code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "openai/whisper-base" __lowerCAmelCase = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __lowerCAmelCase = "transcriber" __lowerCAmelCase = WhisperProcessor __lowerCAmelCase = WhisperForConditionalGeneration __lowerCAmelCase = ["audio"] __lowerCAmelCase = ["text"] def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: return self.pre_processor(__A , return_tensors='''pt''' ).input_features def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: return self.model.generate(inputs=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0]
81
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _UpperCAmelCase ( snake_case , snake_case , snake_case=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = """""" else: _lowerCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCAmelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = dct.pop(snake_case ) _lowerCAmelCase = val def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=True ): """simple docstring""" _lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCAmelCase = 8 # set labels if required if not base_model: _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCAmelCase = 3_84 _lowerCAmelCase = 15_36 _lowerCAmelCase = 12 _lowerCAmelCase = 6 # load original model from torch hub _lowerCAmelCase = torch.hub.load("""facebookresearch/dino:main""" , snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(snake_case ) _lowerCAmelCase = create_rename_keys(snake_case , base_model=snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model if base_model: _lowerCAmelCase = ViTModel(snake_case , add_pooling_layer=snake_case ).eval() else: _lowerCAmelCase = ViTForImageClassification(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCAmelCase = ViTImageProcessor() _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCAmelCase = encoding["""pixel_values"""] _lowerCAmelCase = model(snake_case ) if base_model: _lowerCAmelCase = original_model(snake_case ) assert torch.allclose(snake_case , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCAmelCase = original_model(snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) A__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
82
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = MgpstrTokenizer lowercase__ = False lowercase__ = {} lowercase__ = False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() # fmt: off _UpperCamelCase : Optional[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _UpperCamelCase : str = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) def UpperCamelCase_ ( self : int ,**lowerCamelCase__ : str ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Any = 'tester' _UpperCamelCase : Optional[int] = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCamelCase : Union[str, Any] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) _UpperCamelCase : List[Any] = tokenizer.encode([special_token] ,add_special_tokens=lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) ,1 ) _UpperCamelCase : Any = tokenizer.decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) self.assertTrue(special_token not in decoded ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_input_output_texts(lowerCamelCase__ ) _UpperCamelCase : List[str] = tokenizer.tokenize(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) _UpperCamelCase : List[str] = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertNotEqual(len(lowerCamelCase__ ) ,0 ) _UpperCamelCase : Dict = tokenizer.decode(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(text_a.replace(' ' ,'' ) ,lowerCamelCase__ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass
83
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __UpperCAmelCase = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __UpperCAmelCase = { 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCAmelCase_ :Any = bs[:] lowerCAmelCase_ :Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase_ :Any = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _snake_case ( lowercase__ : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Any = set() lowerCAmelCase_ :Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase_ :str = char return pairs class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase_ :Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :int = ["input_ids", "attention_mask"] def __init__( self , __A , __A , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , **__A , ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token lowerCAmelCase_ :int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token lowerCAmelCase_ :int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token lowerCAmelCase_ :Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token lowerCAmelCase_ :Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token lowerCAmelCase_ :Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ :List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase_ :List[Any] = json.load(__A ) lowerCAmelCase_ :Any = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ :Any = errors # how to handle errors in decoding lowerCAmelCase_ :Union[str, Any] = bytes_to_unicode() lowerCAmelCase_ :Dict = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="""utf-8""" ) as merges_handle: lowerCAmelCase_ :List[Any] = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase_ :Any = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ :str = dict(zip(__A , range(len(__A ) ) ) ) lowerCAmelCase_ :Optional[int] = {} lowerCAmelCase_ :Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ :str = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __lowerCAmelCase ( self ) -> List[str]: return len(self.encoder ) def __lowerCAmelCase ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , __A ) -> Any: if token in self.cache: return self.cache[token] lowerCAmelCase_ :Dict = tuple(__A ) lowerCAmelCase_ :List[Any] = get_pairs(__A ) if not pairs: return token while True: lowerCAmelCase_ :List[str] = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ :Any = bigram lowerCAmelCase_ :Optional[Any] = [] lowerCAmelCase_ :Tuple = 0 while i < len(__A ): try: lowerCAmelCase_ :Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ :Dict = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ :str = tuple(__A ) lowerCAmelCase_ :List[Any] = new_word if len(__A ) == 1: break else: lowerCAmelCase_ :List[Any] = get_pairs(__A ) lowerCAmelCase_ :List[str] = """ """.join(__A ) lowerCAmelCase_ :Dict = word return word def __lowerCAmelCase ( self , __A ) -> int: lowerCAmelCase_ :Optional[Any] = [] for token in re.findall(self.pat , __A ): lowerCAmelCase_ :Optional[int] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(""" """ ) ) return bpe_tokens def __lowerCAmelCase ( self , __A ) -> Tuple: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: return self.decoder.get(__A ) def __lowerCAmelCase ( self , __A ) -> List[str]: lowerCAmelCase_ :str = """""".join(__A ) lowerCAmelCase_ :List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ :Any = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :str = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + """\n""" ) lowerCAmelCase_ :str = 0 with open(__A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase_ :List[Any] = token_index writer.write(""" """.join(__A ) + """\n""" ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ :List[Any] = [self.cls_token_id] lowerCAmelCase_ :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: lowerCAmelCase_ :Optional[int] = [self.sep_token_id] lowerCAmelCase_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , __A , __A=False , **__A ) -> Tuple: lowerCAmelCase_ :List[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): lowerCAmelCase_ :int = """ """ + text return (text, kwargs)
84
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_( snake_case : list , snake_case : list ): '''simple docstring''' if len(snake_case ) != 2 or len(a[0] ) != 2 or len(snake_case ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) snake_case_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase_( snake_case : list , snake_case : list ): '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case ) ) ] def UpperCamelCase_( snake_case : list , snake_case : list ): '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case ) ) ] def UpperCamelCase_( snake_case : list ): '''simple docstring''' if len(snake_case ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) snake_case_ = len(snake_case ) snake_case_ = matrix_length // 2 snake_case_ = [[a[i][j] for j in range(snake_case , snake_case )] for i in range(snake_case )] snake_case_ = [ [a[i][j] for j in range(snake_case , snake_case )] for i in range(snake_case , snake_case ) ] snake_case_ = [[a[i][j] for j in range(snake_case )] for i in range(snake_case )] snake_case_ = [[a[i][j] for j in range(snake_case )] for i in range(snake_case , snake_case )] return top_left, top_right, bot_left, bot_right def UpperCamelCase_( snake_case : list ): '''simple docstring''' return len(snake_case ), len(matrix[0] ) def UpperCamelCase_( snake_case : list ): '''simple docstring''' print("\n".join(str(snake_case ) for line in matrix ) ) def UpperCamelCase_( snake_case : list , snake_case : list ): '''simple docstring''' if matrix_dimensions(snake_case ) == (2, 2): return default_matrix_multiplication(snake_case , snake_case ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = split_matrix(snake_case ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = split_matrix(snake_case ) snake_case_ = actual_strassen(snake_case , matrix_subtraction(snake_case , snake_case ) ) snake_case_ = actual_strassen(matrix_addition(snake_case , snake_case ) , snake_case ) snake_case_ = actual_strassen(matrix_addition(snake_case , snake_case ) , snake_case ) snake_case_ = actual_strassen(snake_case , matrix_subtraction(snake_case , snake_case ) ) snake_case_ = actual_strassen(matrix_addition(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case , snake_case ) , matrix_addition(snake_case , snake_case ) ) snake_case_ = matrix_addition(matrix_subtraction(matrix_addition(snake_case , snake_case ) , snake_case ) , snake_case ) snake_case_ = matrix_addition(snake_case , snake_case ) snake_case_ = matrix_addition(snake_case , snake_case ) snake_case_ = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case , snake_case ) , snake_case ) , snake_case ) # construct the new matrix from our 4 quadrants snake_case_ = [] for i in range(len(snake_case ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase_( snake_case : list , snake_case : list ): '''simple docstring''' if matrix_dimensions(snake_case )[1] != matrix_dimensions(snake_case )[0]: snake_case_ = ( "Unable to multiply these matrices, please check the dimensions.\n" f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(snake_case ) snake_case_ = matrix_dimensions(snake_case ) snake_case_ = matrix_dimensions(snake_case ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ = max(*snake_case , *snake_case ) snake_case_ = int(math.pow(2 , math.ceil(math.loga(snake_case ) ) ) ) snake_case_ = matrixa snake_case_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ = actual_strassen(snake_case , snake_case ) # Removing the additional zeros for i in range(0 , snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _SCREAMING_SNAKE_CASE : Optional[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
85
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" import math import sys def __lowerCAmelCase (_UpperCamelCase ): if number != int(_UpperCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __lowerCAmelCase : Any = [-1] * (number + 1) __lowerCAmelCase : List[Any] = 0 for i in range(1 , number + 1 ): __lowerCAmelCase : List[Any] = sys.maxsize __lowerCAmelCase : Optional[int] = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): __lowerCAmelCase : Optional[Any] = 1 + answers[i - (j**2)] __lowerCAmelCase : Any = min(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
86
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="question-answering-extractive" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __A : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __A : str = "question" __A : str = "context" __A : str = "answers" @property def __UpperCamelCase ( self : Dict ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
87
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
def a__ ( A_ ): '''simple docstring''' return 10 - x * x def a__ ( A_, A_ ): '''simple docstring''' if equation(A_ ) * equation(A_ ) >= 0: raise ValueError("""Wrong space!""" ) __magic_name__ = a while (b - a) >= 0.01: # Find middle point __magic_name__ = (a + b) / 2 # Check if middle point is root if equation(A_ ) == 0.0: break # Decide the side to repeat the steps if equation(A_ ) * equation(A_ ) < 0: __magic_name__ = c else: __magic_name__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
88
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list[int]: _a : Union[str, Any] = len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): for j in range(i + 1 , lowerCAmelCase_ ): if numbers[j] < numbers[i]: _a , _a : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
89
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
0
import math def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = input('Enter message: ' ) __lowerCamelCase = int(input(F"""Enter key [2-{len(UpperCamelCase__ ) - 1}]: """ ) ) __lowerCamelCase = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): __lowerCamelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('d' ): __lowerCamelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = [''] * key for col in range(UpperCamelCase__ ): __lowerCamelCase = col while pointer < len(UpperCamelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = math.ceil(len(UpperCamelCase__ ) / key ) __lowerCamelCase = key __lowerCamelCase = (num_cols * num_rows) - len(UpperCamelCase__ ) __lowerCamelCase = [''] * num_cols __lowerCamelCase = 0 __lowerCamelCase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __lowerCamelCase = 0 row += 1 return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
90
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) UpperCAmelCase_ : Any = 50 # max width of layer names UpperCAmelCase_ : List[Any] = 70 # max width of quantizer names def _A (__a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=__a , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=__a , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=__a , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=__a , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=__a , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=__a , type=__a , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=__a , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _A (__a ) -> List[str]: """simple docstring""" if args.calibrator == "max": SCREAMING_SNAKE_CASE_ : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''histogram''' elif args.calibrator == "mse": SCREAMING_SNAKE_CASE_ : List[str] = '''histogram''' else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) SCREAMING_SNAKE_CASE_ : List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=__a ) SCREAMING_SNAKE_CASE_ : Dict = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__a ) quant_nn.QuantLinear.set_default_quant_desc_weight(__a ) def _A (__a , __a , __a=False , __a=False ) -> Optional[Any]: """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__a , ['''embeddings'''] , which='''weight''' , _disabled=__a ) if args.quant_disable: set_quantizer_by_name(__a , [''''''] , _disabled=__a ) if args.quant_disable_keyword: set_quantizer_by_name(__a , args.quant_disable_keyword , _disabled=__a ) if args.quant_disable_layer_module: set_quantizer_by_name(__a , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=__a ) if args.quant_enable_layer_module: set_quantizer_by_name(__a , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=__a ) if args.recalibrate_weights: recalibrate_weights(__a ) if args.fuse_qkv: fuse_qkv(__a , __a ) if args.clip_gelu: clip_gelu(__a , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__a ) def _A (__a ) -> int: """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__a ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" def fusea(__a , __a , __a ): for mod in [qq, qk, qv]: if not hasattr(__a , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return SCREAMING_SNAKE_CASE_ : List[Any] = qq._amax.detach().item() SCREAMING_SNAKE_CASE_ : Dict = qk._amax.detach().item() SCREAMING_SNAKE_CASE_ : List[str] = qv._amax.detach().item() SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(__a , __a , __a ) qq._amax.fill_(__a ) qk._amax.fill_(__a ) qv._amax.fill_(__a ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A (__a , __a ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def _A (__a ) -> Dict: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = mod.weight.shape[0] SCREAMING_SNAKE_CASE_ : Tuple = mod._weight_quantizer._amax.detach() SCREAMING_SNAKE_CASE_ : str = torch.ones(__a , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def _A (__a ) -> List[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) SCREAMING_SNAKE_CASE_ : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) SCREAMING_SNAKE_CASE_ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set SCREAMING_SNAKE_CASE_ : Any = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__a , keepdims=__a ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) SCREAMING_SNAKE_CASE_ : Dict = amax def _A (__a , __a=25 , __a=1_80 , __a=None ) -> List[str]: """simple docstring""" if ignore is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] elif not isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = [ignore] SCREAMING_SNAKE_CASE_ : List[Any] = 0 for name, mod in model.named_modules(): if not hasattr(__a , '''weight''' ): continue SCREAMING_SNAKE_CASE_ : List[str] = max(__a , len(__a ) ) for name, mod in model.named_modules(): SCREAMING_SNAKE_CASE_ : int = getattr(__a , '''_input_quantizer''' , __a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(__a , '''_weight_quantizer''' , __a ) if not hasattr(__a , '''weight''' ): continue if type(__a ) in ignore: continue if [True for s in ignore if type(__a ) is str and s in name]: continue SCREAMING_SNAKE_CASE_ : List[str] = f'Act:{input_q.extra_repr()}' SCREAMING_SNAKE_CASE_ : Tuple = f'Wgt:{weight_q.extra_repr()}' SCREAMING_SNAKE_CASE_ : List[Any] = f'{name:{name_width}} {act_str} {wgt_str}' if len(__a ) <= line_width: logger.info(__a ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(__a , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def _A (__a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = getattr(__a , __a , __a ) if quantizer_mod is not None: assert hasattr(__a , __a ) setattr(__a , __a , __a ) else: logger.warning(f'{name} has no {quantizer}' ) def _A (__a , __a , __a="both" , **__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(__a , __a , '''_input_quantizer''' , __a , __a ) if which in ["weight", "both"]: set_quantizer(__a , __a , '''_weight_quantizer''' , __a , __a ) logger.info(__a ) def _A (__a , __a , **__a ) -> List[str]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__a , '''_input_quantizer''' ) or hasattr(__a , '''_weight_quantizer''' ): for n in names: if re.search(__a , __a ): set_quantizers(__a , __a , **__a ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(__a , __a ): SCREAMING_SNAKE_CASE_ : Dict = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(__a , __a , __a ) logger.info(__a )
