def _cleanup_repo(_SCREAMING_SNAKE_CASE ): hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): @contextmanager def _temporary_repo(_SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(_SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""repo_txt_data-{int(time.time() * 10E3 )}""" _snake_case = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data/text_data.txt""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _snake_case = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data.zip""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _snake_case = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="""data.zip""" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return hf_private_dataset_repo_zipped_img_data_
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self ) -> List[str]: _snake_case = [] def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: self.events.append("""on_init_end""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> str: self.events.append("""on_train_begin""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: self.events.append("""on_train_end""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> str: self.events.append("""on_epoch_begin""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> int: self.events.append("""on_epoch_end""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: self.events.append("""on_step_begin""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: self.events.append("""on_step_end""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: self.events.append("""on_evaluate""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: self.events.append("""on_predict""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: self.events.append("""on_save""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: self.events.append("""on_log""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: self.events.append("""on_prediction_step""" ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> List[str]: _snake_case = tempfile.mkdtemp() def lowercase (self ) -> Optional[int]: shutil.rmtree(self.output_dir ) def lowercase (self , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=64 , UpperCAmelCase=64 , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase ) -> Optional[Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _snake_case = RegressionDataset(length=UpperCAmelCase ) _snake_case = RegressionDataset(length=UpperCAmelCase ) _snake_case = RegressionModelConfig(a=UpperCAmelCase , b=UpperCAmelCase ) _snake_case = RegressionPreTrainedModel(UpperCAmelCase ) _snake_case = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase , report_to=[] , **UpperCAmelCase ) return Trainer( UpperCAmelCase , UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , callbacks=UpperCAmelCase , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) # Order doesn't matter _snake_case = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ ) _snake_case = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(UpperCAmelCase , cba.__class__ ) elif not isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(cba.__class__ , UpperCAmelCase ) else: self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> int: _snake_case = ["""on_init_end""", """on_train_begin"""] _snake_case = 0 _snake_case = len(trainer.get_eval_dataloader() ) _snake_case = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase (self ) -> Optional[int]: _snake_case = self.get_trainer() _snake_case = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _snake_case = self.get_trainer(disable_tqdm=UpperCAmelCase ) _snake_case = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _snake_case = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase ) expected_callbacks.remove(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) _snake_case = self.get_trainer() _snake_case = trainer.pop_callback(UpperCAmelCase ) self.assertEqual(cb.__class__ , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) trainer.add_callback(UpperCAmelCase ) expected_callbacks.insert(0 , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) # We can also add, pop, or remove by instance _snake_case = self.get_trainer() _snake_case = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase ) expected_callbacks.remove(UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) _snake_case = self.get_trainer() _snake_case = trainer.callback_handler.callbacks[0] _snake_case = trainer.pop_callback(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) trainer.add_callback(UpperCAmelCase ) expected_callbacks.insert(0 , UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase ) def lowercase (self ) -> List[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=UpperCAmelCase ) _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # Independent log/save/eval _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) _snake_case = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # A bit of everything _snake_case = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() _snake_case = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: _snake_case = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase ) in warn_mock.call_args[0][0]
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = KandinskyVaaInpaintPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] lowerCAmelCase_ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] lowerCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def lowercase (self ) -> List[str]: return 32 @property def lowercase (self ) -> int: return 32 @property def lowercase (self ) -> Tuple: return self.time_input_dim @property def lowercase (self ) -> List[Any]: return self.time_input_dim * 4 @property def lowercase (self ) -> int: return 100 @property def lowercase (self ) -> Optional[int]: torch.manual_seed(0 ) _snake_case = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case = UNetaDConditionModel(**UpperCAmelCase ) return model @property def lowercase (self ) -> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase (self ) -> int: torch.manual_seed(0 ) _snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowercase (self ) -> int: _snake_case = self.dummy_unet _snake_case = self.dummy_movq _snake_case = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase , ) _snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create init_image _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _snake_case = np.ones((64, 64) , dtype=np.floataa ) _snake_case = 0 if str(UpperCAmelCase ).startswith("""mps""" ): _snake_case = torch.manual_seed(UpperCAmelCase ) else: _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _snake_case = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowercase (self ) -> Any: _snake_case = """cpu""" _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) _snake_case = output.images _snake_case = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase (self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Union[str, Any]: _snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _snake_case = np.ones((768, 768) , dtype=np.floataa ) _snake_case = 0 _snake_case = """a hat""" _snake_case = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) _snake_case = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _snake_case = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case, _snake_case = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _snake_case = pipeline( image=UpperCAmelCase , mask_image=UpperCAmelCase , image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "SpeechT5FeatureExtractor" lowerCAmelCase_ = "SpeechT5Tokenizer" def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Dict: super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__(self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: _snake_case = kwargs.pop("""audio""" , UpperCAmelCase ) _snake_case = kwargs.pop("""text""" , UpperCAmelCase ) _snake_case = kwargs.pop("""text_target""" , UpperCAmelCase ) _snake_case = kwargs.pop("""audio_target""" , UpperCAmelCase ) _snake_case = kwargs.pop("""sampling_rate""" , UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: _snake_case = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) elif text is not None: _snake_case = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) _snake_case = targets["""input_values"""] elif text_target is not None: _snake_case = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) _snake_case = targets["""input_ids"""] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> int: _snake_case = kwargs.pop("""input_values""" , UpperCAmelCase ) _snake_case = kwargs.pop("""input_ids""" , UpperCAmelCase ) _snake_case = kwargs.pop("""labels""" , UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: _snake_case = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) elif input_ids is not None: _snake_case = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase , UpperCAmelCase ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) _snake_case = targets["""input_ids"""] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) _snake_case = feature_size_hack _snake_case = targets["""input_values"""] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> str: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if height >= 1: move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_disk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) move_tower(height - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): print("""moving disk from""" , _SCREAMING_SNAKE_CASE , """to""" , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = int(input("""Height of hanoi: """ ).strip() ) move_tower(_SCREAMING_SNAKE_CASE , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
341
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ): _snake_case = None if token is not None: _snake_case = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) _snake_case = """636036""" _snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" _snake_case = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) _snake_case = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case = workflow_run["""id"""] break return workflow_run_id def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: _snake_case = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = {} for artifact_name in artifact_names: _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): _snake_case = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: _snake_case = f.read().decode("""UTF-8""" ) return results
341
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {} class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "llama" lowerCAmelCase_ = ["past_key_values"] def __init__(self , UpperCAmelCase=32000 , UpperCAmelCase=4096 , UpperCAmelCase=11008 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase=None , UpperCAmelCase="silu" , UpperCAmelCase=2048 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-6 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=None , **UpperCAmelCase , ) -> Dict: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads # for backward compatibility if num_key_value_heads is None: _snake_case = num_attention_heads _snake_case = num_key_value_heads _snake_case = hidden_act _snake_case = initializer_range _snake_case = rms_norm_eps _snake_case = pretraining_tp _snake_case = use_cache _snake_case = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase , ) def lowercase (self ) -> List[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) _snake_case = self.rope_scaling.get("""type""" , UpperCAmelCase ) _snake_case = self.rope_scaling.get("""factor""" , UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase , UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['PerceiverFeatureExtractor'] __lowerCAmelCase = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> Union[str, Any]: _snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """depth_multiplier""" ) ) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=0.25 , UpperCAmelCase=8 , UpperCAmelCase=True , UpperCAmelCase=1024 , UpperCAmelCase=32 , UpperCAmelCase="relu6" , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=None , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = depth_multiplier _snake_case = min_depth _snake_case = tf_padding _snake_case = int(last_hidden_size * depth_multiplier ) _snake_case = output_stride _snake_case = hidden_act _snake_case = classifier_dropout_prob _snake_case = use_labels _snake_case = is_training _snake_case = num_labels _snake_case = initializer_range _snake_case = scope def lowercase (self ) -> Optional[int]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase (self ) -> str: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _snake_case = MobileNetVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = self.num_labels _snake_case = MobileNetVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase (self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> List[str]: _snake_case = MobileNetVaModelTester(self ) _snake_case = MobileNetVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowercase (self ) -> str: pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowercase (self ) -> Any: pass def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> Any: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.hidden_states _snake_case = 26 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def lowercase (self ) -> Dict: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = MobileNetVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[Any]: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowercase (self ) -> Tuple: _snake_case = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # verify the logits _snake_case = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
341
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "visual_bert" def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=512 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> int: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = visual_embedding_dim _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps _snake_case = bypass_transformer _snake_case = special_visual_initialize
341
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _snake_case = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sgugger/tiny-distilbert-classification""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) # set architectures equal to `None` _snake_case = None _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def lowercase (self ) -> Tuple: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Any: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> int: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> str: _snake_case = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() ) def lowercase (self ) -> int: _snake_case = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCAmelCase ): self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() )
341