91
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = (1 - _cos) / 2 __lowerCAmelCase = 1 - _cos __lowerCAmelCase = 1 + alpha __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 - alpha __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = (1 + _cos) / 2 __lowerCAmelCase = -1 - _cos __lowerCAmelCase = 1 + alpha __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 - alpha __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = _sin / 2 __lowerCAmelCase = 0 __lowerCAmelCase = -ba __lowerCAmelCase = 1 + alpha __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 - alpha __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = 1 - alpha __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 + alpha __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) , ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = 10 ** (gain_db / 40) __lowerCAmelCase = 1 + alpha * big_a __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 - alpha * big_a __lowerCAmelCase = 1 + alpha / big_a __lowerCAmelCase = -2 * _cos __lowerCAmelCase = 1 - alpha / big_a __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) , ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = 10 ** (gain_db / 40) __lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos __lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos __lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos __lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos __lowerCAmelCase = 2 * sqrt(SCREAMING_SNAKE_CASE_ ) * alpha __lowerCAmelCase = big_a * (pmc + aaa) __lowerCAmelCase = 2 * big_a * mpc __lowerCAmelCase = big_a * (pmc - aaa) __lowerCAmelCase = ppmc + aaa __lowerCAmelCase = -2 * pmpc __lowerCAmelCase = ppmc - aaa __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = 1 / sqrt(2 ) , ): __lowerCAmelCase = tau * frequency / samplerate __lowerCAmelCase = sin(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = cos(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = _sin / (2 * q_factor) __lowerCAmelCase = 10 ** (gain_db / 40) __lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos __lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos __lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos __lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos __lowerCAmelCase = 2 * sqrt(SCREAMING_SNAKE_CASE_ ) * alpha __lowerCAmelCase = big_a * (ppmc + aaa) __lowerCAmelCase = -2 * big_a * pmpc __lowerCAmelCase = big_a * (ppmc - aaa) __lowerCAmelCase = pmc + aaa __lowerCAmelCase = 2 * mpc __lowerCAmelCase = pmc - aaa __lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
92
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0
'''simple docstring''' class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = name lowercase_ : List[Any] = value lowercase_ : Tuple = weight def __repr__( self ): """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _snake_case ( self ): """simple docstring""" return self.value def _snake_case ( self ): """simple docstring""" return self.name def _snake_case ( self ): """simple docstring""" return self.weight def _snake_case ( self ): """simple docstring""" return self.value / self.weight def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : List[Any] = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Dict = sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ) lowercase_ : int = [] lowercase_ , lowercase_ : Optional[Any] = 0.0, 0.0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
93
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None class _snake_case ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE__ = ParquetConfig def SCREAMING_SNAKE_CASE__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a :Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): a :Dict = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): a :List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a :List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] a :List[str] = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a :Any = [dl_manager.iter_files(_lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCamelCase ): with open(_lowerCamelCase , '''rb''' ) as f: a :int = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a :Dict = table_cast(_lowerCamelCase , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase , '''rb''' ) as f: a :str = pq.ParquetFile(_lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): a :int = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
94
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
from manim import * class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[Any] =Rectangle(height=0.5 , width=0.5 ) a__ : List[Any] =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ : int =[mem.copy() for i in range(6 )] a__ : Optional[int] =[mem.copy() for i in range(6 )] a__ : Any =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : str =Text("CPU" , font_size=2_4 ) a__ : Union[str, Any] =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) a__ : Optional[Any] =[mem.copy() for i in range(4 )] a__ : Any =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : Union[str, Any] =Text("GPU" , font_size=2_4 ) a__ : Optional[int] =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) a__ : Union[str, Any] =[mem.copy() for i in range(6 )] a__ : Tuple =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : List[str] =Text("Model" , font_size=2_4 ) a__ : Any =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) a__ : Optional[Any] =[] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ : Optional[Any] =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) cpu_targs.append(lowerCAmelCase__ ) a__ : List[Any] =[mem.copy() for i in range(6 )] a__ : int =VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) a__ : Tuple =Text("Loaded Checkpoint" , font_size=2_4 ) a__ : int =Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , aligned_edge=lowerCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) a__ : Any =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ : Union[str, Any] =MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) a__ : Any =MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ) , Write(lowerCAmelCase__ ) ) self.play(Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) a__ : Optional[Any] =[] a__ : Dict =[] for i, rect in enumerate(lowerCAmelCase__ ): a__ : Union[str, Any] =fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) first_animations.append(GrowFromCenter(lowerCAmelCase__ , run_time=1 ) ) a__ : Union[str, Any] =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(*lowerCAmelCase__ ) self.wait()
95
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( lowercase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase__ ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _lowerCamelCase : Optional[int] = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format _lowerCamelCase : List[Any] = PipelineDataFormat.from_str( format=lowercase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase__ , lowercase__ ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : List[Any] = nlp _lowerCamelCase : Optional[Any] = reader @staticmethod def A_ ( lowercase ): _lowerCamelCase : Optional[int] = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=lowercase , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=lowercase , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=lowercase , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=lowercase , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=lowercase , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=lowercase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=lowercase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=lowercase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Tuple = self._nlp, [] for entry in self._reader: _lowerCamelCase : Any = nlp(**lowercase ) if self._reader.is_multi_columns else nlp(lowercase ) if isinstance(lowercase , lowercase ): outputs.append(lowercase ) else: outputs += output # Saving data if self._nlp.binary_output: _lowerCamelCase : Optional[Any] = self._reader.save_binary(lowercase ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(lowercase )
96
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
0
'''simple docstring''' import math from datetime import datetime, timedelta def a ( __a ) -> datetime: '''simple docstring''' UpperCamelCase__ :Tuple = year % 19 UpperCamelCase__ :Optional[Any] = year % 4 UpperCamelCase__ :Dict = year % 7 UpperCamelCase__ :Union[str, Any] = math.floor(year / 100 ) UpperCamelCase__ :List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase__ :List[str] = leap_day_inhibits / 4 UpperCamelCase__ :Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase__ :List[str] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase__ :List[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase__ :Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __snake_case = '''will be''' if year > datetime.now().year else '''was''' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
97
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
0
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) + 1 UpperCAmelCase__ = len(lowerCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase__ = [[0 for i in range(lowerCamelCase )] for j in range(lowerCamelCase )] # since string of zero length match pattern of zero length UpperCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCamelCase ): UpperCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCamelCase ): UpperCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCamelCase ): for j in range(1 , lowerCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase__ = dp[i - 1][j] else: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCAmelCase__ : List[Any] = 'aab' lowerCAmelCase__ : List[Any] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
98
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : str = 1_6 lowercase : List[Any] = 3_2 def A_ ( A__ , A__ = 16 ) -> List[str]: a__ : int = AutoTokenizer.from_pretrained('bert-base-cased' ) a__ : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) a__ : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ : int = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ : Any = 16 elif accelerator.mixed_precision != "no": a__ : Dict = 8 else: a__ : Union[str, Any] = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) a__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( A__ , A__ ) -> str: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1": a__ : Tuple = 2 # Initialize accelerator a__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config['lr'] a__ : List[Any] = int(config['num_epochs'] ) a__ : List[str] = int(config['seed'] ) a__ : Union[str, Any] = int(config['batch_size'] ) a__ : Tuple = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation a__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE a__ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(A__ ) a__ , a__ : Dict = get_dataloaders(A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : int = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer a__ : Any = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler a__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : Dict = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a__ : Tuple = model(**A__ ) a__ : List[str] = outputs.loss a__ : int = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() a__ : Any = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ : List[Any] = model(**A__ ) a__ : List[Any] = outputs.logits.argmax(dim=-1 ) a__ , a__ : Any = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(A__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples a__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=A__ , references=A__ , ) a__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , A__ ) def A_ ( ) -> List[str]: a__ : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) a__ : Optional[Any] = parser.parse_args() a__ : str = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
99
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ = "cpu" , lowerCAmelCase__ = "openai/clip-vit-large-patch14"): __SCREAMING_SNAKE_CASE = device __SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __SCREAMING_SNAKE_CASE = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __SCREAMING_SNAKE_CASE = torchvision.transforms.Normalize(self.image_mean , self.image_std) __SCREAMING_SNAKE_CASE = torchvision.transforms.Resize(2_2_4) __SCREAMING_SNAKE_CASE = torchvision.transforms.CenterCrop(2_2_4) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.resize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.center_crop(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.normalize(lowerCAmelCase__) return images def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.tokenizer(text=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.preprocess_img(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.01 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__="image" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , ): super().__init__() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = device if device else get_device() if vqgan: __SCREAMING_SNAKE_CASE = vqgan else: __SCREAMING_SNAKE_CASE = load_vqgan(self.device , conf_path=lowerCAmelCase__ , ckpt_path=lowerCAmelCase__) self.vqgan.eval() if clip: __SCREAMING_SNAKE_CASE = clip else: __SCREAMING_SNAKE_CASE = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""") self.clip.to(self.device) __SCREAMING_SNAKE_CASE = ProcessorGradientFlow(device=self.device) __SCREAMING_SNAKE_CASE = iterations __SCREAMING_SNAKE_CASE = lr __SCREAMING_SNAKE_CASE = log __SCREAMING_SNAKE_CASE = make_grid __SCREAMING_SNAKE_CASE = return_val __SCREAMING_SNAKE_CASE = quantize __SCREAMING_SNAKE_CASE = self.vqgan.decoder.z_shape def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=5 , lowerCAmelCase__=True): __SCREAMING_SNAKE_CASE = [] if output_path is None: __SCREAMING_SNAKE_CASE = """./animation.gif""" if input_path is None: __SCREAMING_SNAKE_CASE = self.save_path __SCREAMING_SNAKE_CASE = sorted(glob(input_path + """/*""")) if not len(lowerCAmelCase__): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""") if len(lowerCAmelCase__) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""") __SCREAMING_SNAKE_CASE = total_duration / len(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [frame_duration] * len(lowerCAmelCase__) if extend_frames: __SCREAMING_SNAKE_CASE = 1.5 __SCREAMING_SNAKE_CASE = 3 for file_name in paths: if file_name.endswith(""".png"""): images.append(imageio.imread(lowerCAmelCase__)) imageio.mimsave(lowerCAmelCase__ , lowerCAmelCase__ , duration=lowerCAmelCase__) print(f"gif saved to {output_path}") def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): if not (path or img): raise ValueError("""Input either path or tensor""") if img is not None: raise NotImplementedError __SCREAMING_SNAKE_CASE = preprocess(Image.open(lowerCAmelCase__) , target_image_size=2_5_6).to(self.device) __SCREAMING_SNAKE_CASE = preprocess_vqgan(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE = self.vqgan.encode(lowerCAmelCase__) return z def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.latent.detach().requires_grad_() __SCREAMING_SNAKE_CASE = base_latent + transform_vector if self.quantize: __SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE = self.vqgan.quantize(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = trans_latent return self.vqgan.decode(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = self.clip_preprocessor(text=lowerCAmelCase__ , images=lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.clip(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = clip_outputs.logits_per_image if weights is not None: __SCREAMING_SNAKE_CASE = similarity_logits * weights return similarity_logits.sum() def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase__ , weights=(1 / pos_prompts["""weights"""])) if neg_prompts: __SCREAMING_SNAKE_CASE = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase__ , weights=neg_prompts["""weights"""]) else: __SCREAMING_SNAKE_CASE = torch.tensor([1] , device=self.device) __SCREAMING_SNAKE_CASE = -torch.log(lowerCAmelCase__) + torch.log(lowerCAmelCase__) return loss def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.randn_like(self.latent , requires_grad=lowerCAmelCase__ , device=self.device) __SCREAMING_SNAKE_CASE = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() __SCREAMING_SNAKE_CASE = self._add_vector(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = loop_post_process(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self._get_CLIP_loss(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) print("""CLIP loss""" , lowerCAmelCase__) if self.log: wandb.log({"""CLIP Loss""": clip_loss}) clip_loss.backward(retain_graph=lowerCAmelCase__) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): wandb.init(reinit=lowerCAmelCase__ , project="""face-editor""") wandb.config.update({"""Positive Prompts""": positive_prompts}) wandb.config.update({"""Negative Prompts""": negative_prompts}) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations}) if image_path: __SCREAMING_SNAKE_CASE = Image.open(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.resize((2_5_6, 2_5_6)) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase__)) def snake_case_ ( self , lowerCAmelCase__): if not prompts: return [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [prompt.strip() for prompt in prompts.split("""|""")] for prompt in prompts: if isinstance(lowerCAmelCase__ , (tuple, list)): __SCREAMING_SNAKE_CASE = prompt[0] __SCREAMING_SNAKE_CASE = float(prompt[1]) elif ":" in prompt: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prompt.split(""":""") __SCREAMING_SNAKE_CASE = float(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = prompt __SCREAMING_SNAKE_CASE = 1.0 processed_prompts.append(lowerCAmelCase__) weights.append(lowerCAmelCase__) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase__ , device=self.device), } def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , ): if image_path: __SCREAMING_SNAKE_CASE = self._get_latent(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) assert pos_prompts, "You must provide at least one positive prompt." __SCREAMING_SNAKE_CASE = self.process_prompts(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.process_prompts(lowerCAmelCase__) if save_final and save_path is None: __SCREAMING_SNAKE_CASE = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""])) if not os.path.exists(lowerCAmelCase__): os.makedirs(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = save_path __SCREAMING_SNAKE_CASE = self.vqgan.decode(self.latent)[0] if show_intermediate: print("""Original Image""") show_pil(custom_to_pil(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = loop_post_process(lowerCAmelCase__) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)): if show_intermediate: show_pil(lowerCAmelCase__) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}.png")) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase__)}) if show_final: show_pil(lowerCAmelCase__) if save_final: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}_final.png"))
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( lowerCAmelCase__="ro" , lowerCAmelCase__="en" , lowerCAmelCase__="wmt16" , lowerCAmelCase__=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) lowercase = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) lowercase = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: lowercase = f'{dataset}-{pair}' lowercase = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase = '''val''' if split == '''validation''' else split lowercase = save_dir.joinpath(f'{fn}.source' ) lowercase = save_dir.joinpath(f'{fn}.target' ) lowercase = src_path.open('''w+''' ) lowercase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
101
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__(self , a_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =1 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =True def __call__(self , a_ ): '''simple docstring''' __snake_case : int = Tracker(self.dest )(a_ ).parametrized __snake_case : Optional[int] = Tracker(self.src )(a_ ).parametrized __snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) __snake_case : Dict = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a_ )} operations while""" f""" destination module has {len(a_ )}.""" ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" __snake_case : Optional[int] = len(a_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __snake_case : List[Any] = nn.ModuleDict(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return get_trunk_forward_outputs( a_ , out_feat_keys=a_ , feature_blocks=self._feature_blocks , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , a_ ): '''simple docstring''' if x not in self: __snake_case : Tuple = self.convert_name_to_timm(a_ ) __snake_case : str = partial(lambda: (timm.create_model(a_ , pretrained=a_ ).eval(), None) ) else: __snake_case : Optional[int] = super().__getitem__(a_ ) return val class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __getitem__(self , a_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: __snake_case : List[Any] = RegNetModel else: __snake_case : List[str] = RegNetForImageClassification return val def lowercase ( _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Tuple[str, str]] ) ->Optional[Any]: """simple docstring""" for from_key, to_key in keys: __snake_case : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowercase ( _snake_case : str , _snake_case : Callable[[], nn.Module] , _snake_case : Callable[[], nn.Module] , _snake_case : RegNetConfig , _snake_case : Path , _snake_case : bool = True , ) ->Dict: """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __snake_case , __snake_case : Optional[int] = from_model_func() __snake_case : Tuple = our_model_func(_snake_case ).eval() __snake_case : List[Any] = ModuleTransfer(src=_snake_case , dest=_snake_case , raise_if_mismatch=_snake_case ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_snake_case ) if from_state_dict is not None: __snake_case : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __snake_case : Union[str, Any] = manually_copy_vissl_head(_snake_case , our_model.state_dict() , _snake_case ) our_model.load_state_dict(_snake_case ) __snake_case : List[Any] = our_model(_snake_case , output_hidden_states=_snake_case ) __snake_case : Union[str, Any] = ( our_outputs.logits if isinstance(_snake_case , _snake_case ) else our_outputs.last_hidden_state ) __snake_case : Optional[Any] = from_model(_snake_case ) __snake_case : Optional[Any] = from_output[-1] if type(_snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : str = our_outputs.hidden_states[-1] assert torch.allclose(_snake_case , _snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_snake_case , ) __snake_case : Any = 224 if '''seer''' not in name else 384 # we can use the convnext one __snake_case : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) print(f"""Pushed {name}""" ) def lowercase ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = 1_000 __snake_case : int = (1, num_labels) __snake_case : Optional[Any] = '''huggingface/label-files''' __snake_case : Optional[int] = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __snake_case : str = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) __snake_case : int = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } __snake_case : int = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_snake_case : str , _snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __snake_case : Tuple = torch.hub.load_state_dict_from_url(_snake_case , model_dir=str(_snake_case ) , map_location='''cpu''' ) __snake_case : Dict = model_func() # check if we have a head, if yes add it __snake_case : Any = files['''classy_state_dict''']['''base_model''']['''model'''] __snake_case : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : str = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : int = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Union[str, Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _snake_case , _snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _snake_case , _snake_case , _snake_case , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
102
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
0
from bisect import bisect from itertools import accumulate def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : str ): lowerCAmelCase_ : Union[str, Any] = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Any = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase_ : Union[str, Any] = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
103
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _A ( A__ ): """simple docstring""" __lowercase = list(s_dict.keys() ) for key in keys: __lowercase = R'''.*/layers_(\d+)''' __lowercase = key if re.match(A__ , A__ ): __lowercase = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , A__ ) __lowercase = R'''(encoder|decoder)\/''' if re.match(A__ , A__ ): __lowercase = re.match(A__ , A__ ).groups() if groups[0] == "encoder": __lowercase = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , A__ ) __lowercase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , A__ ) elif groups[0] == "decoder": __lowercase = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , A__ ) __lowercase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , A__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __lowercase = new_key.replace(A__ , A__ ) print(F"{key} -> {new_key}" ) __lowercase = s_dict.pop(A__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowercase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowercase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __lowercase = s_dict[key].shape[0] __lowercase = s_dict[key] for idx in range(A__ ): __lowercase = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(A__ ) return s_dict lowerCAmelCase__ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _A ( A__ , A__ ): """simple docstring""" import regex as re with open(A__ , '''r''' ) as f: __lowercase = f.read() __lowercase = re.findall(R'''(.*) = ([0-9.]*)''' , A__ ) __lowercase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __lowercase = float(A__ ) if '''.''' in value else int(A__ ) __lowercase = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , A__ )[0] __lowercase = str(activation[1] ) __lowercase = num_experts __lowercase = SwitchTransformersConfig(**A__ ) return config def _A ( A__ , A__ , A__=None , A__="./" , A__=8 ): """simple docstring""" print(F"Loading flax weights from : {flax_checkpoint_path}" ) __lowercase = checkpoints.load_tax_checkpoint(A__ ) if gin_file is not None: __lowercase = convert_gin_to_config(A__ , A__ ) else: __lowercase = SwitchTransformersConfig.from_pretrained(A__ ) __lowercase = SwitchTransformersForConditionalGeneration(A__ ) __lowercase = flax_params['''target'''] __lowercase = flatten_dict(A__ , sep='''/''' ) __lowercase = rename_keys(A__ ) __lowercase = unflatten_dict(A__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(A__ , A__ ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
104
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Dict =None lowerCamelCase : Dict =BloomTokenizerFast lowerCamelCase : int =BloomTokenizerFast lowerCamelCase : List[Any] =True lowerCamelCase : Optional[int] =False lowerCamelCase : Dict ="""tokenizer_file""" lowerCamelCase : Union[str, Any] ={"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def __a ( self ) -> str: super().setUp() a : Dict = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , **lowerCAmelCase__ ) -> List[str]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __a ( self ) -> Any: a : Union[str, Any] = self.get_rust_tokenizer() a : Dict = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] a : Optional[int] = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] a : Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase__ )["input_ids"] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__=6 ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : Dict = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input a : Optional[Any] = "This is a simple input" a : str = ["This is a simple input 1", "This is a simple input 2"] a : int = ("This is a simple input", "This is a pair") a : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) a : Tuple = None # Hotfixing padding = None self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) def __a ( self ) -> Optional[int]: a : Optional[int] = self.get_rust_tokenizer() a : Tuple = load_dataset("xnli" , "all_languages" , split="test" , streaming=lowerCAmelCase__ ) a : List[Any] = next(iter(lowerCAmelCase__ ) )["premise"] # pick up one data a : Union[str, Any] = list(sample_data.values() ) a : Tuple = list(map(tokenizer.encode , lowerCAmelCase__ ) ) a : Union[str, Any] = [tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) for x in output_tokens] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
105
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( A_ ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
106
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __lowerCAmelCase : Dict = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" from __future__ import annotations from math import pi def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
108
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCAmelCase : Any = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] UpperCAmelCase : List[Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
109
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=UpperCamelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=UpperCamelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=UpperCamelCase_ , default=4_2 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=UpperCamelCase_ , default=0 , help="cuda_id." , ) A__ = parser.parse_args() return args def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Any ) -> Tuple: '''simple docstring''' if not len(UpperCamelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) A__ , A__ = imgs[0].size A__ = Image.new("RGB" , size=(cols * w, rows * h) ) A__ , A__ = grid.size for i, img in enumerate(UpperCamelCase_ ): grid.paste(UpperCamelCase_ , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Dict="robotic cat with wings" , SCREAMING_SNAKE_CASE_: Optional[int]=7.5 , SCREAMING_SNAKE_CASE_: Any=5_0 , SCREAMING_SNAKE_CASE_: Union[str, Any]=1 , SCREAMING_SNAKE_CASE_: List[Any]=4_2 , ) -> List[str]: '''simple docstring''' A__ = torch.Generator(pipeline.device ).manual_seed(UpperCamelCase_ ) A__ = pipeline( UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , ).images A__ = int(math.sqrt(UpperCamelCase_ ) ) A__ = image_grid(UpperCamelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") lowerCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") lowerCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") lowerCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): lowerCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: lowerCAmelCase__ = unet.to(torch.device("""cuda""", args.cuda_id)) lowerCAmelCase__ = pipeline.to(unet.device) lowerCAmelCase__ , lowerCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) lowerCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = FunnelTokenizer SCREAMING_SNAKE_CASE__ = FunnelTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :Tuple = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Tuple = '''UNwant\u00E9d,running''' a :Dict = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.tokenizer_class(self.vocab_file ) a :Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: a :int = tokenizer('''UNwant\u00E9d,running''' ) a :List[Any] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) a :Union[str, Any] = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
94
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __SCREAMING_SNAKE_CASE : str = 'src/transformers' __SCREAMING_SNAKE_CASE : str = 'docs/source/en/tasks' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ = f.readlines() # Find the start prompt. snake_case_ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 snake_case_ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : List[str] = direct_transformers_import(TRANSFORMERS_PATH) __SCREAMING_SNAKE_CASE : Dict = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __SCREAMING_SNAKE_CASE : List[str] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = TASK_GUIDE_TO_MODELS[task_guide] snake_case_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) snake_case_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[str]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) snake_case_ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
347
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCamelCase_ ( _UpperCAmelCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Union[str, Any] = tempfile.mkdtemp() __UpperCamelCase :List[str] = 8 # DPR tok __UpperCamelCase :Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCamelCase :Dict = os.path.join(self.tmpdirname , '''dpr_tokenizer''') os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase) __UpperCamelCase :Dict = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) # BART tok __UpperCamelCase :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase :Any = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) __UpperCamelCase :List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase :Optional[int] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :List[Any] = os.path.join(self.tmpdirname , '''bart_tokenizer''') os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase) __UpperCamelCase :str = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Any = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__UpperCAmelCase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__UpperCAmelCase)) def UpperCamelCase__ ( self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''')) def UpperCamelCase__ ( self) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''')) def UpperCamelCase__ ( self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''')) def UpperCamelCase__ ( self) -> List[str]: shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Tuple = self.get_dummy_dataset() __UpperCamelCase :Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''') as mock_load_dataset: __UpperCamelCase :Dict = dataset __UpperCamelCase :str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Union[str, Any] = self.get_dummy_dataset() __UpperCamelCase :Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: __UpperCamelCase :int = os.path.join(self.tmpdirname , '''dataset''') __UpperCamelCase :List[str] = os.path.join(self.tmpdirname , '''index.faiss''') dataset.get_index('''embeddings''').save(os.path.join(self.tmpdirname , '''index.faiss''')) dataset.drop_index('''embeddings''') dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''')) del dataset __UpperCamelCase :Dict = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __UpperCamelCase :List[Any] = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase) , ) return retriever def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT) __UpperCamelCase :Tuple = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''') dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''') pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''')) __UpperCamelCase :int = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''') __UpperCamelCase :Union[str, Any] = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , '''wb''')) __UpperCamelCase :List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) __UpperCamelCase :Union[str, Any] = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Any = 1 __UpperCamelCase :Tuple = self.get_dummy_canonical_hf_index_retriever() __UpperCamelCase :Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['''embeddings''', '''id''', '''text''', '''title''']) self.assertEqual(len(doc_dicts[0]['''id''']) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''') as mock_load_dataset: __UpperCamelCase :str = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase) __UpperCamelCase :Any = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Tuple = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :Tuple = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Any = 1 __UpperCamelCase :Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) __UpperCamelCase :int = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['''embeddings''', '''id''', '''text''', '''title''']) self.assertEqual(len(doc_dicts[0]['''id''']) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Optional[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :Tuple = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = 1 __UpperCamelCase :Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) __UpperCamelCase :List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['''embeddings''', '''id''', '''text''', '''title''']) self.assertEqual(len(doc_dicts[0]['''id''']) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :str = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Optional[int] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :Any = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = 1 __UpperCamelCase :List[Any] = self.get_dummy_legacy_index_retriever() __UpperCamelCase :Any = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['''text''', '''title''']) self.assertEqual(len(doc_dicts[0]['''text''']) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) __UpperCamelCase :str = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :str = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self) -> List[Any]: import torch __UpperCamelCase :Any = 1 __UpperCamelCase :Any = self.get_dummy_canonical_hf_index_retriever() __UpperCamelCase :List[Any] = [[5, 7], [10, 11]] __UpperCamelCase :Any = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :int = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , np.ndarray) __UpperCamelCase :Any = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors='''pt''' , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[str] = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = self.get_dpr_ctx_encoder_tokenizer() __UpperCamelCase :int = 1 __UpperCamelCase :Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase) __UpperCamelCase :Optional[int] = [[5, 7], [10, 11]] __UpperCamelCase :int = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) __UpperCamelCase :List[Any] = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase) self.assertEqual( len(__UpperCAmelCase) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''')) , __UpperCAmelCase) # check for doc token related keys in dictionary.