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = KandinskyInpaintPipeline lowerCAmelCase_ = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] lowerCAmelCase_ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] lowerCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def lowercase (self ) -> Tuple: return 32 @property def lowercase (self ) -> str: return 32 @property def lowercase (self ) -> Union[str, Any]: return self.time_input_dim @property def lowercase (self ) -> Tuple: return self.time_input_dim * 4 @property def lowercase (self ) -> Any: return 100 @property def lowercase (self ) -> str: _snake_case = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase (self ) -> Tuple: torch.manual_seed(0 ) _snake_case = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _snake_case = MultilingualCLIP(UpperCAmelCase ) _snake_case = text_encoder.eval() return text_encoder @property def lowercase (self ) -> Dict: torch.manual_seed(0 ) _snake_case = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case = UNetaDConditionModel(**UpperCAmelCase ) return model @property def lowercase (self ) -> Dict: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase (self ) -> Optional[int]: torch.manual_seed(0 ) _snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowercase (self ) -> Tuple: _snake_case = self.dummy_text_encoder _snake_case = self.dummy_tokenizer _snake_case = self.dummy_unet _snake_case = self.dummy_movq _snake_case = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase , ) _snake_case = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: _snake_case = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _snake_case = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase ) # create init_image _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _snake_case = np.ones((64, 64) , dtype=np.floataa ) _snake_case = 0 if str(UpperCAmelCase ).startswith("""mps""" ): _snake_case = torch.manual_seed(UpperCAmelCase ) else: _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _snake_case = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowercase (self ) -> List[str]: _snake_case = """cpu""" _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) _snake_case = output.images _snake_case = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase (self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Tuple: _snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _snake_case = np.ones((768, 768) , dtype=np.floataa ) _snake_case = 0 _snake_case = """a hat""" _snake_case = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) _snake_case = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _snake_case = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case, _snake_case = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _snake_case = pipeline( UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
341
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 384, """width""": 384} _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _snake_case = (size["""height"""], size["""width"""]) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Any: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = BatchFeature(data={"""pixel_values""": images} , tensor_type=UpperCAmelCase ) return encoded_outputs
341
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "vit_msn" def __init__(self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-0_6 , UpperCAmelCase=224 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 - _cos) / 2 _snake_case = 1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 + _cos) / 2 _snake_case = -1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = _sin / 2 _snake_case = 0 _snake_case = -ba _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = 1 - alpha _snake_case = -2 * _cos _snake_case = 1 + alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = 1 + alpha * big_a _snake_case = -2 * _cos _snake_case = 1 - alpha * big_a _snake_case = 1 + alpha / big_a _snake_case = -2 * _cos _snake_case = 1 - alpha / big_a _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha _snake_case = big_a * (pmc + aaa) _snake_case = 2 * big_a * mpc _snake_case = big_a * (pmc - aaa) _snake_case = ppmc + aaa _snake_case = -2 * pmpc _snake_case = ppmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): _snake_case = tau * frequency / samplerate _snake_case = sin(_SCREAMING_SNAKE_CASE ) _snake_case = cos(_SCREAMING_SNAKE_CASE ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha _snake_case = big_a * (ppmc + aaa) _snake_case = -2 * big_a * pmpc _snake_case = big_a * (ppmc - aaa) _snake_case = pmc + aaa _snake_case = 2 * mpc _snake_case = pmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('T') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (position - 1) // 2 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 1 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 2 class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: _snake_case = [] _snake_case = {} _snake_case = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def lowercase (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _snake_case = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase ) def lowercase (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _snake_case, _snake_case = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _snake_case, _snake_case = self.heap[0] self._bubble_down(UpperCAmelCase ) return elem def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Update the weight of the given key _snake_case = self.position_map[elem] _snake_case = (elem, weight) if position > 0: _snake_case = get_parent_position(UpperCAmelCase ) _snake_case, _snake_case = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _snake_case = self.position_map[elem] if curr_pos == 0: return None _snake_case = get_parent_position(UpperCAmelCase ) _snake_case, _snake_case = self.heap[curr_pos] _snake_case, _snake_case = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_up(UpperCAmelCase ) return None def lowercase (self , UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _snake_case = self.position_map[elem] _snake_case, _snake_case = self.heap[curr_pos] _snake_case = get_child_left_position(UpperCAmelCase ) _snake_case = get_child_right_position(UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: _snake_case, _snake_case = self.heap[child_left_position] _snake_case, _snake_case = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) if child_left_position < self.elements: _snake_case, _snake_case = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) else: return None if child_right_position < self.elements: _snake_case, _snake_case = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) return None def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: # Swap the nodes at the given positions _snake_case = self.heap[nodea_pos][0] _snake_case = self.heap[nodea_pos][0] _snake_case, _snake_case = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _snake_case = nodea_pos _snake_case = nodea_pos class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: _snake_case = {} _snake_case = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def lowercase (self , UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _snake_case = {} self.nodes += 1 def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) _snake_case = weight _snake_case = weight def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , ): _snake_case = {node: maxsize for node in graph.connections} _snake_case = {node: None for node in graph.connections} _snake_case = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization _snake_case = priority_queue.extract_min() _snake_case = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) _snake_case = node # running prim's algorithm while not priority_queue.is_empty(): _snake_case = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) _snake_case = node return dist, parent
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , ): output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) else: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): _snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _snake_case = """cpu""" _snake_case = Path(_SCREAMING_SNAKE_CASE ) # VAE DECODER _snake_case = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _snake_case = vae_decoder.config.latent_channels # forward only through the decoder part _snake_case = vae_decoder.decode onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' import math import sys def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = """""" try: with open(_SCREAMING_SNAKE_CASE , """rb""" ) as binary_file: _snake_case = binary_file.read() for dat in data: _snake_case = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""0""": """0""", """1""": """1"""} _snake_case, _snake_case = """""", """""" _snake_case = len(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _snake_case = lexicon[curr_string] result += last_match_id _snake_case = last_match_id + """0""" if math.loga(_SCREAMING_SNAKE_CASE ).is_integer(): _snake_case = {} for curr_key in list(_SCREAMING_SNAKE_CASE ): _snake_case = lexicon.pop(_SCREAMING_SNAKE_CASE ) _snake_case = new_lex _snake_case = last_match_id + """1""" index += 1 _snake_case = """""" return result def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 8 try: with open(_SCREAMING_SNAKE_CASE , """wb""" ) as opened_file: _snake_case = [ to_write[i : i + byte_length] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 0 for letter in data_bits: if letter == "1": break counter += 1 _snake_case = data_bits[counter:] _snake_case = data_bits[counter + 1 :] return data_bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = read_file_binary(_SCREAMING_SNAKE_CASE ) _snake_case = remove_prefix(_SCREAMING_SNAKE_CASE ) _snake_case = decompress_data(_SCREAMING_SNAKE_CASE ) write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( ): _snake_case = 2 while True: if is_prime(_SCREAMING_SNAKE_CASE ): yield num num += 1 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 200_0000 ): return sum(takewhile(lambda _SCREAMING_SNAKE_CASE : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 3.0 class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowercase (self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. _snake_case = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _snake_case = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _snake_case = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , UpperCAmelCase ) @require_multi_gpu def lowercase (self ) -> List[Any]: _snake_case = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __lowerCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) __lowerCAmelCase = torch.nn.Linear(100, 200) __lowerCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs __lowerCAmelCase = '' __lowerCAmelCase = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> List[str]: _snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """width_multiplier""" ) ) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=64 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase="swish" , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=None , UpperCAmelCase=0.25 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , ) -> str: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = make_divisible(512 * width_multiplier , divisor=8 ) _snake_case = hidden_act _snake_case = conv_kernel_size _snake_case = output_stride _snake_case = classifier_dropout_prob _snake_case = use_labels _snake_case = is_training _snake_case = num_labels _snake_case = initializer_range _snake_case = scope _snake_case = width_multiplier _snake_case = ffn_dropout _snake_case = attn_dropout def lowercase (self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase (self ) -> int: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = MobileViTVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = self.num_labels _snake_case = MobileViTVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _snake_case = self.num_labels _snake_case = MobileViTVaForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase (self ) -> Optional[int]: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Dict: _snake_case = MobileViTVaModelTester(self ) _snake_case = MobileViTVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowercase (self ) -> Tuple: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowercase (self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowercase (self ) -> List[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> str: pass def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> str: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.hidden_states _snake_case = 5 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _snake_case = 2 for i in range(len(UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @slow def lowercase (self ) -> str: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = MobileViTVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> List[str]: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowercase (self ) -> Optional[Any]: _snake_case = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase (self ) -> Optional[int]: _snake_case = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _snake_case = model.to(UpperCAmelCase ) _snake_case = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase (self ) -> Any: _snake_case = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _snake_case = model.to(UpperCAmelCase ) _snake_case = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits.detach().cpu() _snake_case = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(50, 60)] ) _snake_case = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) _snake_case = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) _snake_case = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = VideoMAEConfig() set_architecture_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = """huggingface/label-files""" if "kinetics" in model_name: _snake_case = 400 _snake_case = """kinetics400-id2label.json""" elif "ssv2" in model_name: _snake_case = 174 _snake_case = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) _snake_case = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) _snake_case = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if "small" in model_name: _snake_case = 384 _snake_case = 1536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1024 _snake_case = 4096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2048 elif "huge" in model_name: _snake_case = 1280 _snake_case = 5120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if "encoder." in name: _snake_case = name.replace("""encoder.""" , """""" ) if "cls_token" in name: _snake_case = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: _snake_case = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _snake_case = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _snake_case = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: _snake_case = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: _snake_case = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: _snake_case = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: _snake_case = name.replace("""attn""" , """attention.self""" ) if "attn" in name: _snake_case = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: _snake_case = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: _snake_case = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: _snake_case = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: _snake_case = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: _snake_case = name.replace("""head""" , """classifier""" ) return name def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("""encoder.""" ): _snake_case = key.replace("""encoder.""" , """""" ) if "qkv" in key: _snake_case = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = """decoder.decoder_layers.""" if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = """videomae.encoder.layer.""" if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) _snake_case = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = get_videomae_config(_SCREAMING_SNAKE_CASE ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(_SCREAMING_SNAKE_CASE ) else: _snake_case = VideoMAEForPreTraining(_SCREAMING_SNAKE_CASE ) # download original checkpoint, hosted on Google Drive _snake_case = """pytorch_model.bin""" gdown.cached_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) if "model" in files: _snake_case = files["""model"""] else: _snake_case = files["""module"""] _snake_case = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) _snake_case = torch.load(_SCREAMING_SNAKE_CASE ) _snake_case = model(**_SCREAMING_SNAKE_CASE ) _snake_case = outputs.logits _snake_case = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1408, 1536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1408, 1536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1408, 1536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1408, 1536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1408, 1536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCAmelCase = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _snake_case = list(s_dict.keys() ) for key in keys: _snake_case = R""".