43
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase = """\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _UpperCAmelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _UpperCAmelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Optional[int] ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowerCamelCase__ ( self : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] = 1 , lowerCAmelCase : Union[str, Any] = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase ) }
173
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_UpperCAmelCase ): """simple docstring""" __a = ["""note_seq"""] def __init__( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Any , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
115
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_ = numpy.array([0, 0]) lowerCAmelCase_ = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase_ = numpy.array([1, 0]) lowerCAmelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> list[numpy.ndarray]: """simple docstring""" snake_case_ : int = initial_vectors for _ in range(UpperCamelCase_ ): snake_case_ : int = iteration_step(UpperCamelCase_ ) return vectors def lowerCamelCase_ ( _UpperCamelCase ) -> list[numpy.ndarray]: """simple docstring""" snake_case_ : Any = [] for i, start_vector in enumerate(vectors[:-1] ): snake_case_ : List[Any] = vectors[i + 1] new_vectors.append(UpperCamelCase_ ) snake_case_ : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> numpy.ndarray: """simple docstring""" snake_case_ : Tuple = numpy.radians(UpperCamelCase_ ) snake_case_ , snake_case_ : str = numpy.cos(UpperCamelCase_ ), numpy.sin(UpperCamelCase_ ) snake_case_ : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : List[str] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() snake_case_ , snake_case_ : Dict = zip(*UpperCamelCase_ ) plt.plot(UpperCamelCase_ , UpperCamelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
279
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _UpperCAmelCase ,unittest.TestCase): """simple docstring""" lowercase = KandinskyInpaintPipeline lowercase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def __lowercase ( self : int ) -> int: return 32 @property def __lowercase ( self : int ) -> str: return 32 @property def __lowercase ( self : List[Any] ) -> int: return self.time_input_dim @property def __lowercase ( self : List[Any] ) -> Any: return self.time_input_dim * 4 @property def __lowercase ( self : Tuple ) -> Any: return 1_00 @property def __lowercase ( self : Optional[int] ) -> Dict: lowerCAmelCase_ : Any = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __lowercase ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) lowerCAmelCase_ : List[str] = MultilingualCLIP(__UpperCAmelCase ) lowerCAmelCase_ : Dict = text_encoder.eval() return text_encoder @property def __lowercase ( self : Dict ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase_ : Dict = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __lowercase ( self : str ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self : Optional[Any] ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = self.dummy_text_encoder lowerCAmelCase_ : List[Any] = self.dummy_tokenizer lowerCAmelCase_ : Union[str, Any] = self.dummy_unet lowerCAmelCase_ : Optional[Any] = self.dummy_movq lowerCAmelCase_ : int = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__UpperCAmelCase , ) lowerCAmelCase_ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=0 ) -> List[Any]: lowerCAmelCase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase_ : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image lowerCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Optional[Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowerCAmelCase_ : Dict = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase_ : Dict = 0 if str(__UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase_ : List[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase_ : str = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __lowercase ( self : Dict ) -> Dict: lowerCAmelCase_ : Any = """cpu""" lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[int] = self.pipeline_class(**__UpperCAmelCase ) lowerCAmelCase_ : List[Any] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ : List[str] = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) lowerCAmelCase_ : List[Any] = output.images lowerCAmelCase_ : List[str] = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] lowerCAmelCase_ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Dict = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __lowercase ( self : int ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Any ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int ) -> Optional[Any]: lowerCAmelCase_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowerCAmelCase_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase_ : Optional[int] = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : int = """a hat""" lowerCAmelCase_ : Any = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowerCAmelCase_ : Union[str, Any] = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase_ : int = pipeline( __UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) lowerCAmelCase_ : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
120
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel snake_case_ = logging.getLogger(__name__) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[Any] ) -> Tuple: if os.path.exists(UpperCamelCase_ ): if os.path.exists(os.path.join(UpperCamelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(UpperCamelCase_ , '''config.json''' ) ): os.remove(os.path.join(UpperCamelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(UpperCamelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(UpperCamelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(UpperCamelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str]=False ) -> Any: __snake_case = 2 if unlogit: __snake_case = torch.pow(UpperCamelCase_ , UpperCamelCase_ ) __snake_case = p * torch.log(UpperCamelCase_ ) __snake_case = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: logger.info('''lv, h >\t''' + '''\t'''.join(f"""{x + 1}""" for x in range(len(UpperCamelCase_ ) ) ) ) for row in range(len(UpperCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : str , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : Optional[int]=None , snake_case_ : int=False ) -> Dict: __snake_case , __snake_case = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) __snake_case = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) if head_mask is None: __snake_case = torch.ones(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case = None __snake_case = 0.0 __snake_case = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): __snake_case = tuple(t.to(args.device ) for t in inputs ) ((__snake_case ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case = model(UpperCamelCase_ , labels=UpperCamelCase_ , head_mask=UpperCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case , __snake_case , __snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase_ ): __snake_case = entropy(attn.detach() , UpperCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case = 2 __snake_case = torch.pow(torch.pow(UpperCamelCase_ , UpperCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(UpperCamelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(UpperCamelCase_ ) logger.info('''Head ranked by importance scores''' ) __snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case = torch.arange( head_importance.numel() , device=args.device ) __snake_case = head_ranks.view_as(UpperCamelCase_ ) print_ad_tensor(UpperCamelCase_ ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] ) -> int: __snake_case , __snake_case , __snake_case = compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ ) __snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , UpperCamelCase_ , original_score * args.masking_threshold ) __snake_case = torch.ones_like(UpperCamelCase_ ) __snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case = original_score while current_score >= original_score * args.masking_threshold: __snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case = float('''Inf''' ) __snake_case = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads __snake_case = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) __snake_case = new_head_mask.view(-1 ) __snake_case = 0.0 __snake_case = new_head_mask.view_as(UpperCamelCase_ ) __snake_case = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase_ ) # Compute metric and head importance again __snake_case , __snake_case , __snake_case = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , head_mask=UpperCamelCase_ ) __snake_case = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , UpperCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(UpperCamelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : int , snake_case_ : int ) -> List[str]: __snake_case = datetime.now() __snake_case , __snake_case , __snake_case = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __snake_case = [ v, ] assert sum(len(UpperCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase_ ) __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = datetime.now() __snake_case , __snake_case , __snake_case = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ , actually_pruned=UpperCamelCase_ , ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , UpperCamelCase_ , UpperCamelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , UpperCamelCase_ , UpperCamelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(UpperCamelCase_ , args.output_dir ) def lowerCamelCase__ ( ) -> List[Any]: __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=UpperCamelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=UpperCamelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=UpperCamelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=UpperCamelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=UpperCamelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=UpperCamelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=UpperCamelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=UpperCamelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=UpperCamelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=UpperCamelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=UpperCamelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) __snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) __snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case = torch.device('''cuda''' , args.local_rank ) __snake_case = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case = nn.parallel.DistributedDataParallel( UpperCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase_ ) elif args.n_gpu > 1: __snake_case = nn.DataParallel(UpperCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase_ ) torch.save(UpperCamelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , UpperCamelCase_ ) # Prepare dataset __snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case = (torch.from_numpy(UpperCamelCase_ ),) __snake_case = TensorDataset(*UpperCamelCase_ ) __snake_case = RandomSampler(UpperCamelCase_ ) __snake_case = DataLoader(UpperCamelCase_ , sampler=UpperCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case = mask_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) prune_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
24
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCamelCase_ (UpperCamelCase__ : str = "AAPL" ): _UpperCAmelCase : str = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' _UpperCAmelCase : int = BeautifulSoup(requests.get(UpperCamelCase_ ).text , '''html.parser''' ) _UpperCAmelCase : Union[str, Any] = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
263
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _snake_case = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _snake_case = [ord(letter) for letter in string.ascii_lowercase] _snake_case = {ord(char) for char in VALID_CHARS} _snake_case = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def _UpperCamelCase ( snake_case__, snake_case__ ) -> str | None: __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : str = 42 __UpperCAmelCase : List[Any] = 42 __UpperCAmelCase : Optional[Any] = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ), UpperCamelCase_ ): __UpperCAmelCase : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def _UpperCamelCase ( snake_case__ ) -> list[str]: __UpperCAmelCase : Optional[Any] = [] for key in product(UpperCamelCase_, repeat=3 ): __UpperCAmelCase : int = try_key(UpperCamelCase_, UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def _UpperCamelCase ( snake_case__, snake_case__ ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def _UpperCamelCase ( snake_case__ = "p059_cipher.txt" ) -> int: __UpperCAmelCase : Dict = 42 __UpperCAmelCase : List[Any] = 42 __UpperCAmelCase : Tuple = 42 __UpperCAmelCase : int = 42 __UpperCAmelCase : List[str] = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding="utf-8" ) __UpperCAmelCase : Any = [int(UpperCamelCase_ ) for number in data.strip().split("," )] __UpperCAmelCase : List[Any] = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: __UpperCAmelCase : Union[str, Any] = filter_common_word(UpperCamelCase_, UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break __UpperCAmelCase : Dict = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
157
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: PreTrainedTokenizer , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[int] = None , ) -> Optional[int]: '''simple docstring''' A__ = {} if train_file is not None: A__ = [train_file] if eval_file is not None: A__ = [eval_file] if test_file is not None: A__ = [test_file] A__ = datasets.load_dataset("csv" , data_files=UpperCamelCase_ ) A__ = list(ds[list(files.keys() )[0]].features.keys() ) A__ = features_name.pop(UpperCamelCase_ ) A__ = list(set(ds[list(files.keys() )[0]][label_name] ) ) A__ = {label: i for i, label in enumerate(UpperCamelCase_ )} A__ = tokenizer.model_input_names A__ = {} if len(UpperCamelCase_ ) == 1: for k in files.keys(): A__ = ds[k].map( lambda SCREAMING_SNAKE_CASE_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , padding="max_length" ) , batched=UpperCamelCase_ , ) elif len(UpperCamelCase_ ) == 2: for k in files.keys(): A__ = ds[k].map( lambda SCREAMING_SNAKE_CASE_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , padding="max_length" , ) , batched=UpperCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A__ = {k: v for k, v in ex.items() if k in input_names} A__ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A__ = {k: v for k, v in ex.items() if k in input_names} A__ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A__ = {k: v for k, v in ex.items() if k in input_names} A__ = labelaid[ex[label_name]] yield (d, label) A__ = ( tf.data.Dataset.from_generator( UpperCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A__ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A__ = ( tf.data.Dataset.from_generator( UpperCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A__ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A__ = ( tf.data.Dataset.from_generator( UpperCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A__ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class a__ : """simple docstring""" __lowerCamelCase = field(metadata={'help': 'Which column contains the label'} ) __lowerCamelCase = field(default=_UpperCAmelCase , metadata={'help': 'The path of the training file'} ) __lowerCamelCase = field(default=_UpperCAmelCase , metadata={'help': 'The path of the development file'} ) __lowerCamelCase = field(default=_UpperCAmelCase , metadata={'help': 'The path of the test file'} ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class a__ : """simple docstring""" __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field(default=_UpperCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def lowerCAmelCase__ ( ) -> str: '''simple docstring''' A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A__ , A__ , A__ , A__ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase_ ) , labelaid=UpperCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): A__ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(SCREAMING_SNAKE_CASE_: EvalPrediction ) -> Dict: A__ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A__ = TFTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(UpperCamelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(UpperCamelCase_ ) return results if __name__ == "__main__": main()
68
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
0
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[list[str]] , UpperCAmelCase_ : int , ): """simple docstring""" a :Optional[int] = len(UpperCamelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase_ , UpperCamelCase_ , ) def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :List[Any] = [] depth_first_search([] , [] , [] , UpperCamelCase_ , UpperCamelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase_ ) print('''''' ) print(len(UpperCamelCase_ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __SCREAMING_SNAKE_CASE : List[Any] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def _a ( _SCREAMING_SNAKE_CASE ) -> str: config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=UpperCamelCase_ ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = tmp_path_factory.getbasetemp() / """cache""" snake_case_ = test_hf_cache_home / """datasets""" snake_case_ = test_hf_cache_home / """metrics""" snake_case_ = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(UpperCamelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(UpperCamelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(UpperCamelCase_ ) ) snake_case_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(UpperCamelCase_ ) ) snake_case_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(UpperCamelCase_ ) ) @pytest.fixture(autouse=UpperCamelCase_ , scope="""session""" ) def _a ( ) -> List[str]: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase_ ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , UpperCamelCase_ ) @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , UpperCamelCase_ )
347
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
import numpy # List of input, output pairs __lowercase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __lowercase = (((515, 22, 13), 555), ((61, 35, 49), 150)) __lowercase = [2, 4, 1, 5] __lowercase = len(train_data) __lowercase = 0.0_0_9 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="train" ): '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_ , UpperCamelCase_ ) - output( UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = 0 for i in range(len(UpperCamelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=m ): '''simple docstring''' __UpperCamelCase :Tuple = 0 for i in range(UpperCamelCase_ ): if index == -1: summation_value += _error(UpperCamelCase_ ) else: summation_value += _error(UpperCamelCase_ ) * train_data[i][0][index] return summation_value def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = summation_of_cost_derivative(UpperCamelCase_ , UpperCamelCase_ ) / m return cost_derivative_value def lowerCamelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCamelCase :Union[str, Any] = 0.000_002 __UpperCamelCase :List[str] = 0 __UpperCamelCase :str = 0 while True: j += 1 __UpperCamelCase :Dict = [0, 0, 0, 0] for i in range(0 , len(UpperCamelCase_ ) ): __UpperCamelCase :List[str] = get_cost_derivative(i - 1 ) __UpperCamelCase :Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_ , UpperCamelCase_ , atol=UpperCamelCase_ , rtol=UpperCamelCase_ , ): break __UpperCamelCase :Dict = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCamelCase ( ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): print(('''Actual output value:''', output(UpperCamelCase_ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(UpperCamelCase_ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
43
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __magic_name__ ( lowercase ): return 1.0 / (1.0 + np.exp(-_outputs )) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =np.max(_outputs , axis=-1 , keepdims=UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: str =np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase_ ) class a ( _UpperCAmelCase ): UpperCamelCase : List[str] = 'sigmoid' UpperCamelCase : Optional[Any] = 'softmax' UpperCamelCase : Optional[Any] = 'none' @add_end_docstrings( _UpperCAmelCase , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n ' , ) class a ( _UpperCAmelCase ): UpperCamelCase : Tuple = False UpperCamelCase : List[str] = ClassificationFunction.NONE def __init__( self : Dict , **lowerCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : int="" , **lowerCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =tokenizer_kwargs SCREAMING_SNAKE_CASE_: int ={} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: SCREAMING_SNAKE_CASE_: Tuple =self.model.config.return_all_scores if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k is None: SCREAMING_SNAKE_CASE_: Dict =top_k SCREAMING_SNAKE_CASE_: Union[str, Any] =False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , __UpperCAmelCase , ) if return_all_scores: SCREAMING_SNAKE_CASE_: List[Any] =None else: SCREAMING_SNAKE_CASE_: Tuple =1 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str =ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: SCREAMING_SNAKE_CASE_: str =function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. SCREAMING_SNAKE_CASE_: List[str] ="""top_k""" not in kwargs if isinstance(args[0] , __UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple ) -> Dict[str, GenericTensor]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.framework if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.tokenizer(**__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1 and isinstance(inputs[0] , __UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Tuple ) -> List[str]: '''simple docstring''' return self.model(**__UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : List[Any]=True ) -> Dict: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: SCREAMING_SNAKE_CASE_: Union[str, Any] =ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: SCREAMING_SNAKE_CASE_: str =ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: SCREAMING_SNAKE_CASE_: Optional[Any] =self.model.config.function_to_apply else: SCREAMING_SNAKE_CASE_: List[str] =ClassificationFunction.NONE SCREAMING_SNAKE_CASE_: int =model_outputs["""logits"""][0] SCREAMING_SNAKE_CASE_: Dict =outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: SCREAMING_SNAKE_CASE_: Optional[int] =sigmoid(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: SCREAMING_SNAKE_CASE_: Union[str, Any] =softmax(__UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: SCREAMING_SNAKE_CASE_: List[str] =outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} SCREAMING_SNAKE_CASE_: Any =[ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(__UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k is not None: SCREAMING_SNAKE_CASE_: Tuple =dict_scores[:top_k] return dict_scores
173
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' if num < 0: return False __UpperCAmelCase : Tuple = num __UpperCAmelCase : Optional[int] = 0 while num > 0: __UpperCAmelCase : Optional[int] = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
115
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
import os from math import logaa def lowerCamelCase_ ( _UpperCamelCase = "base_exp.txt" ) -> int: """simple docstring""" snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase_ ) , UpperCamelCase_ ) ) ): snake_case_ , snake_case_ : Union[str, Any] = list(map(UpperCamelCase_ , line.split(''',''' ) ) ) if x * logaa(UpperCamelCase_ ) > largest: snake_case_ : Any = x * logaa(UpperCamelCase_ ) snake_case_ : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
279
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
'''simple docstring''' import datasets __A : List[str] = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A : int = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A : Optional[int] = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n" def UpperCamelCase_ ( A__ : str , A__ : Dict ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : Dict ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def __lowercase ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Any ) -> int: return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
120
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case_ = 8 def lowerCamelCase__ ( snake_case_ : str , snake_case_ : List[str]=BITS ) -> Any: __snake_case = x.device __snake_case = (x * 255).int().clamp(0 , 255 ) __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ ) __snake_case = rearrange(UpperCamelCase_ , '''d -> d 1 1''' ) __snake_case = rearrange(UpperCamelCase_ , '''b c h w -> b c 1 h w''' ) __snake_case = ((x & mask) != 0).float() __snake_case = rearrange(UpperCamelCase_ , '''b c d h w -> b (c d) h w''' ) __snake_case = bits * 2 - 1 return bits def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict=BITS ) -> Dict: __snake_case = x.device __snake_case = (x > 0).int() __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase_ , dtype=torch.intaa ) __snake_case = rearrange(UpperCamelCase_ , '''d -> d 1 1''' ) __snake_case = rearrange(UpperCamelCase_ , '''b (c d) h w -> b c d h w''' , d=8 ) __snake_case = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCamelCase__ ( self : List[str] , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : float = 0.0 , snake_case_ : bool = True , snake_case_ : Optional[Any]=None , snake_case_ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case = self.alphas_cumprod[timestep] __snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) __snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case = model_output.device if torch.is_tensor(UpperCamelCase_ ) else '''cpu''' __snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase_ ).to(UpperCamelCase_ ) __snake_case = self._get_variance(UpperCamelCase_ , UpperCamelCase_ ) ** 0.5 * eta * noise __snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : Any="epsilon" , snake_case_ : List[Any]=None , snake_case_ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case = torch.split(UpperCamelCase_ , sample.shape[1] , dim=1 ) else: __snake_case = None # 1. compute alphas, betas __snake_case = self.alphas_cumprod[t] __snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case = 1 - alpha_prod_t __snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(UpperCamelCase_ , -scale , UpperCamelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case = 0 if t > 0: __snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase_ ).to(model_output.device ) __snake_case = (self._get_variance(UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise __snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase_ , pred_original_sample=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Any , a__ : Tuple , a__ : Union[str, Any] , a__ : int = 1.0 , ): """simple docstring""" super().__init__() __snake_case = bit_scale __snake_case = ( ddim_bit_scheduler_step if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__(self : Optional[int] , a__ : List[Any] = 256 , a__ : str = 256 , a__ : str = 50 , a__ : str = None , a__ : Dict = 1 , a__ : List[Any] = "pil" , a__ : Any = True , **a__ : List[Any] , ): """simple docstring""" __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__UpperCAmelCase , ) __snake_case = decimal_to_bits(__UpperCAmelCase ) * self.bit_scale __snake_case = latents.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample __snake_case = bits_to_decimal(__UpperCAmelCase ) if output_type == "pil": __snake_case = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
24
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowerCAmelCase :str = logging.get_logger(__name__) _lowerCAmelCase :Tuple = {} _lowerCAmelCase :str = {} _lowerCAmelCase :Any = {} def lowerCamelCase_ (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _UpperCAmelCase : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) _UpperCAmelCase : Optional[int] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) _UpperCAmelCase : List[str] = format_type def lowerCamelCase_ (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _UpperCAmelCase : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _UpperCAmelCase : List[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: _lowerCAmelCase :Optional[int] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: _lowerCAmelCase :Optional[Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: _lowerCAmelCase :int = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def lowerCamelCase_ (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase_ (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : Dict ): _UpperCAmelCase : Optional[Any] = get_format_type_from_alias(UpperCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
263
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( _UpperCAmelCase ): lowerCamelCase__: Any = "microsoft/speecht5_tts" lowerCamelCase__: Any = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) lowerCamelCase__: List[str] = "text_reader" lowerCamelCase__: Dict = SpeechTaProcessor lowerCamelCase__: Tuple = SpeechTaForTextToSpeech lowerCamelCase__: List[str] = SpeechTaHifiGan lowerCamelCase__: Union[str, Any] = ["text"] lowerCamelCase__: List[str] = ["audio"] def _lowerCamelCase ( self: Optional[int] ) -> str: if self.post_processor is None: __UpperCAmelCase : Tuple = "microsoft/speecht5_hifigan" super().setup() def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any=None ) -> Optional[int]: __UpperCAmelCase : Any = self.pre_processor(text=__UpperCAmelCase , return_tensors="pt" , truncation=__UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) __UpperCAmelCase : List[str] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) __UpperCAmelCase : Union[str, Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, Any] ) -> List[Any]: with torch.no_grad(): return self.model.generate_speech(**__UpperCAmelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[Any] ) -> Tuple: with torch.no_grad(): return self.post_processor(__UpperCAmelCase ).cpu().detach()
157
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a__ ( _UpperCAmelCase ): """simple docstring""" @slow @require_torch def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) A__ = BertTokenizer.from_pretrained("bert-base-uncased" ) A__ = bertabert.config.encoder.vocab_size A__ = tokenizer.sep_token_id A__ = tokenizer.cls_token_id A__ = 128 A__ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) A__ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) A__ = train_dataset.select(range(32 ) ) A__ = val_dataset.select(range(16 ) ) A__ = 4 def _map_to_encoder_decoder_inputs(lowercase ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ = tokenizer(batch["article"] , padding="max_length" , truncation=__UpperCAmelCase , max_length=512 ) A__ = tokenizer(batch["highlights"] , padding="max_length" , truncation=__UpperCAmelCase , max_length=128 ) A__ = inputs.input_ids A__ = inputs.attention_mask A__ = outputs.input_ids A__ = outputs.input_ids.copy() A__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] A__ = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase ): A__ = pred.label_ids A__ = pred.predictions # all unnecessary tokens are removed A__ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) A__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset A__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset A__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) A__ = self.get_auto_remove_tmp_dir() A__ = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy="steps" , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict="attention" ): """simple docstring""" a :List[str] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) a :List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) a :Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) a :Optional[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) a :Union[str, Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) a :List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) a :List[str] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) a :List[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: a :int = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] a :Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] a :List[Any] = (wi_a, wi_a) else: a :List[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] a :List[str] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def __lowerCamelCase ( UpperCAmelCase_ : dict , *, UpperCAmelCase_ : int , UpperCAmelCase_ : bool , UpperCAmelCase_ : bool = False ): """simple docstring""" a :Tuple = traverse_util.flatten_dict(variables['''target'''] ) a :List[str] = {'''/'''.join(UpperCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a :Tuple = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCamelCase_ ) a :str = collections.OrderedDict() # Shared embeddings. a :Tuple = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). a :Optional[int] = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , '''encoder''' , '''pre_attention_layer_norm''' ) a , a , a , a :Union[str, Any] = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , '''encoder''' , '''attention''' ) a :int = layer_norm a :int = k.T a :int = o.T a :Any = q.T a :Optional[int] = v.T # Block i, layer 1 (MLP). a :Union[str, Any] = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , '''encoder''' , '''pre_mlp_layer_norm''' ) a , a :List[str] = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , '''encoder''' , UpperCamelCase_ ) a :Tuple = layer_norm if split_mlp_wi: a :List[Any] = wi[0].T a :Union[str, Any] = wi[1].T else: a :Tuple = wi.T a :Any = wo.T if scalable_attention: # convert the rel_embedding of each layer a :Dict = tax_relpos_bias_lookup( UpperCamelCase_ , UpperCamelCase_ , '''encoder''' ).T a :int = old['''encoder/encoder_norm/scale'''] if not scalable_attention: a :Any = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , '''encoder''' ).T a :Union[str, Any] = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). a :Any = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) a , a , a , a :Dict = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , '''self_attention''' ) a :List[str] = layer_norm a :Union[str, Any] = k.T a :Dict = o.T a :Optional[Any] = q.T a :int = v.T # Block i, layer 1 (Cross Attention). a :Tuple = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) a , a , a , a :List[Any] = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , '''encoder_decoder_attention''' ) a :Any = layer_norm a :str = k.T a :Tuple = o.T a :str = q.T a :Optional[int] = v.T # Block i, layer 2 (MLP). a :Optional[Any] = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , '''pre_mlp_layer_norm''' ) a , a :str = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' , UpperCamelCase_ ) a :Any = layer_norm if split_mlp_wi: a :Optional[int] = wi[0].T a :Optional[int] = wi[1].T else: a :Dict = wi.T a :str = wo.T if scalable_attention: # convert the rel_embedding of each layer a :List[Any] = tax_relpos_bias_lookup(UpperCamelCase_ , UpperCamelCase_ , '''decoder''' ).T a :str = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a :Dict = old['''decoder/logits_dense/kernel'''].T return new def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : bool ): """simple docstring""" a :str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a :List[str] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a :Tuple = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) a :List[str] = state_dict['''shared.weight'''] return state_dict def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): """simple docstring""" a :str = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) a :Union[str, Any] = convert_tax_to_pytorch( UpperCamelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase_ , scalable_attention=UpperCamelCase_ ) a :List[Any] = make_state_dict(UpperCamelCase_ , UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ): """simple docstring""" a :Any = MTaConfig.from_json_file(UpperCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a :List[Any] = UMTaEncoderModel(UpperCamelCase_ ) else: a :List[Any] = UMTaForConditionalGeneration(UpperCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase_ ) print('''Done''' ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) snake_case : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