*/layers_(\d+)""" _snake_case = key if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , _SCREAMING_SNAKE_CASE ) _snake_case = R"""(encoder|decoder)\/""" if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).groups() if groups[0] == "encoder": _snake_case = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , _SCREAMING_SNAKE_CASE ) _snake_case = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , _SCREAMING_SNAKE_CASE ) elif groups[0] == "decoder": _snake_case = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , _SCREAMING_SNAKE_CASE ) _snake_case = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , _SCREAMING_SNAKE_CASE ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _snake_case = new_key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""{key} -> {new_key}""" ) _snake_case = s_dict.pop(_SCREAMING_SNAKE_CASE ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _snake_case = s_dict[key].shape[0] _snake_case = s_dict[key] for idx in range(_SCREAMING_SNAKE_CASE ): _snake_case = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(_SCREAMING_SNAKE_CASE ) return s_dict __lowerCAmelCase = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert a google style config to the hugging face fromat import regex as re with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.read() _snake_case = re.findall(R"""(.*) = ([0-9.]*)""" , _SCREAMING_SNAKE_CASE ) _snake_case = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _snake_case = float(_SCREAMING_SNAKE_CASE ) if """.""" in value else int(_SCREAMING_SNAKE_CASE ) _snake_case = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , _SCREAMING_SNAKE_CASE )[0] _snake_case = str(activation[1] ) _snake_case = num_experts _snake_case = SwitchTransformersConfig(**_SCREAMING_SNAKE_CASE ) return config def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="./" , _SCREAMING_SNAKE_CASE=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) _snake_case = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE ) if gin_file is not None: _snake_case = convert_gin_to_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _snake_case = SwitchTransformersConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = SwitchTransformersForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _snake_case = flax_params["""target"""] _snake_case = flatten_dict(_SCREAMING_SNAKE_CASE , sep="""/""" ) _snake_case = rename_keys(_SCREAMING_SNAKE_CASE ) _snake_case = unflatten_dict(_SCREAMING_SNAKE_CASE , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') __lowerCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): _snake_case = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: _snake_case = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = LxmertTokenizer lowerCAmelCase_ = LxmertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def lowercase (self ) -> Union[str, Any]: super().setUp() _snake_case = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase (self , UpperCAmelCase ) -> Any: _snake_case = """UNwant\u00E9d,running""" _snake_case = """unwanted, running""" return input_text, output_text def lowercase (self ) -> int: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase (self ) -> List[Any]: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = """I was born in 92000, and this is falsé.""" _snake_case = tokenizer.tokenize(UpperCAmelCase ) _snake_case = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _snake_case = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _snake_case = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(UpperCAmelCase ) _snake_case = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
341
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = """ylacombe/bark-small""" _snake_case = tempfile.mkdtemp() _snake_case = """en_speaker_1""" _snake_case = """This is a test string""" _snake_case = """speaker_embeddings_path.json""" _snake_case = """speaker_embeddings""" def lowercase (self , **UpperCAmelCase ) -> Optional[int]: return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase ) def lowercase (self ) -> str: shutil.rmtree(self.tmpdirname ) def lowercase (self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = BarkProcessor(tokenizer=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase (self ) -> List[str]: _snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _snake_case = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase (self ) -> Optional[Any]: _snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _snake_case = 35 _snake_case = 2 _snake_case = 8 _snake_case = { """semantic_prompt""": np.ones(UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _snake_case = processor(text=self.input_string , voice_preset=UpperCAmelCase ) _snake_case = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _snake_case = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase , **UpperCAmelCase ) _snake_case = processor(text=self.input_string , voice_preset=UpperCAmelCase ) _snake_case = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase (self ) -> List[str]: _snake_case = self.get_tokenizer() _snake_case = BarkProcessor(tokenizer=UpperCAmelCase ) _snake_case = processor(text=self.input_string ) _snake_case = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
341
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __lowerCAmelCase = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __lowerCAmelCase = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __lowerCAmelCase = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=4 , UpperCAmelCase=False ) -> List[Any]: _snake_case = compute_bleu( reference_corpus=UpperCAmelCase , translation_corpus=UpperCAmelCase , max_order=UpperCAmelCase , smooth=UpperCAmelCase ) ((_snake_case), (_snake_case), (_snake_case), (_snake_case), (_snake_case), (_snake_case)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['PerceiverFeatureExtractor'] __lowerCAmelCase = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Validation def is_valid_tree(_SCREAMING_SNAKE_CASE ) -> bool: if node is None: return True if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_SCREAMING_SNAKE_CASE ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _SCREAMING_SNAKE_CASE , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _SCREAMING_SNAKE_CASE ) ) return is_binary_search_tree_recursive_check(_SCREAMING_SNAKE_CASE , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus" ): _snake_case = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , """html.parser""" ) _snake_case = soup.findAll("""h1""" ) _snake_case = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = DownBlockaD # noqa F405 lowerCAmelCase_ = "down" def lowercase (self ) -> Optional[int]: _snake_case = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase_ = "down" def lowercase (self ) -> Optional[Any]: _snake_case = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnDownBlockaD # noqa F405 lowerCAmelCase_ = "down" def lowercase (self ) -> Union[str, Any]: _snake_case = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase_ = "down" def lowercase (self ) -> Dict: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def lowercase (self ) -> Optional[Any]: _snake_case = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase_ = "down" @property def lowercase (self ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowercase (self ) -> Optional[int]: _snake_case = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SkipDownBlockaD # noqa F405 lowerCAmelCase_ = "down" @property def lowercase (self ) -> List[str]: return super().get_dummy_input(include_skip_sample=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase_ = "down" @property def lowercase (self ) -> Optional[Any]: return super().get_dummy_input(include_skip_sample=UpperCAmelCase ) def lowercase (self ) -> Optional[Any]: _snake_case = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = DownEncoderBlockaD # noqa F405 lowerCAmelCase_ = "down" @property def lowercase (self ) -> Tuple: return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowercase (self ) -> str: _snake_case = { """in_channels""": 32, """out_channels""": 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Tuple: _snake_case = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase_ = "down" @property def lowercase (self ) -> List[str]: return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = { """in_channels""": 32, """out_channels""": 32, } _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Any: _snake_case = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = UNetMidBlockaD # noqa F405 lowerCAmelCase_ = "mid" def lowercase (self ) -> str: _snake_case = { """in_channels""": 32, """temb_channels""": 128, } _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Optional[int]: _snake_case = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase_ = "mid" def lowercase (self ) -> Tuple: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def lowercase (self ) -> Optional[Any]: _snake_case = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase_ = "mid" @property def lowercase (self ) -> str: return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def lowercase (self ) -> Any: _snake_case = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = UpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowercase (self ) -> str: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def lowercase (self ) -> int: _snake_case = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase , include_encoder_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = super().prepare_init_args_and_inputs_for_common() _snake_case = 32 return init_dict, inputs_dict def lowercase (self ) -> List[Any]: _snake_case = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnUpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowercase (self ) -> List[Any]: _snake_case = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SkipUpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = UpDecoderBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> List[Any]: return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = {"""in_channels""": 32, """out_channels""": 32} _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Dict: _snake_case = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCAmelCase ) class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase_ = "up" @property def lowercase (self ) -> Any: return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = {"""in_channels""": 32, """out_channels""": 32} _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase (self ) -> Union[str, Any]: _snake_case = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCAmelCase )
341
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _snake_case = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sgugger/tiny-distilbert-classification""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) # set architectures equal to `None` _snake_case = None _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def lowercase (self ) -> Tuple: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Any: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> int: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> str: _snake_case = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() ) def lowercase (self ) -> int: _snake_case = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCAmelCase ): self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() )
341
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=100 , UpperCAmelCase=13 , UpperCAmelCase=30 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=[0, 1, 2, 3] , ) -> Dict: _snake_case = parent _snake_case = 100 _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope _snake_case = out_indices _snake_case = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def lowercase (self ) -> Union[str, Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase (self ) -> int: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _snake_case = BeitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = BeitForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _snake_case = self.type_sequence_label_size _snake_case = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = self.num_labels _snake_case = BeitForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = BeitModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def lowercase (self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) def lowercase (self ) -> Optional[int]: if not self.model_tester.is_training: return _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling]: continue _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case = False _snake_case = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> Any: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase (self ) -> Any: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = BeitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> List[str]: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowercase (self ) -> str: _snake_case = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(UpperCAmelCase ) # prepare bool_masked_pos _snake_case = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , bool_masked_pos=UpperCAmelCase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase , atol=1e-2 ) ) @slow def lowercase (self ) -> Dict: _snake_case = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(logits.shape , UpperCAmelCase ) _snake_case = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) _snake_case = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def lowercase (self ) -> Union[str, Any]: _snake_case = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 21841) ) self.assertEqual(logits.shape , UpperCAmelCase ) _snake_case = torch.tensor([1.6881, -0.2787, 0.5901] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) _snake_case = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def lowercase (self ) -> Any: _snake_case = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case = model.to(UpperCAmelCase ) _snake_case = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase ) _snake_case = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _snake_case = Image.open(ds[0]["""file"""] ) _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits # verify the logits _snake_case = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCAmelCase ) _snake_case = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=UpperCAmelCase , ) else: _snake_case = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase (self ) -> Any: _snake_case = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case = model.to(UpperCAmelCase ) _snake_case = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase ) _snake_case = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _snake_case = Image.open(ds[0]["""file"""] ) _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = outputs.logits.detach().cpu() _snake_case = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(500, 300)] ) _snake_case = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) _snake_case = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) _snake_case = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
341
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
1