94
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __SCREAMING_SNAKE_CASE : int = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} state_dict.pop("""pixel_mean""" , UpperCamelCase_ ) state_dict.pop("""pixel_std""" , UpperCamelCase_ ) snake_case_ = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ = key.replace(UpperCamelCase_ , UpperCamelCase_ ) if re.match(UpperCamelCase_ , UpperCamelCase_ ): snake_case_ = int(re.match(UpperCamelCase_ , UpperCamelCase_ ).group(2 ) ) if layer_nb == 0: snake_case_ = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: snake_case_ = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: snake_case_ = key.replace("""layers.2""" , """proj_out""" ) snake_case_ = value snake_case_ = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ) -> Union[str, Any]: snake_case_ = hf_hub_download(UpperCamelCase_ , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: snake_case_ = SamConfig() elif "sam_vit_l" in model_name: snake_case_ = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ = SamConfig( vision_config=UpperCamelCase_ , ) elif "sam_vit_h" in model_name: snake_case_ = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ = SamConfig( vision_config=UpperCamelCase_ , ) snake_case_ = torch.load(UpperCamelCase_ , map_location="""cpu""" ) snake_case_ = replace_keys(UpperCamelCase_ ) snake_case_ = SamImageProcessor() snake_case_ = SamProcessor(image_processor=UpperCamelCase_ ) snake_case_ = SamModel(UpperCamelCase_ ) hf_model.load_state_dict(UpperCamelCase_ ) snake_case_ = hf_model.to("""cuda""" ) snake_case_ = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" snake_case_ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) snake_case_ = [[[400, 650]]] snake_case_ = [[1]] snake_case_ = processor(images=np.array(UpperCamelCase_ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ = hf_model(**UpperCamelCase_ ) snake_case_ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case_ = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ = hf_model(**UpperCamelCase_ ) snake_case_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case_ = ((75, 275, 1_725, 850),) snake_case_ = processor(images=np.array(UpperCamelCase_ ) , input_boxes=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ = hf_model(**UpperCamelCase_ ) snake_case_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case_ = [[[400, 650], [800, 650]]] snake_case_ = [[1, 1]] snake_case_ = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): snake_case_ = hf_model(**UpperCamelCase_ ) snake_case_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() __SCREAMING_SNAKE_CASE : Optional[int] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
347
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def wrapper(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[int] = timeit.default_timer() __UpperCamelCase :List[Any] = func(*UpperCamelCase_ , **UpperCamelCase_ ) __UpperCamelCase :Dict = timeit.default_timer() - starttime return delta __UpperCamelCase :Union[str, Any] = func.__name__ return wrapper def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :List[Any] = [] __UpperCamelCase :List[Any] = seq_shapes or {} for i in range(UpperCamelCase_ ): __UpperCamelCase :Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase_ , _ArrayXD ): __UpperCamelCase :List[Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase_ , datasets.Value ): if v.dtype == "string": __UpperCamelCase :str = '''The small grey turtle was surprisingly fast when challenged.''' else: __UpperCamelCase :Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase_ , datasets.Sequence ): while isinstance(UpperCamelCase_ , datasets.Sequence ): __UpperCamelCase :Dict = v.feature __UpperCamelCase :List[str] = seq_shapes[k] __UpperCamelCase :int = np.random.rand(*UpperCamelCase_ ).astype(v.dtype ) __UpperCamelCase :List[str] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :str = generate_examples(UpperCamelCase_ , num_examples=UpperCamelCase_ , seq_shapes=UpperCamelCase_ ) with ArrowWriter(features=UpperCamelCase_ , path=UpperCamelCase_ ) as writer: for key, record in dummy_data: __UpperCamelCase :Optional[int] = features.encode_example(UpperCamelCase_ ) writer.write(UpperCamelCase_ ) __UpperCamelCase , __UpperCamelCase :List[str] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __UpperCamelCase :int = datasets.Dataset.from_file(filename=UpperCamelCase_ , info=datasets.DatasetInfo(features=UpperCamelCase_ ) ) return dataset
43
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class a ( _UpperCAmelCase ): UpperCamelCase : Union[str, Any] = 'camembert' def __init__( self : str , lowerCAmelCase : Union[str, Any]=3_0522 , lowerCAmelCase : int=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Any=2 , lowerCAmelCase : int=0.0_2 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Any=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Tuple , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int =vocab_size SCREAMING_SNAKE_CASE_: int =hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] =num_hidden_layers SCREAMING_SNAKE_CASE_: str =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_: str =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =max_position_embeddings SCREAMING_SNAKE_CASE_: Dict =type_vocab_size SCREAMING_SNAKE_CASE_: List[str] =initializer_range SCREAMING_SNAKE_CASE_: int =layer_norm_eps SCREAMING_SNAKE_CASE_: str =position_embedding_type SCREAMING_SNAKE_CASE_: str =use_cache SCREAMING_SNAKE_CASE_: str =classifier_dropout class a ( _UpperCAmelCase ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Optional[int] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
173
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0
"""simple docstring""" import math from datetime import datetime, timedelta def lowerCamelCase ( _UpperCamelCase : int ) -> datetime: '''simple docstring''' __UpperCAmelCase : Optional[int] = year % 1_9 __UpperCAmelCase : Optional[int] = year % 4 __UpperCAmelCase : Any = year % 7 __UpperCAmelCase : Optional[Any] = math.floor(year / 1_0_0 ) __UpperCAmelCase : List[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __UpperCAmelCase : Any = leap_day_inhibits / 4 __UpperCAmelCase : Optional[Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __UpperCAmelCase : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __UpperCAmelCase : Optional[int] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __UpperCAmelCase : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 1_8 ) else: return datetime(UpperCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCAmelCase : Optional[Any] = 'will be' if year > datetime.now().year else 'was' print(F"Easter in {year} {tense} {gauss_easter(year)}")
115
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
279
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , lowerCamelCase : int=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : str ) -> int: lowerCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCAmelCase , ) lowerCAmelCase_ : Dict = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : Any , lowerCamelCase : Optional[Any]=None , lowerCamelCase : str=None , lowerCamelCase : List[str]=None , **lowerCamelCase : int ) -> Optional[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase_ : Tuple = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: lowerCAmelCase_ : str = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def __lowercase ( self : Union[str, Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : List[str] ) -> str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowercase ( self : Dict , *lowerCamelCase : Any , **lowerCamelCase : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowercase ( self : int ) -> str: lowerCAmelCase_ : Union[str, Any] = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self : List[str] ) -> Dict: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , ) return self.image_processor_class @property def __lowercase ( self : int ) -> Optional[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , ) return self.image_processor
120
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : int | float | str , snake_case_ : int | float | str ) -> list[str]: if nth_term == "": return [""] __snake_case = int(UpperCamelCase_ ) __snake_case = int(UpperCamelCase_ ) __snake_case = [] for temp in range(int(UpperCamelCase_ ) ): series.append(f"""1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}""" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = int(input('Enter the last number (nth term) of the P-Series')) snake_case_ = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
24
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
0
"""simple docstring""" from ....utils import logging _lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , A , A=None , A=2_0_4_8 ) -> int: _UpperCAmelCase : Any = config.__dict__ _UpperCAmelCase : List[Any] = modal_hidden_size if num_labels: _UpperCAmelCase : List[Any] = num_labels
263
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
0
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Dict = len(UpperCamelCase_ ) __UpperCAmelCase : Tuple = len(matrix[0] ) __UpperCAmelCase : List[Any] = min(UpperCamelCase_, UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1, UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_, UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCAmelCase : List[str] = True for i in range(row + 1, UpperCamelCase_ ): if matrix[i][row] != 0: __UpperCAmelCase , __UpperCAmelCase : Tuple = matrix[i], matrix[row] __UpperCAmelCase : Tuple = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): __UpperCAmelCase : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
157
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCAmelCase__ = """Usage of script: script_name <size_of_canvas:int>""" lowerCAmelCase__ = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list[list[bool]]: '''simple docstring''' A__ = [[False for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] return canvas def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(UpperCamelCase_ ): for j, _ in enumerate(UpperCamelCase_ ): A__ = bool(random.getrandbits(1 ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' A__ = np.array(UpperCamelCase_ ) A__ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(UpperCamelCase_ ): for c, pt in enumerate(UpperCamelCase_ ): A__ = __judge_point( UpperCamelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) A__ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. A__ = current_canvas.tolist() return return_canvas def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: bool , SCREAMING_SNAKE_CASE_: list[list[bool]] ) -> bool: '''simple docstring''' A__ = 0 A__ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. A__ = pt if pt: if alive < 2: A__ = False elif alive == 2 or alive == 3: A__ = True elif alive > 3: A__ = False else: if alive == 3: A__ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCAmelCase__ = int(sys.argv[1]) # main working structure of this module. lowerCAmelCase__ = create_canvas(canvas_size) seed(c) lowerCAmelCase__ , lowerCAmelCase__ = plt.subplots() fig.show() lowerCAmelCase__ = ListedColormap(["""w""", """k"""]) try: while True: lowerCAmelCase__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
68
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
0
from __future__ import annotations import math def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True snake_case : List[str] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) a :List[Any] = [] for num in range(len(UpperCamelCase_ ) ): a :List[str] = 0 while 2 * i * i <= odd_composites[num]: a :int = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase_ ) == n: return list_nums return [] def __lowerCamelCase ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE : Dict = 10 def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 1 snake_case_ = max(UpperCamelCase_ ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ = [[] for _ in range(UpperCamelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ = int((i / placement) % RADIX ) buckets[tmp].append(UpperCamelCase_ ) # put each buckets' contents into list_of_ints snake_case_ = 0 for b in range(UpperCamelCase_ ): for i in buckets[b]: snake_case_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
347
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( _UpperCAmelCase ): '''simple docstring''' a__ : List[str] = (DPMSolverSinglestepScheduler,) a__ : Dict = (("""num_inference_steps""", 2_5),) def UpperCamelCase__ ( self , **__lowercase) -> Tuple: __UpperCamelCase :str = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**__UpperCAmelCase) return config def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> str: __UpperCamelCase :int = dict(self.forward_default_kwargs) __UpperCamelCase :Any = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase) __UpperCamelCase :int = self.dummy_sample __UpperCamelCase :List[Any] = 0.1 * sample __UpperCamelCase :Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :Optional[Any] = self.get_scheduler_config(**__UpperCAmelCase) __UpperCamelCase :Tuple = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals __UpperCamelCase :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) __UpperCamelCase :int = scheduler_class.from_pretrained(__UpperCAmelCase) new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals __UpperCamelCase :Any = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase , __UpperCamelCase :Optional[Any] = sample, sample for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1): __UpperCamelCase :int = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample __UpperCamelCase :Dict = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self) -> Tuple: pass def UpperCamelCase__ ( self , __lowercase=0 , **__lowercase) -> List[str]: __UpperCamelCase :Tuple = dict(self.forward_default_kwargs) __UpperCamelCase :str = kwargs.pop('''num_inference_steps''' , __UpperCAmelCase) __UpperCamelCase :List[Any] = self.dummy_sample __UpperCamelCase :List[Any] = 0.1 * sample __UpperCamelCase :Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase :Union[str, Any] = self.get_scheduler_config() __UpperCamelCase :List[str] = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase :int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) __UpperCamelCase :int = scheduler_class.from_pretrained(__UpperCAmelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase :List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase :List[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample __UpperCamelCase :Optional[int] = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , __lowercase=None , **__lowercase) -> Any: if scheduler is None: __UpperCamelCase :Tuple = self.scheduler_classes[0] __UpperCamelCase :Union[str, Any] = self.get_scheduler_config(**__UpperCAmelCase) __UpperCamelCase :Tuple = scheduler_class(**__UpperCAmelCase) __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Union[str, Any] = self.get_scheduler_config(**__UpperCAmelCase) __UpperCamelCase :List[str] = scheduler_class(**__UpperCAmelCase) __UpperCamelCase :Tuple = 10 __UpperCamelCase :int = self.dummy_model() __UpperCamelCase :Dict = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :Tuple = model(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Optional[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample return sample def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :Optional[int] = 50 __UpperCamelCase :List[str] = self.dummy_model() __UpperCamelCase :Any = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): __UpperCamelCase :Tuple = model(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :Union[str, Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample __UpperCamelCase :Union[str, Any] = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.25_74) < 1E-3 def UpperCamelCase__ ( self) -> Tuple: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :int = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) __UpperCamelCase :Optional[int] = self.full_loop(scheduler=__UpperCAmelCase) __UpperCamelCase :Tuple = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 __UpperCamelCase :List[Any] = DEISMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :Any = UniPCMultistepScheduler.from_config(scheduler.config) __UpperCamelCase :Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config) __UpperCamelCase :Tuple = self.full_loop(scheduler=__UpperCAmelCase) __UpperCamelCase :List[Any] = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> Any: self.check_over_configs(thresholding=__UpperCAmelCase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , algorithm_type='''dpmsolver++''' , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , ) def UpperCamelCase__ ( self) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def UpperCamelCase__ ( self) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) __UpperCamelCase :Any = self.full_loop( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) assert not torch.isnan(__UpperCAmelCase).any(), "Samples have nan numbers" def UpperCamelCase__ ( self) -> List[str]: self.check_over_configs(lower_order_final=__UpperCAmelCase) self.check_over_configs(lower_order_final=__UpperCAmelCase) def UpperCamelCase__ ( self) -> int: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def UpperCamelCase__ ( self) -> Any: self.check_over_configs(variance_type=__UpperCAmelCase) self.check_over_configs(variance_type='''learned_range''') def UpperCamelCase__ ( self) -> List[str]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Dict = self.full_loop() __UpperCamelCase :List[Any] = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.27_91) < 1E-3 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = self.full_loop(use_karras_sigmas=__UpperCAmelCase) __UpperCamelCase :str = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.22_48) < 1E-3 def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :str = self.full_loop(prediction_type='''v_prediction''') __UpperCamelCase :Tuple = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.14_53) < 1E-3 def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Tuple = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__UpperCAmelCase) __UpperCamelCase :Tuple = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 0.06_49) < 1E-3 def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.scheduler_classes[0] __UpperCamelCase :Union[str, Any] = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0) __UpperCamelCase :List[Any] = scheduler_class(**__UpperCAmelCase) __UpperCamelCase :List[Any] = 10 __UpperCamelCase :List[Any] = self.dummy_model() __UpperCamelCase :Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): __UpperCamelCase :Any = model(__UpperCAmelCase , __UpperCAmelCase) __UpperCamelCase :List[Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample assert sample.dtype == torch.floataa
43
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase = 1_6 _UpperCAmelCase = 3_2 def __magic_name__ ( lowercase , lowercase = 16 ): SCREAMING_SNAKE_CASE_: Union[str, Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Any =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Any =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: str =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: Union[str, Any] =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: int =8 else: SCREAMING_SNAKE_CASE_: str =None return tokenizer.pad( UpperCamelCase_ , padding="""longest""" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Any =DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase = mocked_dataloaders # noqa: F811 def __magic_name__ ( lowercase , lowercase ): if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase_ ) == "1": SCREAMING_SNAKE_CASE_: Any =2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: str =config["""lr"""] SCREAMING_SNAKE_CASE_: Tuple =int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE_: Union[str, Any] =int(config["""seed"""] ) SCREAMING_SNAKE_CASE_: Tuple =int(config["""batch_size"""] ) set_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Dict =evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: List[str] =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: str =batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Union[str, Any] =MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: Tuple =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Dict =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[Any] =AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Union[str, Any] =get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE_: Dict =os.path.split(UpperCamelCase_ )[-1].split(""".""" )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE_: Union[str, Any] =0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: List[str] =model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: Tuple =outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE_: Optional[Any] =loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] =model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_: List[Any] =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE_: List[Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(UpperCamelCase_ ), """epoch""": epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Any =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=UpperCamelCase_ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) SCREAMING_SNAKE_CASE_: Optional[int] =parser.parse_args() SCREAMING_SNAKE_CASE_: Tuple ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
173
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.txt'} UpperCAmelCase : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCAmelCase : Tuple = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCAmelCase : Any = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase__ ( _UpperCAmelCase ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_INIT_CONFIGURATION __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ConvBertTokenizer def __init__( self : List[Any] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Tuple=None , UpperCamelCase : str=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : str="[SEP]" , UpperCamelCase : Optional[int]="[PAD]" , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Tuple=None , **UpperCamelCase : int , ): '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Union[str, Any] = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Tuple = strip_accents __UpperCAmelCase : Dict = tokenize_chinese_chars __UpperCAmelCase : Tuple = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Dict = do_lower_case def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Any=None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : List[Any] = None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] = None ): '''simple docstring''' __UpperCAmelCase : Any = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
115
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
'''simple docstring''' from __future__ import annotations import bisect def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: lowerCAmelCase_ : Optional[Any] = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase_ : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase_ : Dict = mid + 1 else: lowerCAmelCase_ : Optional[Any] = mid return lo def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: lowerCAmelCase_ : str = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase_ : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase_ : Union[str, Any] = mid + 1 else: lowerCAmelCase_ : Any = mid return lo def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : int = len(UpperCamelCase_ ) - 1 while left <= right: lowerCAmelCase_ : Union[str, Any] = left + (right - left) // 2 lowerCAmelCase_ : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase_ : List[str] = midpoint - 1 else: lowerCAmelCase_ : Optional[int] = midpoint + 1 return None def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = bisect.bisect_left(UpperCamelCase_ , UpperCamelCase_ ) if index != len(UpperCamelCase_ ) and sorted_collection[index] == item: return index return None def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int , A__ : int ): '''simple docstring''' if right < left: return None lowerCAmelCase_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , midpoint + 1 , UpperCamelCase_ ) if __name__ == "__main__": __A : Tuple = input("Enter numbers separated by comma:\n").strip() __A : Dict = sorted(int(item) for item in user_input.split(",")) __A : int = int(input("Enter a single number to be found in the list:\n")) __A : Optional[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
120
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : Any = 42 A_ : int = 42 class SCREAMING_SNAKE_CASE__ : def __init__(self : Tuple , a__ : Tuple ): """simple docstring""" __snake_case = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): __snake_case = Node(__UpperCAmelCase , self.head ) def __iter__(self : Any ): """simple docstring""" __snake_case = self.head while node: yield node.data __snake_case = node.next_node def __len__(self : Optional[Any] ): """simple docstring""" return sum(1 for _ in self ) def __str__(self : int ): """simple docstring""" return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def lowerCamelCase__ ( snake_case_ : SortedLinkedList , snake_case_ : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
24
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _lowerCAmelCase :List[Any] = logging.getLogger(__name__) _lowerCAmelCase :List[str] = {'facebook/bart-base': BartForConditionalGeneration} _lowerCAmelCase :Optional[Any] = {'facebook/bart-base': BartTokenizer} def lowerCamelCase_ (): _UpperCAmelCase : Tuple = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=UpperCamelCase_ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=UpperCamelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCamelCase_ , ) parser.add_argument( '''--config_name''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=UpperCamelCase_ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''Where to store the final ONNX file.''' ) _UpperCAmelCase : List[Any] = parser.parse_args() return args def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any]="cpu" ): _UpperCAmelCase : Optional[Any] = model_dict[model_name].from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) _UpperCAmelCase : Optional[int] = tokenizer_dict[model_name].from_pretrained(UpperCamelCase_ ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = 0 return huggingface_model, tokenizer def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): model.eval() _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase_ ) ) with torch.no_grad(): _UpperCAmelCase : Dict = '''My friends are cool but they eat too many carbs.''' _UpperCAmelCase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) _UpperCAmelCase : List[Any] = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=UpperCamelCase_ , max_length=UpperCamelCase_ , early_stopping=UpperCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase_ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase_ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=UpperCamelCase_ , ) logger.info('''Model exported to {}'''.format(UpperCamelCase_ ) ) _UpperCAmelCase : List[str] = remove_dup_initializers(os.path.abspath(UpperCamelCase_ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(UpperCamelCase_ ) ) _UpperCAmelCase : Tuple = onnxruntime.InferenceSession(UpperCamelCase_ ) _UpperCAmelCase : int = ort_sess.run( UpperCamelCase_ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(UpperCamelCase_ ), '''max_length''': np.array(UpperCamelCase_ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = parse_args() _UpperCAmelCase : List[Any] = 5 _UpperCAmelCase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : Tuple = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_model_tokenizer(args.model_name_or_path , UpperCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(UpperCamelCase_ ) if args.max_length: _UpperCAmelCase : Optional[Any] = args.max_length if args.num_beams: _UpperCAmelCase : Dict = args.num_beams if args.output_file_path: _UpperCAmelCase : Optional[int] = args.output_file_path else: _UpperCAmelCase : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
263
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = torch.device('''cpu''') def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_ ).raw ) return im def _UpperCamelCase ( snake_case__ ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : Tuple = dct.pop(UpperCamelCase_ ) __UpperCAmelCase : Any = val def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : Tuple = [] for k in state_dict.keys(): __UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: __UpperCAmelCase : List[Any] = k_new.replace(".pwconv", ".point_wise_conv" ) if ".dwconv" in k: __UpperCAmelCase : Tuple = k_new.replace(".dwconv", ".depth_wise_conv" ) if ".Proj." in k: __UpperCAmelCase : str = k_new.replace(".Proj.", ".proj." ) if "patch_embed" in k_new: __UpperCAmelCase : int = k_new.replace("patch_embed", "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __UpperCAmelCase : Optional[Any] = k_new.split("." ) if ls[2].isdigit(): __UpperCAmelCase : Dict = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __UpperCAmelCase : int = k_new.replace("network", "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Any = 1000 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : Optional[Any] = "imagenet-1k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Dict = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCAmelCase : List[str] = [3, 3, 6, 4] __UpperCAmelCase : List[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCAmelCase : Tuple = [3, 3, 9, 6] __UpperCAmelCase : Any = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCAmelCase : Optional[int] = [4, 3, 10, 5] __UpperCAmelCase : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCAmelCase : Any = [4, 4, 12, 6] __UpperCAmelCase : str = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location="cpu", check_hash=UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.load(UpperCamelCase_, map_location="cpu" ) __UpperCAmelCase : str = checkpoint __UpperCAmelCase : Any = create_rename_keys(UpperCamelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) # load HuggingFace model __UpperCAmelCase : List[str] = SwiftFormerForImageClassification(UpperCamelCase_ ).eval() hf_model.load_state_dict(UpperCamelCase_ ) # prepare test inputs __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Any = ViTImageProcessor.from_pretrained("preprocessor_config" ) __UpperCAmelCase : Dict = processor(images=UpperCamelCase_, return_tensors="pt" ) # compare outputs from both models __UpperCAmelCase : int = get_expected_output(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5], UpperCamelCase_, atol=1e-3 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
157
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class a__ ( _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = 'mobilenet_v1' def __init__( self , lowercase=3 , lowercase=224 , lowercase=1.0 , lowercase=8 , lowercase="relu6" , lowercase=True , lowercase=0.999 , lowercase=0.02 , lowercase=0.001 , **lowercase , ) -> int: '''simple docstring''' super().__init__(**__UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) A__ = num_channels A__ = image_size A__ = depth_multiplier A__ = min_depth A__ = hidden_act A__ = tf_padding A__ = classifier_dropout_prob A__ = initializer_range A__ = layer_norm_eps class a__ ( _UpperCAmelCase ): """simple docstring""" __lowerCamelCase = version.parse('1.11' ) @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def UpperCamelCase ( self ) -> float: '''simple docstring''' return 1e-4
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=__UpperCAmelCase , ) assert hasattr(self , '''env''' ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[Any] = { '''enabled''': True, '''processes_per_host''': 8, } a :Dict = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } a :List[str] = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} a :Optional[Any] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=__UpperCAmelCase , py_version='''py36''' , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Any = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe a :Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis a :str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) a :List[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping a :Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __UpperCAmelCase )
94