'''simple docstring''' from __future__ import annotations import queue class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[Any]: _snake_case = data _snake_case = None _snake_case = None def __SCREAMING_SNAKE_CASE ( ): print("""\n********Press N to stop entering at any point of time********\n""" ) _snake_case = input("""Enter the value of the root node: """ ).strip().lower() _snake_case = queue.Queue() _snake_case = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _snake_case = q.get() _snake_case = f"""Enter the left node of {node_found.data}: """ _snake_case = input(_SCREAMING_SNAKE_CASE ).strip().lower() or """n""" if check == "n": return tree_node _snake_case = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) _snake_case = left_node q.put(_SCREAMING_SNAKE_CASE ) _snake_case = f"""Enter the right node of {node_found.data}: """ _snake_case = input(_SCREAMING_SNAKE_CASE ).strip().lower() or """n""" if check == "n": return tree_node _snake_case = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) _snake_case = right_node q.put(_SCREAMING_SNAKE_CASE ) raise def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _snake_case = queue.Queue() q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _snake_case = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _snake_case = queue.Queue() q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _snake_case = [] while not q.empty(): _snake_case = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _snake_case = [] _snake_case = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(_SCREAMING_SNAKE_CASE ) _snake_case = n.left # end of while means current node doesn't have left child _snake_case = stack.pop() # start to traverse its right child _snake_case = n.right def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _snake_case = [] _snake_case = node while n or stack: while n: stack.append(_SCREAMING_SNAKE_CASE ) _snake_case = n.left _snake_case = stack.pop() print(n.data , end=""",""" ) _snake_case = n.right def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _snake_case, _snake_case = [], [] _snake_case = node stacka.append(_SCREAMING_SNAKE_CASE ) while stacka: # to find the reversed order of post order, store it in stack2 _snake_case = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_SCREAMING_SNAKE_CASE ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = "" , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="*" ): if not s: return "\n" + width * char _snake_case, _snake_case = divmod(width - len(_SCREAMING_SNAKE_CASE ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) __lowerCAmelCase = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
341
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
1
'''simple docstring''' import warnings from .generation import TFGenerationMixin class _lowerCAmelCase ( __snake_case ): '''simple docstring''' warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , __snake_case , )
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Initialise PyTorch model _snake_case = FunnelConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) _snake_case = FunnelBaseModel(_SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' import argparse import struct import unittest class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> None: _snake_case = data # Initialize hash values _snake_case = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants _snake_case = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] _snake_case = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase (UpperCAmelCase ) -> bytes: _snake_case = B"""\x80""" + (B"""\x00""" * (63 - (len(UpperCAmelCase ) + 8) % 64)) _snake_case = struct.pack(""">Q""" , (len(UpperCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowercase (self ) -> None: # Convert into blocks of 64 bytes _snake_case = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _snake_case = list(struct.unpack(""">16L""" , UpperCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _snake_case = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _snake_case = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _snake_case = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression _snake_case = self.ror(UpperCAmelCase , 6 ) ^ self.ror(UpperCAmelCase , 11 ) ^ self.ror(UpperCAmelCase , 25 ) _snake_case = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) _snake_case = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 _snake_case = self.ror(UpperCAmelCase , 2 ) ^ self.ror(UpperCAmelCase , 13 ) ^ self.ror(UpperCAmelCase , 22 ) _snake_case = (a & b) ^ (a & c) ^ (b & c) _snake_case = (sa + maj) % 0x1_00_00_00_00 _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) _snake_case = [a, b, c, d, e, f, g, h] # Modify final values _snake_case = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] _snake_case = """""".join([hex(UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> None: import hashlib _snake_case = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(UpperCAmelCase ).hash , hashlib.shaaaa(UpperCAmelCase ).hexdigest() ) def __SCREAMING_SNAKE_CASE ( ): import doctest doctest.testmod() _snake_case = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _snake_case = parser.parse_args() _snake_case = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _snake_case = f.read() else: _snake_case = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' from math import pow def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _snake_case = int(pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _snake_case, _snake_case = backtrack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , current_number + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _snake_case, _snake_case = backtrack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , current_number + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return current_sum, solutions_count def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Tuple: _snake_case = 0 def lowercase (self ) -> str: _snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = Path(UpperCAmelCase ) / """preprocessor_config.json""" _snake_case = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = Path(UpperCAmelCase ) / """preprocessor_config.json""" _snake_case = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type _snake_case = Path(UpperCAmelCase ) / """preprocessor_config.json""" _snake_case = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop("""image_processor_type""" ) _snake_case = CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved _snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = Path(UpperCAmelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCAmelCase , """clip-base is not a local folder and is not a valid model identifier""" ): _snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowercase (self ) -> Tuple: with self.assertRaisesRegex( UpperCAmelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase , revision="""aaaaaa""" ) def lowercase (self ) -> int: with self.assertRaisesRegex( UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): _snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowercase (self ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase ): _snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): _snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) _snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowercase (self ) -> Dict: try: AutoConfig.register("""custom""" , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = Path(UpperCAmelCase ) / """preprocessor_config.json""" _snake_case = Path(UpperCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCAmelCase , """w""" ) ) _snake_case = CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) _snake_case = AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase (self ) -> Optional[int]: class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = True try: AutoConfig.register("""custom""" , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local _snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = XLMProphetNetTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def lowercase (self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing _snake_case = XLMProphetNetTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase (self ) -> Optional[int]: _snake_case = """[PAD]""" _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCAmelCase ) , 1012 ) def lowercase (self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase (self ) -> Tuple: _snake_case = XLMProphetNetTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _snake_case = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _snake_case = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def lowercase (self ) -> Any: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def lowercase (self ) -> List[Any]: _snake_case = """Hello World!""" _snake_case = [35389, 6672, 49, 2] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def lowercase (self ) -> Dict: # fmt: off _snake_case = {"""input_ids""": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Union[str, Any]: _snake_case = str(id_ ) _snake_case = None _snake_case = None _snake_case = [] _snake_case = {} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> Optional[Any]: return self.key < other.key def __repr__(self ) -> int: return self.id def lowercase (self , UpperCAmelCase ) -> List[str]: self.neighbors.append(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _snake_case = weight def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] for u in graph: _snake_case = math.inf _snake_case = None _snake_case = 0 _snake_case = graph[:] while q: _snake_case = min(_SCREAMING_SNAKE_CASE ) q.remove(_SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _snake_case = u _snake_case = u.edges[v.id] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for u in graph: _snake_case = math.inf _snake_case = None _snake_case = 0 _snake_case = list(_SCREAMING_SNAKE_CASE ) hq.heapify(_SCREAMING_SNAKE_CASE ) while h: _snake_case = hq.heappop(_SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _snake_case = u _snake_case = u.edges[v.id] hq.heapify(_SCREAMING_SNAKE_CASE ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = 10 def lowercase (self ) -> List[Any]: _snake_case = [1, 2, 3, 4] _snake_case = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase , self.block_size , 0 ) , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase , self.block_size , 0 ) , UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase , self.block_size , 0 ) , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" _snake_case, _snake_case = process_story(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [] ) def lowercase (self ) -> List[Any]: _snake_case = """""" _snake_case, _snake_case = process_story(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [] ) self.assertEqual(UpperCAmelCase , [] ) def lowercase (self ) -> Tuple: _snake_case = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) _snake_case, _snake_case = process_story(UpperCAmelCase ) _snake_case = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) _snake_case = ["""It was the best of times."""] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = torch.tensor([1, 2, 3, 4] ) _snake_case = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def lowercase (self ) -> Union[str, Any]: _snake_case = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _snake_case = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def lowercase (self ) -> str: _snake_case = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _snake_case = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def lowercase (self ) -> Optional[int]: _snake_case = 101 _snake_case = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _snake_case = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _snake_case = compute_token_type_ids(UpperCAmelCase , UpperCAmelCase ) np.testing.assert_array_equal(UpperCAmelCase , UpperCAmelCase )
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=12 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=0 , UpperCAmelCase=None , ) -> Optional[int]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = projection_dim _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = dropout _snake_case = attention_dropout _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = scope _snake_case = bos_token_id def lowercase (self ) -> str: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _snake_case = input_mask.numpy() _snake_case, _snake_case = input_mask.shape _snake_case = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): _snake_case = 1 _snake_case = 0 _snake_case = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCAmelCase ) def lowercase (self ) -> int: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _snake_case = TFBlipTextModel(config=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase , training=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase (self ) -> Dict: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Tuple: _snake_case = BlipTextModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> Optional[Any]: self.config_tester.run_common_tests() def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> Optional[Any]: pass def lowercase (self ) -> str: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def lowercase (self ) -> List[Any]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase (self ) -> Tuple: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase (self ) -> Optional[int]: pass @slow def lowercase (self ) -> Union[str, Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFBlipTextModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self , UpperCAmelCase=True ) -> Optional[int]: super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCAmelCase )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCAmelCase_ = ["flax", "transformers"] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ["""flax""", """transformers"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCAmelCase_ = ["flax", "transformers"] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ["""flax""", """transformers"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCAmelCase_ = ["flax", "transformers"] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ["""flax""", """transformers"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCAmelCase_ = ["flax", "transformers"] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] )
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' from math import isclose, sqrt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = point_y / 4 / point_x _snake_case = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _snake_case = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _snake_case = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _snake_case = outgoing_gradient**2 + 4 _snake_case = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _snake_case = (point_y - outgoing_gradient * point_x) ** 2 - 100 _snake_case = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _snake_case = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _snake_case = x_minus if isclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else x_plus _snake_case = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1.4 , _SCREAMING_SNAKE_CASE = -9.6 ): _snake_case = 0 _snake_case = first_x_coord _snake_case = first_y_coord _snake_case = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _snake_case, _snake_case, _snake_case = next_point(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , _SCREAMING_SNAKE_CASE ).groups()[0] class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: _snake_case = file_names _snake_case = image_transform _snake_case = label_to_id def __len__(self ) -> Dict: return len(self.file_names ) def __getitem__(self , UpperCAmelCase ) -> Optional[int]: _snake_case = self.file_names[idx] _snake_case = PIL.Image.open(UpperCAmelCase ) _snake_case = raw_image.convert("""RGB""" ) if self.image_transform is not None: _snake_case = self.image_transform(UpperCAmelCase ) _snake_case = extract_label(UpperCAmelCase ) if self.label_to_id is not None: _snake_case = self.label_to_id[label] return {"image": image, "label": label} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Initialize accelerator if args.with_tracking: _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config["""lr"""] _snake_case = int(config["""num_epochs"""] ) _snake_case = int(config["""seed"""] ) _snake_case = int(config["""batch_size"""] ) _snake_case = config["""image_size"""] if not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): _snake_case = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": _snake_case = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _snake_case = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _snake_case = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _snake_case = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split(""".""" )[0] accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Grab all the image filenames _snake_case = [os.path.join(args.data_dir , _SCREAMING_SNAKE_CASE ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences _snake_case = [extract_label(_SCREAMING_SNAKE_CASE ) for fname in file_names] _snake_case = list(set(_SCREAMING_SNAKE_CASE ) ) id_to_label.sort() _snake_case = {lbl: i for i, lbl in enumerate(_SCREAMING_SNAKE_CASE )} # Set the seed before splitting the data. np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # Split our filenames between train and validation _snake_case = np.random.permutation(len(_SCREAMING_SNAKE_CASE ) ) _snake_case = int(0.8 * len(_SCREAMING_SNAKE_CASE ) ) _snake_case = random_perm[:cut] _snake_case = random_perm[cut:] # For training we use a simple RandomResizedCrop _snake_case = Compose([RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.5, 1.0) ), ToTensor()] ) _snake_case = PetsDataset( [file_names[i] for i in train_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE ) # For evaluation, we use a deterministic Resize _snake_case = Compose([Resize(_SCREAMING_SNAKE_CASE ), ToTensor()] ) _snake_case = PetsDataset([file_names[i] for i in eval_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE ) # Instantiate dataloaders. _snake_case = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) _snake_case = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = create_model("""resnet50d""" , pretrained=_SCREAMING_SNAKE_CASE , num_classes=len(_SCREAMING_SNAKE_CASE ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _snake_case = False for param in model.get_classifier().parameters(): _snake_case = True # We normalize the batches of images to be a bit faster. _snake_case = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) _snake_case = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _snake_case = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _snake_case = OneCycleLR(optimizer=_SCREAMING_SNAKE_CASE , max_lr=_SCREAMING_SNAKE_CASE , epochs=_SCREAMING_SNAKE_CASE , steps_per_epoch=len(_SCREAMING_SNAKE_CASE ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over _snake_case = 0 # We also need to keep track of the starting epoch so files are named properly _snake_case = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _snake_case = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _snake_case = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _snake_case = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _snake_case = os.path.splitext(_SCREAMING_SNAKE_CASE )[0] if "epoch" in training_difference: _snake_case = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 _snake_case = None else: _snake_case = int(training_difference.replace("""step_""" , """""" ) ) _snake_case = resume_step // len(_SCREAMING_SNAKE_CASE ) resume_step -= starting_epoch * len(_SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() if args.with_tracking: _snake_case = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _snake_case = accelerator.skip_first_batches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _snake_case = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} _snake_case = (batch["""image"""] - mean) / std _snake_case = model(_SCREAMING_SNAKE_CASE ) _snake_case = torch.nn.functional.cross_entropy(_SCREAMING_SNAKE_CASE , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _snake_case = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) model.eval() _snake_case = 0 _snake_case = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. _snake_case = {k: v.to(accelerator.device ) for k, v in batch.items()} _snake_case = (batch["""image"""] - mean) / std with torch.no_grad(): _snake_case = model(_SCREAMING_SNAKE_CASE ) _snake_case = outputs.argmax(dim=-1 ) _snake_case, _snake_case = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) _snake_case = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _snake_case = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(_SCREAMING_SNAKE_CASE ), """epoch""": epoch, } , step=_SCREAMING_SNAKE_CASE , ) if checkpointing_steps == "epoch": _snake_case = f"""epoch_{epoch}""" if args.output_dir is not None: _snake_case = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) if args.with_tracking: accelerator.end_training() def __SCREAMING_SNAKE_CASE ( ): _snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=_SCREAMING_SNAKE_CASE , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=_SCREAMING_SNAKE_CASE , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) _snake_case = parser.parse_args() _snake_case = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 0 if start < end: _snake_case = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = a[end] _snake_case = a[pivot] _snake_case = temp _snake_case, _snake_case = _in_place_partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , p - 1 ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , p + 1 , _SCREAMING_SNAKE_CASE ) return count def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 0 _snake_case = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = a[end] _snake_case = a[pivot] _snake_case = temp _snake_case = start - 1 for index in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case = new_pivot_index + 1 _snake_case = a[new_pivot_index] _snake_case = a[index] _snake_case = temp _snake_case = a[new_pivot_index + 1] _snake_case = a[end] _snake_case = temp return new_pivot_index + 1, count __lowerCAmelCase = TemporaryFile() __lowerCAmelCase = 100 # 1000 elements are to be sorted __lowerCAmelCase , __lowerCAmelCase = 0, 1 # mean and standard deviation __lowerCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __lowerCAmelCase = np.load(outfile) __lowerCAmelCase = len(M) - 1 __lowerCAmelCase = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
341
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
1
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = name _snake_case = value _snake_case = weight def __repr__(self ) -> Optional[Any]: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase (self ) -> int: return self.value def lowercase (self ) -> Dict: return self.name def lowercase (self ) -> str: return self.weight def lowercase (self ) -> Optional[int]: return self.value / self.weight def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = sorted(_SCREAMING_SNAKE_CASE , key=_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) _snake_case = [] _snake_case, _snake_case = 0.0, 0.0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['PerceiverFeatureExtractor'] __lowerCAmelCase = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import string def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): for key in range(len(string.ascii_uppercase ) ): _snake_case = """""" for symbol in message: if symbol in string.ascii_uppercase: _snake_case = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE ) _snake_case = num - key if num < 0: _snake_case = num + len(string.ascii_uppercase ) _snake_case = translated + string.ascii_uppercase[num] else: _snake_case = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = input("""Encrypted message: """ ) _snake_case = message.upper() decrypt(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
341
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): _snake_case = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } _snake_case, _snake_case = input_paths_and_base_extractors[compression_format] if input_path is None: _snake_case = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(_SCREAMING_SNAKE_CASE ) _snake_case = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _snake_case = file_path.read_text(encoding="""utf-8""" ) else: _snake_case = output_path.read_text(encoding="""utf-8""" ) _snake_case = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): _snake_case = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } _snake_case = input_paths[compression_format] if input_path is None: _snake_case = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_SCREAMING_SNAKE_CASE ) _snake_case = Extractor.infer_extractor_format(_SCREAMING_SNAKE_CASE ) assert extractor_format is not None _snake_case = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _snake_case = file_path.read_text(encoding="""utf-8""" ) else: _snake_case = output_path.read_text(encoding="""utf-8""" ) _snake_case = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): import tarfile _snake_case = tmp_path / """data_dot_dot""" directory.mkdir() _snake_case = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): import tarfile _snake_case = tmp_path / """data_sym_link""" directory.mkdir() _snake_case = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=_SCREAMING_SNAKE_CASE ) with tarfile.TarFile(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } _snake_case = insecure_tar_files[insecure_tar_file] _snake_case = tmp_path / """extracted""" TarExtractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _snake_case = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 _snake_case = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(_SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_SCREAMING_SNAKE_CASE ) # but we're right
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
341
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _snake_case = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sgugger/tiny-distilbert-classification""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) # set architectures equal to `None` _snake_case = None _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def lowercase (self ) -> Tuple: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Any: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> int: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> str: _snake_case = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() ) def lowercase (self ) -> int: _snake_case = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCAmelCase ): self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() )
341
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_SCREAMING_SNAKE_CASE , n - 1 , _SCREAMING_SNAKE_CASE ) * a) % mod else: _snake_case = binary_exponentiation(_SCREAMING_SNAKE_CASE , n / 2 , _SCREAMING_SNAKE_CASE ) return (b * b) % mod # a prime number __lowerCAmelCase = 701 __lowerCAmelCase = 1_000_000_000 __lowerCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
341
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1000 ): _snake_case, _snake_case = 1, 1 _snake_case = [] for i in range(1 , n + 1 ): _snake_case = prev_numerator + 2 * prev_denominator _snake_case = prev_numerator + prev_denominator if len(str(_SCREAMING_SNAKE_CASE ) ) > len(str(_SCREAMING_SNAKE_CASE ) ): result.append(_SCREAMING_SNAKE_CASE ) _snake_case = numerator _snake_case = denominator return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('KEY') __lowerCAmelCase = TypeVar('VAL') @dataclass(frozen=__snake_case , slots=__snake_case ) class _lowerCAmelCase ( Generic[KEY, VAL] ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class _lowerCAmelCase ( _Item ): '''simple docstring''' def __init__(self ) -> None: super().__init__(UpperCAmelCase , UpperCAmelCase ) def __bool__(self ) -> bool: return False __lowerCAmelCase = _DeletedItem() class _lowerCAmelCase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self , UpperCAmelCase = 8 , UpperCAmelCase = 0.75 ) -> None: _snake_case = initial_block_size _snake_case = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _snake_case = capacity_factor _snake_case = 0 def lowercase (self , UpperCAmelCase ) -> int: return hash(UpperCAmelCase ) % len(self._buckets ) def lowercase (self , UpperCAmelCase ) -> int: return (ind + 1) % len(self._buckets ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: _snake_case = self._buckets[ind] if not stored: _snake_case = _Item(UpperCAmelCase , UpperCAmelCase ) self._len += 1 return True elif stored.key == key: _snake_case = _Item(UpperCAmelCase , UpperCAmelCase ) return True else: return False def lowercase (self ) -> bool: _snake_case = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCAmelCase ) def lowercase (self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _snake_case = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase (self , UpperCAmelCase ) -> None: _snake_case = self._buckets _snake_case = [None] * new_size _snake_case = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase (self ) -> None: self._resize(len(self._buckets ) * 2 ) def lowercase (self ) -> None: self._resize(len(self._buckets ) // 2 ) def lowercase (self , UpperCAmelCase ) -> Iterator[int]: _snake_case = self._get_bucket_index(UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind _snake_case = self._get_next_ind(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: for ind in self._iterate_buckets(UpperCAmelCase ): if self._try_set(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): break def __setitem__(self , UpperCAmelCase , UpperCAmelCase ) -> None: if self._is_full(): self._size_up() self._add_item(UpperCAmelCase , UpperCAmelCase ) def __delitem__(self , UpperCAmelCase ) -> None: for ind in self._iterate_buckets(UpperCAmelCase ): _snake_case = self._buckets[ind] if item is None: raise KeyError(UpperCAmelCase ) if item is _deleted: continue if item.key == key: _snake_case = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , UpperCAmelCase ) -> VAL: for ind in self._iterate_buckets(UpperCAmelCase ): _snake_case = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCAmelCase ) def __len__(self ) -> int: return self._len def __iter__(self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: _snake_case = """ ,""".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , **UpperCAmelCase ) -> int: requires_backends(self , ["""bs4"""] ) super().__init__(**UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> List[str]: _snake_case = [] _snake_case = [] _snake_case = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _snake_case = parent.find_all(child.name , recursive=UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCAmelCase ) else next(i for i, s in enumerate(UpperCAmelCase , 1 ) if s is child ) ) _snake_case = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = BeautifulSoup(UpperCAmelCase , """html.parser""" ) _snake_case = [] _snake_case = [] _snake_case = [] for element in html_code.descendants: if type(UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _snake_case = html.unescape(UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCAmelCase ) _snake_case, _snake_case = self.xpath_soup(UpperCAmelCase ) stringaxtag_seq.append(UpperCAmelCase ) stringaxsubs_seq.append(UpperCAmelCase ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _snake_case = """""" for tagname, subs in zip(UpperCAmelCase , UpperCAmelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__(self , UpperCAmelCase ) -> BatchFeature: _snake_case = False # Check that strings has a valid type if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = True elif isinstance(UpperCAmelCase , (list, tuple) ): if len(UpperCAmelCase ) == 0 or isinstance(html_strings[0] , UpperCAmelCase ): _snake_case = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"""but is of type {type(UpperCAmelCase )}.""" ) _snake_case = bool(isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , UpperCAmelCase )) ) if not is_batched: _snake_case = [html_strings] # Get nodes + xpaths _snake_case = [] _snake_case = [] for html_string in html_strings: _snake_case, _snake_case, _snake_case = self.get_three_from_single(UpperCAmelCase ) nodes.append(UpperCAmelCase ) _snake_case = [] for node, tag_list, sub_list in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = self.construct_xpath(UpperCAmelCase , UpperCAmelCase ) xpath_strings.append(UpperCAmelCase ) xpaths.append(UpperCAmelCase ) # return as Dict _snake_case = {"""nodes""": nodes, """xpaths""": xpaths} _snake_case = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) return encoded_inputs
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) _snake_case = """""" while len(_SCREAMING_SNAKE_CASE ) % 3 != 0: _snake_case = """0""" + bin_string _snake_case = [ bin_string[index : index + 3] for index in range(len(_SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _snake_case = 0 for index, val in enumerate(_SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(_SCREAMING_SNAKE_CASE ) ) oct_string += str(_SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "funnel" lowerCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=[4, 4, 4] , UpperCAmelCase=None , UpperCAmelCase=2 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=64 , UpperCAmelCase=3072 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=None , UpperCAmelCase=1e-9 , UpperCAmelCase="mean" , UpperCAmelCase="relative_shift" , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: _snake_case = vocab_size _snake_case = block_sizes _snake_case = [1] * len(UpperCAmelCase ) if block_repeats is None else block_repeats assert len(UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _snake_case = num_decoder_layers _snake_case = d_model _snake_case = n_head _snake_case = d_head _snake_case = d_inner _snake_case = hidden_act _snake_case = hidden_dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = initializer_range _snake_case = initializer_std _snake_case = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _snake_case = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _snake_case = attention_type _snake_case = separate_cls _snake_case = truncate_seq _snake_case = pool_q_only super().__init__(**UpperCAmelCase ) @property def lowercase (self ) -> Dict: return sum(self.block_sizes ) @num_hidden_layers.setter def lowercase (self , UpperCAmelCase ) -> Tuple: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowercase (self ) -> str: return len(self.block_sizes ) @num_blocks.setter def lowercase (self , UpperCAmelCase ) -> Dict: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "convbert" def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=768 , UpperCAmelCase=2 , UpperCAmelCase=9 , UpperCAmelCase=1 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = embedding_size _snake_case = head_ratio _snake_case = conv_kernel_size _snake_case = num_groups _snake_case = classifier_dropout class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from __future__ import annotations __lowerCAmelCase = list[list[int]] # assigning initial values to the grid __lowerCAmelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowerCAmelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if location := find_empty_location(_SCREAMING_SNAKE_CASE ): _snake_case, _snake_case = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = digit if sudoku(_SCREAMING_SNAKE_CASE ) is not None: return grid _snake_case = 0 return None def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): for row in grid: for cell in row: print(_SCREAMING_SNAKE_CASE , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __lowerCAmelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): _snake_case = [] for old_item in old_list: _snake_case = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): _snake_case = [] for old_item in old_list: _snake_case = old_item _snake_case = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case = old_checkpoint[path] _snake_case = old_tensor.shape[0] // 3 _snake_case = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case, _snake_case, _snake_case = old_tensor.split(channels // num_heads , dim=1 ) _snake_case = query.reshape(_SCREAMING_SNAKE_CASE ) _snake_case = key.reshape(_SCREAMING_SNAKE_CASE ) _snake_case = value.reshape(_SCREAMING_SNAKE_CASE ) for path in paths: _snake_case = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case = old_checkpoint[path["""old"""]] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {} _snake_case = checkpoint["""time_embed.0.weight"""] _snake_case = checkpoint["""time_embed.0.bias"""] _snake_case = checkpoint["""time_embed.2.weight"""] _snake_case = checkpoint["""time_embed.2.bias"""] _snake_case = checkpoint["""input_blocks.0.0.weight"""] _snake_case = checkpoint["""input_blocks.0.0.bias"""] _snake_case = checkpoint["""out.0.weight"""] _snake_case = checkpoint["""out.0.bias"""] _snake_case = checkpoint["""out.2.weight"""] _snake_case = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only _snake_case = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } for i in range(1 , _SCREAMING_SNAKE_CASE ): _snake_case = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] _snake_case = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: _snake_case = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] _snake_case = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = {"""old""": f"""input_blocks.{i}.0""", """new""": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _snake_case = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ): _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """old""": f"""input_blocks.{i}.1""", """new""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _snake_case = { f"""input_blocks.{i}.1.qkv.bias""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , ) _snake_case = middle_blocks[0] _snake_case = middle_blocks[1] _snake_case = middle_blocks[2] _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = i // (config["""num_res_blocks"""] + 1) _snake_case = i % (config["""num_res_blocks"""] + 1) _snake_case = [shave_segments(_SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] _snake_case = {} for layer in output_block_layers: _snake_case, _snake_case = layer.split(""".""" )[0], shave_segments(_SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_SCREAMING_SNAKE_CASE ) else: _snake_case = [layer_name] if len(_SCREAMING_SNAKE_CASE ) > 1: _snake_case = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] _snake_case = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) _snake_case = {"""old""": f"""output_blocks.{i}.0""", """new""": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=_SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] _snake_case = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(_SCREAMING_SNAKE_CASE ) == 2: _snake_case = [] if len(_SCREAMING_SNAKE_CASE ): _snake_case = renew_attention_paths(_SCREAMING_SNAKE_CASE ) _snake_case = { """old""": f"""output_blocks.{i}.1""", """new""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _snake_case = { f"""output_blocks.{i}.1.qkv.bias""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=_SCREAMING_SNAKE_CASE , ) else: _snake_case = renew_resnet_paths(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case = """.""".join(["""output_blocks""", str(_SCREAMING_SNAKE_CASE ), path["""old"""]] ) _snake_case = """.""".join(["""up_blocks""", str(_SCREAMING_SNAKE_CASE ), """resnets""", str(_SCREAMING_SNAKE_CASE ), path["""new"""]] ) _snake_case = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) __lowerCAmelCase = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowercase (self ) -> Dict: _snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_attention_heads""" ) ) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=64 , UpperCAmelCase=3 , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=16 , UpperCAmelCase=[128, 256, 384] , UpperCAmelCase=[4, 6, 8] , UpperCAmelCase=[2, 3, 4] , UpperCAmelCase=[16, 16, 16] , UpperCAmelCase=0 , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = kernel_size _snake_case = stride _snake_case = padding _snake_case = hidden_sizes _snake_case = num_attention_heads _snake_case = depths _snake_case = key_dim _snake_case = drop_path_rate _snake_case = patch_size _snake_case = attention_ratio _snake_case = mlp_ratio _snake_case = initializer_range _snake_case = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _snake_case = is_training _snake_case = use_labels _snake_case = num_labels _snake_case = initializer_range def lowercase (self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> str: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = LevitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) _snake_case = (self.image_size, self.image_size) _snake_case, _snake_case = image_size[0], image_size[1] for _ in range(4 ): _snake_case = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _snake_case = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = self.num_labels _snake_case = LevitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase (self ) -> str: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCAmelCase_ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Dict: _snake_case = LevitModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Optional[Any]: return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def lowercase (self ) -> str: pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""Levit does not output attentions""" ) def lowercase (self ) -> Optional[int]: pass def lowercase (self ) -> int: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> Tuple: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.hidden_states _snake_case = len(self.model_tester.depths ) + 1 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) _snake_case = (self.model_tester.image_size, self.model_tester.image_size) _snake_case, _snake_case = image_size[0], image_size[1] for _ in range(4 ): _snake_case = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _snake_case = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Optional[int]: pass def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: _snake_case = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def lowercase (self ) -> Dict: if not self.model_tester.is_training: return _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> int: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case = False _snake_case = True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _snake_case = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): _snake_case = problem_type["""title"""] _snake_case = problem_type["""num_labels"""] _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if problem_type["num_labels"] > 1: _snake_case = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _snake_case = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCAmelCase ) as warning_list: _snake_case = model(**UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase (self ) -> Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = LevitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> List[str]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase (self ) -> Optional[Any]: _snake_case = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor([1.0448, -0.3745, -1.8317] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __lowerCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def __SCREAMING_SNAKE_CASE ( ): _snake_case = Github(os.environ["""GITHUB_TOKEN"""] ) _snake_case = g.get_repo("""huggingface/diffusers""" ) _snake_case = repo.get_issues(state="""open""" ) for issue in open_issues: _snake_case = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) _snake_case = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""shortest_edge""": 384} _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = do_resize _snake_case = size # Default value set here for backwards compatibility where the value in config is None _snake_case = crop_pct if crop_pct is not None else 224 / 256 _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _snake_case = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _snake_case = int(shortest_edge / crop_pct ) _snake_case = get_resize_output_image_size(UpperCAmelCase , size=UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=UpperCAmelCase , **UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = crop_pct if crop_pct is not None else self.crop_pct _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , crop_pct=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "microsoft/speecht5_tts" lowerCAmelCase_ = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) lowerCAmelCase_ = "text_reader" lowerCAmelCase_ = SpeechTaProcessor lowerCAmelCase_ = SpeechTaForTextToSpeech lowerCAmelCase_ = SpeechTaHifiGan lowerCAmelCase_ = ["text"] lowerCAmelCase_ = ["audio"] def lowercase (self ) -> List[Any]: if self.post_processor is None: _snake_case = """microsoft/speecht5_hifigan""" super().setup() def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: _snake_case = self.pre_processor(text=UpperCAmelCase , return_tensors="""pt""" , truncation=UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _snake_case = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _snake_case = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase (self , UpperCAmelCase ) -> List[Any]: with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> str: with torch.no_grad(): return self.post_processor(UpperCAmelCase ).cpu().detach()
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> List[Any]: _snake_case = {} def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ) -> Any: if self.graph.get(UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _snake_case = [[w, v]] if not self.graph.get(UpperCAmelCase ): _snake_case = [] def lowercase (self ) -> List[str]: return list(self.graph ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) def lowercase (self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ) -> int: if s == d: return [] _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def lowercase (self , UpperCAmelCase=-1 ) -> int: if c == -1: _snake_case = floor(random() * 10000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def lowercase (self , UpperCAmelCase=-2 ) -> Optional[int]: _snake_case = deque() _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: _snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase (self , UpperCAmelCase ) -> Optional[int]: _snake_case = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase (self , UpperCAmelCase ) -> List[str]: return len(self.graph[u] ) def lowercase (self , UpperCAmelCase=-2 ) -> Union[str, Any]: _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = s _snake_case = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return sorted_nodes def lowercase (self ) -> str: _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = False indirect_parents.append(UpperCAmelCase ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = False indirect_parents.append(UpperCAmelCase ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def lowercase (self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ) -> Dict: _snake_case = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) _snake_case = time() return end - begin def lowercase (self , UpperCAmelCase=-2 ) -> int: _snake_case = time() self.bfs(UpperCAmelCase ) _snake_case = time() return end - begin class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Dict: _snake_case = {} def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ) -> str: # check if the u exists if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _snake_case = [[w, v]] # add the other way if self.graph.get(UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _snake_case = [[w, u]] def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Any: if self.graph.get(UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase ) # the other way round if self.graph.get(UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCAmelCase ) def lowercase (self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ) -> Optional[Any]: if s == d: return [] _snake_case = [] _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return visited def lowercase (self , UpperCAmelCase=-1 ) -> Tuple: if c == -1: _snake_case = floor(random() * 10000 ) + 10 for i in range(UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _snake_case = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase , UpperCAmelCase , 1 ) def lowercase (self , UpperCAmelCase=-2 ) -> Union[str, Any]: _snake_case = deque() _snake_case = [] if s == -2: _snake_case = list(self.graph )[0] d.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) while d: _snake_case = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase (self , UpperCAmelCase ) -> Any: return len(self.graph[u] ) def lowercase (self ) -> Tuple: _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = False indirect_parents.append(UpperCAmelCase ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return list(UpperCAmelCase ) def lowercase (self ) -> str: _snake_case = [] _snake_case = [] _snake_case = list(self.graph )[0] stack.append(UpperCAmelCase ) visited.append(UpperCAmelCase ) _snake_case = -2 _snake_case = [] _snake_case = s _snake_case = False _snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _snake_case = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _snake_case = len(UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() _snake_case = True if len(UpperCAmelCase ) != 0: _snake_case = stack[len(UpperCAmelCase ) - 1] else: _snake_case = False indirect_parents.append(UpperCAmelCase ) _snake_case = s _snake_case = ss # check if se have reached the starting point if len(UpperCAmelCase ) == 0: return False def lowercase (self ) -> int: return list(self.graph ) def lowercase (self , UpperCAmelCase=-2 , UpperCAmelCase=-1 ) -> Optional[int]: _snake_case = time() self.dfs(UpperCAmelCase , UpperCAmelCase ) _snake_case = time() return end - begin def lowercase (self , UpperCAmelCase=-2 ) -> Union[str, Any]: _snake_case = time() self.bfs(UpperCAmelCase ) _snake_case = time() return end - begin
341
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
341
'''simple docstring''' __lowerCAmelCase = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} _snake_case = 0 _snake_case = 0 while place < len(_SCREAMING_SNAKE_CASE ): if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for arabic, roman in ROMAN: ((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} __lowerCAmelCase = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', 'emoji': True, }, } ] __lowerCAmelCase = 0 for log in Path().glob('*.log'): __lowerCAmelCase = 0 with open(log, 'r') as f: for line in f: __lowerCAmelCase = json.loads(line) if line.get('nodeid', '') != "": __lowerCAmelCase = line['nodeid'] if line.get('duration', None) is not None: __lowerCAmelCase = f'''{line["duration"]:.4f}''' if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCAmelCase = [] log.unlink() __lowerCAmelCase = '' __lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __lowerCAmelCase = [] __lowerCAmelCase = {} for test in failed_tests: __lowerCAmelCase = test[0].split('::') __lowerCAmelCase = data[0].split('/')[-1] if data[0] not in filesafailed: __lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCAmelCase = [test[0] for test in failed_table] __lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests __lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCAmelCase = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: __lowerCAmelCase = 'Too many failed tests, please see the full report in the Action results.' __lowerCAmelCase = len(err) + 10 __lowerCAmelCase = message[: 3_000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __lowerCAmelCase = 'No failed tests! 🤗' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient __lowerCAmelCase = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": __lowerCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) __lowerCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) __lowerCAmelCase = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) __lowerCAmelCase = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) __lowerCAmelCase = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCAmelCase = '' for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCAmelCase = row[0] else: __lowerCAmelCase = '' __lowerCAmelCase = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['PerceiverFeatureExtractor'] __lowerCAmelCase = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 0 _snake_case = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 _snake_case = len(_SCREAMING_SNAKE_CASE ) // 2 _snake_case = arr[0:mid] _snake_case = arr[mid:] _snake_case, _snake_case = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = _count_cross_inversions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = inversion_p + inversions_q + cross_inversions return c, num_inversions def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] _snake_case = _snake_case = _snake_case = 0 while i < len(_SCREAMING_SNAKE_CASE ) and j < len(_SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __SCREAMING_SNAKE_CASE ( ): _snake_case = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _snake_case = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _snake_case = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions _snake_case = [] _snake_case = count_inversions_bf(_SCREAMING_SNAKE_CASE ) _snake_case, _snake_case = count_inversions_recursive(_SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
341
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: _snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = initializer_range def lowercase (self ) -> str: _snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , ) _snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowercase (self ) -> Dict: _snake_case, _snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = 20 _snake_case = model_class_name(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] ) _snake_case, _snake_case = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) _snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _snake_case = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) _snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) _snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def lowercase (self ) -> Any: _snake_case = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case = input_ids.shape[0] _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case = self._get_config_and_data() _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = lm_model(input_ids=UpperCAmelCase ) _snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase ) _snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) _snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 ) _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() _snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ): '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase (self ) -> Any: _snake_case = FlaxBlenderbotModelTester(self ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _snake_case = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase (self ) -> str: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = model_class(UpperCAmelCase ) _snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _snake_case = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase (self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case = np.ones((1, 1) ) * model.config.eos_token_id _snake_case = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def lowercase (self ) -> Dict: _snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase ) _snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case = ["""Sam"""] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" ) _snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase ) _snake_case = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
341
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCAmelCase = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } __lowerCAmelCase = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _snake_case, _snake_case = create_model( """HTSAT-tiny""" , """roberta""" , _SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = {} _snake_case = R""".*sequential.(\d+).*""" _snake_case = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _snake_case = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # replace sequential layers with list _snake_case = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) _snake_case = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(_SCREAMING_SNAKE_CASE )//3}.linear.""" ) elif re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _snake_case = 1 if projecton_layer == 0 else 2 _snake_case = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _snake_case = value _snake_case = mixed_qkv.size(0 ) // 3 _snake_case = mixed_qkv[:qkv_dim] _snake_case = mixed_qkv[qkv_dim : qkv_dim * 2] _snake_case = mixed_qkv[qkv_dim * 2 :] _snake_case = query_layer _snake_case = key_layer _snake_case = value_layer else: _snake_case = value return model_state_dict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _snake_case, _snake_case = init_clap(_SCREAMING_SNAKE_CASE , enable_fusion=_SCREAMING_SNAKE_CASE ) clap_model.eval() _snake_case = clap_model.state_dict() _snake_case = rename_state_dict(_SCREAMING_SNAKE_CASE ) _snake_case = ClapConfig() _snake_case = enable_fusion _snake_case = ClapModel(_SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') __lowerCAmelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase (self ) -> Optional[int]: _snake_case = 1 _snake_case = 3 _snake_case = (32, 32) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def lowercase (self ) -> Dict: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase (self ) -> int: torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase (self ) -> int: torch.manual_seed(0 ) _snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def lowercase (self ) -> int: def extract(*UpperCAmelCase , **UpperCAmelCase ): class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> List[Any]: _snake_case = torch.ones([0] ) def lowercase (self , UpperCAmelCase ) -> Tuple: self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def lowercase (self ) -> Tuple: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.dummy_cond_unet _snake_case = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _snake_case = 77 _snake_case = self.dummy_image.to(UpperCAmelCase ) _snake_case = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _snake_case = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) _snake_case = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = """A painting of a squirrel eating a burger""" _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) _snake_case = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase , ) _snake_case = output.images _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) _snake_case = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase (self ) -> Optional[int]: _snake_case = self.dummy_cond_unet _snake_case = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) _snake_case = self.dummy_vae _snake_case = self.dummy_text_encoder _snake_case = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _snake_case = 77 _snake_case = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 _snake_case = unet.half() _snake_case = vae.half() _snake_case = bert.half() # make sure here that pndm scheduler skips prk _snake_case = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) _snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) _snake_case = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = """A painting of a squirrel eating a burger""" _snake_case = torch.manual_seed(0 ) _snake_case = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase (self ) -> Any: _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _snake_case = init_image.resize((760, 504) ) _snake_case = """BAAI/AltDiffusion""" _snake_case = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = """A fantasy landscape, trending on artstation""" _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="""np""" , ) _snake_case = output.images[0] _snake_case = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _snake_case = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Dict: _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _snake_case = init_image.resize((768, 512) ) _snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _snake_case = """BAAI/AltDiffusion""" _snake_case = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = """A fantasy landscape, trending on artstation""" _snake_case = torch.manual_seed(0 ) _snake_case = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="""np""" , ) _snake_case = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
341
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _snake_case = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sgugger/tiny-distilbert-classification""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) # set architectures equal to `None` _snake_case = None _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Optional[int]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def lowercase (self ) -> Tuple: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> Union[str, Any]: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Dict: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase (self ) -> Any: _snake_case = """sshleifer/tiny-gpt2""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> int: _snake_case = """sshleifer/tinier_bart""" _snake_case = AutoConfig.from_pretrained(UpperCAmelCase ) _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] ) _snake_case = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase (self ) -> str: _snake_case = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() ) def lowercase (self ) -> int: _snake_case = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCAmelCase ): self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , ) _snake_case = PyTorchBenchmark(UpperCAmelCase ) _snake_case = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() )
341
1
'''simple docstring''' from jiwer import compute_measures import datasets __lowerCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __lowerCAmelCase = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __lowerCAmelCase = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ) -> Dict: if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: _snake_case = 0 _snake_case = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
341
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
341
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = XGLMConfig lowerCAmelCase_ = {} lowerCAmelCase_ = "gelu" def __init__(self , UpperCAmelCase , UpperCAmelCase=14 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_labels _snake_case = vocab_size _snake_case = d_model _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = ffn_dim _snake_case = activation_function _snake_case = activation_dropout _snake_case = attention_dropout _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = None _snake_case = 0 _snake_case = 2 _snake_case = 1 def lowercase (self ) -> List[str]: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowercase (self ) -> Optional[int]: _snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = self.get_config() _snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase (self ) -> Dict: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase , ) def lowercase (self ) -> Dict: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase_ = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase_ = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = TFXGLMModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , n_embd=37 ) def lowercase (self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase (self ) -> List[str]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFXGLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowercase (self ) -> List[str]: super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase (self , UpperCAmelCase=True ) -> Union[str, Any]: _snake_case = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _snake_case = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _snake_case = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on _snake_case = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase ) @slow def lowercase (self ) -> Tuple: _snake_case = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _snake_case = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _snake_case = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _snake_case = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , seed=[7, 0] ) _snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase ) _snake_case = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def lowercase (self ) -> Optional[int]: _snake_case = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _snake_case = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _snake_case = """left""" # use different length sentences to test batching _snake_case = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _snake_case = tokenizer(UpperCAmelCase , return_tensors="""tf""" , padding=UpperCAmelCase ) _snake_case = inputs["""input_ids"""] _snake_case = model.generate(input_ids=UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _snake_case = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _snake_case = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) _snake_case = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _snake_case = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) _snake_case = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase ) _snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase ) _snake_case = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
1
'''simple docstring''' import random def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = num - 1 _snake_case = 0 while s % 2 == 0: _snake_case = s // 2 t += 1 for _ in range(5 ): _snake_case = random.randrange(2 , num - 1 ) _snake_case = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: _snake_case = 0 while v != (num - 1): if i == t - 1: return False else: _snake_case = i + 1 _snake_case = (v**2) % num return True def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if num < 2: return False _snake_case = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1024 ): while True: _snake_case = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": __lowerCAmelCase = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
341
'''simple docstring''' from math import factorial, radians def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ): _snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _snake_case = radians(_SCREAMING_SNAKE_CASE ) _snake_case = angle_in_radians _snake_case = 3 _snake_case = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) _snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__('doctest').testmod()
341
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __lowerCAmelCase = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": __lowerCAmelCase = 'hopper-medium-v2' __lowerCAmelCase = gym.make(env_name) __lowerCAmelCase = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __lowerCAmelCase = env.reset() __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1_000 __lowerCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __lowerCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = env.step(denorm_actions) __lowerCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __lowerCAmelCase = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] _snake_case, _snake_case = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _snake_case = result + left + right return input_list def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) <= 1: return input_list _snake_case = list(_SCREAMING_SNAKE_CASE ) # iteration for two-way merging _snake_case = 2 while p <= len(_SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): _snake_case = i _snake_case = i + p - 1 _snake_case = (low + high + 1) // 2 _snake_case = merge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(_SCREAMING_SNAKE_CASE ): _snake_case = i _snake_case = merge(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __lowerCAmelCase = [] else: __lowerCAmelCase = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = FunnelTokenizer lowerCAmelCase_ = FunnelTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def lowercase (self ) -> List[Any]: super().setUp() _snake_case = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase (self , **UpperCAmelCase ) -> str: return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowercase (self , **UpperCAmelCase ) -> Tuple: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: _snake_case = """UNwant\u00E9d,running""" _snake_case = """unwanted, running""" return input_text, output_text def lowercase (self ) -> int: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase (self ) -> Optional[int]: _snake_case = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: _snake_case = tokenizer("""UNwant\u00E9d,running""" ) _snake_case = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) _snake_case = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCAmelCase = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__snake_case ) ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = None lowerCAmelCase_ = None def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Dict: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(UpperCAmelCase , cache_dir=UpperCAmelCase ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase ) _snake_case = builder_cls( cache_dir=UpperCAmelCase , config_name=UpperCAmelCase , hash=dataset_module.hash , ) _snake_case = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(UpperCAmelCase , cache_dir=UpperCAmelCase ) self.assertTrue(os.path.exists(UpperCAmelCase ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" _snake_case = dataset_module_factory("""wikipedia""" , cache_dir=_SCREAMING_SNAKE_CASE ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=_SCREAMING_SNAKE_CASE , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = dataset_module_factory("""wikipedia""" , cache_dir=_SCREAMING_SNAKE_CASE ) _snake_case = import_main_class(dataset_module.module_path , dataset=_SCREAMING_SNAKE_CASE ) _snake_case = builder_cls( cache_dir=_SCREAMING_SNAKE_CASE , config_name="""20220301.frr""" , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert "train" in ds assert isinstance(ds["""train"""] , _SCREAMING_SNAKE_CASE ) assert next(iter(ds["""train"""] ) )
341
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["image_processor", "tokenizer"] lowerCAmelCase_ = "CLIPImageProcessor" lowerCAmelCase_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: _snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) _snake_case = kwargs.pop("""feature_extractor""" ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _snake_case = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: _snake_case = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: _snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> int: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def lowercase (self ) -> Any: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = (UnCLIPScheduler,) def lowercase (self , **UpperCAmelCase ) -> Optional[int]: _snake_case = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCAmelCase ) return config def lowercase (self ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def lowercase (self ) -> List[str]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCAmelCase ) def lowercase (self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def lowercase (self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def lowercase (self ) -> List[Any]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCAmelCase , prev_timestep=UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(variance_type="""fixed_small_log""" ) _snake_case = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def lowercase (self ) -> Tuple: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(variance_type="""learned_range""" ) _snake_case = scheduler_class(**UpperCAmelCase ) _snake_case = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCAmelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCAmelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCAmelCase ) - -0.001_0011 < 1e-5 def lowercase (self ) -> str: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**UpperCAmelCase ) _snake_case = scheduler.timesteps _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter _snake_case = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase ): # 1. predict noise residual _snake_case = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 _snake_case = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample _snake_case = pred_prev_sample _snake_case = torch.sum(torch.abs(UpperCAmelCase ) ) _snake_case = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def lowercase (self ) -> Tuple: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(25 ) _snake_case = scheduler.timesteps _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter _snake_case = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase ): # 1. predict noise residual _snake_case = model(UpperCAmelCase , UpperCAmelCase ) if i + 1 == timesteps.shape[0]: _snake_case = None else: _snake_case = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _snake_case = scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prev_timestep=UpperCAmelCase , generator=UpperCAmelCase ).prev_sample _snake_case = pred_prev_sample _snake_case = torch.sum(torch.abs(UpperCAmelCase ) ) _snake_case = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def lowercase (self ) -> Union[str, Any]: pass def lowercase (self ) -> Any: pass
341
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , **UpperCAmelCase ) -> int: super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase ) def __call__(self , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> int: if "text_queries" in kwargs: _snake_case = kwargs.pop("""text_queries""" ) if isinstance(UpperCAmelCase , (str, Image.Image) ): _snake_case = {"""image""": image, """candidate_labels""": candidate_labels} else: _snake_case = image _snake_case = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def lowercase (self , **UpperCAmelCase ) -> int: _snake_case = {} if "threshold" in kwargs: _snake_case = kwargs["""threshold"""] if "top_k" in kwargs: _snake_case = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase (self , UpperCAmelCase ) -> int: _snake_case = load_image(inputs["""image"""] ) _snake_case = inputs["""candidate_labels"""] if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = candidate_labels.split(""",""" ) _snake_case = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): _snake_case = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) _snake_case = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = model_inputs.pop("""target_size""" ) _snake_case = model_inputs.pop("""candidate_label""" ) _snake_case = model_inputs.pop("""is_last""" ) _snake_case = self.model(**UpperCAmelCase ) _snake_case = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=0.1 , UpperCAmelCase=None ) -> int: _snake_case = [] for model_output in model_outputs: _snake_case = model_output["""candidate_label"""] _snake_case = BaseModelOutput(UpperCAmelCase ) _snake_case = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _snake_case = outputs["""scores"""][index].item() _snake_case = self._get_bounding_box(outputs["""boxes"""][index][0] ) _snake_case = {"""score""": score, """label""": label, """box""": box} results.append(UpperCAmelCase ) _snake_case = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: _snake_case = results[:top_k] return results def lowercase (self , UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _snake_case, _snake_case, _snake_case, _snake_case = box.int().tolist() _snake_case = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1000 ): _snake_case = 2**power _snake_case = 0 while n: _snake_case, _snake_case = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nllb-moe" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , UpperCAmelCase=128112 , UpperCAmelCase=1024 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=0.05 , UpperCAmelCase=0.05 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=1024 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="float32" , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=64 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=0.001 , UpperCAmelCase=0.001 , UpperCAmelCase="all" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=1.0 , UpperCAmelCase=0.2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = use_cache _snake_case = encoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case = router_z_loss_coef _snake_case = router_aux_loss_coef _snake_case = decoder_sparse_step _snake_case = encoder_sparse_step _snake_case = num_experts _snake_case = expert_capacity _snake_case = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _snake_case = router_dtype _snake_case = router_ignore_padding_tokens _snake_case = batch_prioritized_routing _snake_case = second_expert_policy _snake_case = normalize_router_prob_before_dropping _snake_case = moe_eval_capacity_token_fraction _snake_case = moe_token_dropout _snake_case = output_router_logits super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
341
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowerCAmelCase = 'src/diffusers' # Matches is_xxx_available() __lowerCAmelCase = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla __lowerCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') __lowerCAmelCase = '\n{0} = None\n' __lowerCAmelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' __lowerCAmelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.readlines() # Get to the point we do the actual imports for type checking _snake_case = 0 _snake_case = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _snake_case = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: _snake_case = lines[line_index] _snake_case = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = objects else: line_index += 1 return backend_specific_objects def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=None ): if backend_specific_objects is None: _snake_case = read_init() # For special correspondence backend to module name as used in the function requires_modulename _snake_case = {} for backend, objects in backend_specific_objects.items(): _snake_case = """[""" + """, """.join(f"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" _snake_case = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) _snake_case = dummy_file return dummy_files def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=False ): _snake_case = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _snake_case = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """utils""" ) _snake_case = { backend: os.path.join(_SCREAMING_SNAKE_CASE , f"""dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py""" ) for backend in dummy_files.keys() } _snake_case = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.read() else: _snake_case = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f"""diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCAmelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCAmelCase = '\\n Text data.\n Second line of data.' __lowerCAmelCase = 'file' @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") _snake_case = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} _snake_case = input_paths[compression_format] _snake_case = tmp_path / """cache""" _snake_case = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) _snake_case = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: _snake_case = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: _snake_case = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = """custom_cache""" _snake_case = """custom_extracted_dir""" _snake_case = tmp_path / """custom_extracted_path""" if default_extracted: _snake_case = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) _snake_case = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _snake_case = xz_file _snake_case = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) _snake_case = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # absolute path _snake_case = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path _snake_case = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # absolute path _snake_case = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path _snake_case = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: _snake_case = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
341
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "xlm-roberta-xl" def __init__(self , UpperCAmelCase=250880 , UpperCAmelCase=2560 , UpperCAmelCase=36 , UpperCAmelCase=32 , UpperCAmelCase=10240 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=514 , UpperCAmelCase=1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-0_5 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1