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
0
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.array: snake_case_ = f"""{sampling_rate}""" snake_case_ = """1""" snake_case_ = """f32le""" snake_case_ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(UpperCamelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: snake_case_ = ffmpeg_process.communicate(UpperCamelCase_ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error snake_case_ = output_stream[0] snake_case_ = np.frombuffer(UpperCamelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "f32le" , ) -> Any: snake_case_ = f"""{sampling_rate}""" snake_case_ = """1""" if format_for_conversion == "s16le": snake_case_ = 2 elif format_for_conversion == "f32le": snake_case_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) snake_case_ = platform.system() if system == "Linux": snake_case_ = """alsa""" snake_case_ = """default""" elif system == "Darwin": snake_case_ = """avfoundation""" snake_case_ = """:0""" elif system == "Windows": snake_case_ = """dshow""" snake_case_ = """default""" snake_case_ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] snake_case_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample snake_case_ = _ffmpeg_stream(UpperCamelCase_ , UpperCamelCase_ ) for item in iterator: yield item def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "f32le" , ) -> str: if stream_chunk_s is not None: snake_case_ = stream_chunk_s else: snake_case_ = chunk_length_s snake_case_ = ffmpeg_microphone(UpperCamelCase_ , UpperCamelCase_ , format_for_conversion=UpperCamelCase_ ) if format_for_conversion == "s16le": snake_case_ = np.intaa snake_case_ = 2 elif format_for_conversion == "f32le": snake_case_ = np.floataa snake_case_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: snake_case_ = chunk_length_s / 6 snake_case_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCamelCase_ , (int, float) ): snake_case_ = [stride_length_s, stride_length_s] snake_case_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample snake_case_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample snake_case_ = datetime.datetime.now() snake_case_ = datetime.timedelta(seconds=UpperCamelCase_ ) for item in chunk_bytes_iter(UpperCamelCase_ , UpperCamelCase_ , stride=(stride_left, stride_right) , stream=UpperCamelCase_ ): # Put everything back in numpy scale snake_case_ = np.frombuffer(item["""raw"""] , dtype=UpperCamelCase_ ) snake_case_ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) snake_case_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> List[str]: snake_case_ = B"""""" snake_case_ , snake_case_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) snake_case_ = 0 for raw in iterator: acc += raw if stream and len(UpperCamelCase_ ) < chunk_len: snake_case_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCamelCase_ ) >= chunk_len: # We are flushing the accumulator snake_case_ = (_stride_left, stride_right) snake_case_ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: snake_case_ = False yield item snake_case_ = stride_left snake_case_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCamelCase_ ) > stride_left: snake_case_ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: snake_case_ = False yield item def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = 2**24 # 16Mo try: with subprocess.Popen(UpperCamelCase_ , stdout=subprocess.PIPE , bufsize=UpperCamelCase_ ) as ffmpeg_process: while True: snake_case_ = ffmpeg_process.stdout.read(UpperCamelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
347
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase_ : '''simple docstring''' a__ : Optional[int] = XGLMConfig a__ : Union[str, Any] = {} a__ : Optional[int] = """gelu""" def __init__( self , __lowercase , __lowercase=14 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=0.02 , ) -> Union[str, Any]: __UpperCamelCase :Dict = parent __UpperCamelCase :List[Any] = batch_size __UpperCamelCase :Tuple = seq_length __UpperCamelCase :Any = is_training __UpperCamelCase :Optional[int] = use_input_mask __UpperCamelCase :Dict = use_labels __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Any = d_model __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :Any = num_attention_heads __UpperCamelCase :Optional[Any] = ffn_dim __UpperCamelCase :Dict = activation_function __UpperCamelCase :Union[str, Any] = activation_dropout __UpperCamelCase :Union[str, Any] = attention_dropout __UpperCamelCase :Any = max_position_embeddings __UpperCamelCase :Tuple = initializer_range __UpperCamelCase :int = None __UpperCamelCase :int = 0 __UpperCamelCase :Optional[Any] = 2 __UpperCamelCase :List[Any] = 1 def UpperCamelCase__ ( self) -> Tuple: return XGLMConfig.from_pretrained('''facebook/xglm-564M''') def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Dict = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) __UpperCamelCase :Optional[Any] = None if self.use_input_mask: __UpperCamelCase :Dict = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Union[str, Any] = self.get_config() __UpperCamelCase :List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase__ ( self) -> List[str]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Optional[int] = config_and_inputs __UpperCamelCase :int = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a__ : Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a__ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () a__ : Dict = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) a__ : List[str] = False a__ : Optional[Any] = False a__ : Dict = False def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Union[str, Any] = TFXGLMModelTester(self) __UpperCamelCase :Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37) def UpperCamelCase__ ( self) -> Optional[int]: self.config_tester.run_common_tests() @slow def UpperCamelCase__ ( self) -> str: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Optional[Any] = TFXGLMModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''') def UpperCamelCase__ ( self) -> Optional[Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self , __lowercase=True) -> Any: __UpperCamelCase :str = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :str = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase :str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on __UpperCamelCase :Optional[int] = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase) @slow def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Optional[Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') tf.random.set_seed(0) __UpperCamelCase :str = tokenizer('''Today is a nice day and''' , return_tensors='''tf''') __UpperCamelCase :List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0'''): __UpperCamelCase :List[Any] = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0]) __UpperCamelCase :Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase) __UpperCamelCase :Dict = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) @slow def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :int = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') __UpperCamelCase :Dict = '''left''' # use different length sentences to test batching __UpperCamelCase :Union[str, Any] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __UpperCamelCase :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='''tf''' , padding=__UpperCAmelCase) __UpperCamelCase :Dict = inputs['''input_ids'''] __UpperCamelCase :List[Any] = model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12) __UpperCamelCase :Optional[Any] = tokenizer(sentences[0] , return_tensors='''tf''').input_ids __UpperCamelCase :Optional[Any] = model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12) __UpperCamelCase :str = tokenizer(sentences[1] , return_tensors='''tf''').input_ids __UpperCamelCase :List[Any] = model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12) __UpperCamelCase :Any = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) __UpperCamelCase :List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase) __UpperCamelCase :Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence])
43
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _UpperCAmelCase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( lowercase , lowercase , lowercase=None ): if rng is None: SCREAMING_SNAKE_CASE_: Optional[Any] =random.Random() SCREAMING_SNAKE_CASE_: Optional[int] =1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _ in range(UpperCamelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: int =np.array(UpperCamelCase_ , dtype=jnp.intaa ).reshape(UpperCamelCase_ ) return output def __magic_name__ ( lowercase , lowercase=None ): SCREAMING_SNAKE_CASE_: int =ids_tensor(UpperCamelCase_ , vocab_size=2 , rng=UpperCamelCase_ ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Tuple =1 return attn_mask @require_flax class a : UpperCamelCase : Tuple = None UpperCamelCase : Any = () def lowerCamelCase__ ( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: Union[str, Any] =2 SCREAMING_SNAKE_CASE_: int =inputs["""input_ids"""].shape[-1] // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] =inputs["""input_ids"""][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: str =jnp.ones_like(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Any =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Union[str, Any] =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowerCamelCase__ ( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int =False SCREAMING_SNAKE_CASE_: Dict =max_length SCREAMING_SNAKE_CASE_: Dict =0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any =model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: int =getattr(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =pt_model_class(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_: str =load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) SCREAMING_SNAKE_CASE_: Any =flax_model.generate(__UpperCAmelCase ).sequences SCREAMING_SNAKE_CASE_: Union[str, Any] =pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: Tuple =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] =False SCREAMING_SNAKE_CASE_: List[str] =max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =jit(model.generate ) SCREAMING_SNAKE_CASE_: int =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple =True SCREAMING_SNAKE_CASE_: Tuple =max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int =jit(model.generate ) SCREAMING_SNAKE_CASE_: List[Any] =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any =False SCREAMING_SNAKE_CASE_: List[Any] =max_length SCREAMING_SNAKE_CASE_: Union[str, Any] =2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =jit(model.generate ) SCREAMING_SNAKE_CASE_: int =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] =False SCREAMING_SNAKE_CASE_: Dict =max_length SCREAMING_SNAKE_CASE_: str =2 SCREAMING_SNAKE_CASE_: str =2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowerCamelCase__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str =True SCREAMING_SNAKE_CASE_: List[str] =max_length SCREAMING_SNAKE_CASE_: Any =0.8 SCREAMING_SNAKE_CASE_: Optional[int] =10 SCREAMING_SNAKE_CASE_: Optional[int] =0.3 SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Union[str, Any] =8 SCREAMING_SNAKE_CASE_: Optional[Any] =9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =jit(model.generate ) SCREAMING_SNAKE_CASE_: Optional[int] =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: List[str] =max_length SCREAMING_SNAKE_CASE_: Optional[Any] =1 SCREAMING_SNAKE_CASE_: int =8 SCREAMING_SNAKE_CASE_: Optional[int] =9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Dict =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int =jit(model.generate ) SCREAMING_SNAKE_CASE_: Optional[int] =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: List[str] =max_length SCREAMING_SNAKE_CASE_: List[Any] =2 SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: str =8 SCREAMING_SNAKE_CASE_: Dict =9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any =model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str =jit(model.generate ) SCREAMING_SNAKE_CASE_: str =jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: int =attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_: int =False SCREAMING_SNAKE_CASE_: Dict =max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jit(model.generate ) SCREAMING_SNAKE_CASE_: List[Any] =jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Optional[int] =attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_: List[Any] =True SCREAMING_SNAKE_CASE_: Union[str, Any] =max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jit(model.generate ) SCREAMING_SNAKE_CASE_: List[Any] =jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowerCamelCase__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] =attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_: List[str] =2 SCREAMING_SNAKE_CASE_: Any =max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str =model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str =model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jit(model.generate ) SCREAMING_SNAKE_CASE_: Tuple =jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) SCREAMING_SNAKE_CASE_: int =FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) SCREAMING_SNAKE_CASE_: List[str] ="""Hello world""" SCREAMING_SNAKE_CASE_: Any =tokenizer(__UpperCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , """do_samples""" ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , """foo""" ): SCREAMING_SNAKE_CASE_: List[Any] ={"""foo""": """bar"""} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
173
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> str: '''simple docstring''' return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
115
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
from sklearn.metrics import matthews_corrcoef import datasets lowerCAmelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCAmelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Union[str, Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase ) ), }
279
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[int] = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union snake_case_ = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class SCREAMING_SNAKE_CASE__ : A_ : Optional[Any] = 42 A_ : Union[str, Any] = None A_ : Optional[int] = None A_ : int = None A_ : Optional[Any] = None def a (self : Any ): """simple docstring""" __snake_case , __snake_case , __snake_case = _str_to_version_tuple(self.version_str ) def __repr__(self : Tuple ): """simple docstring""" return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def a (self : Optional[int] ): """simple docstring""" return self.major, self.minor, self.patch def a (self : Tuple , a__ : List[Any] ): """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return Version(__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return other raise TypeError(f"""{other} (type {type(__UpperCAmelCase )}) cannot be compared to version.""" ) def __eq__(self : Optional[Any] , a__ : int ): """simple docstring""" try: __snake_case = self._validate_operand(__UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self : Optional[int] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self._validate_operand(__UpperCAmelCase ) return self.tuple < other.tuple def __hash__(self : Optional[Any] ): """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def a (cls : List[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def a (self : List[str] ): """simple docstring""" return self.version_str def lowerCamelCase__ ( snake_case_ : Any ) -> int: __snake_case = _VERSION_REG.match(UpperCamelCase_ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(UpperCamelCase_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowerCamelCase__ ( snake_case_ : Optional[int] ) -> Optional[Any]: return ".".join(str(UpperCamelCase_ ) for v in version_tuple )
24
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase :List[str] = logging.get_logger(__name__) _lowerCAmelCase :List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _lowerCAmelCase :str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _lowerCAmelCase :Dict = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = set() _UpperCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Tuple = char _UpperCAmelCase : Union[str, Any] = set(UpperCamelCase_ ) return pairs class _UpperCAmelCase ( _UpperCAmelCase ): '''simple docstring''' a__ =VOCAB_FILES_NAMES a__ =PRETRAINED_VOCAB_FILES_MAP a__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ =['''input_ids''', '''attention_mask'''] def __init__( self , A , A , A="__start__" , A="__end__" , A="__unk__" , A="__null__" , **A , ) -> List[str]: super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCAmelCase : List[str] = json.load(__UpperCAmelCase ) _UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: _UpperCAmelCase : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] _UpperCAmelCase : int = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase : Dict = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _UpperCAmelCase : Dict = {} @property def __lowerCAmelCase ( self ) -> int: return len(self.encoder ) def __lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , A ) -> str: if token in self.cache: return self.cache[token] _UpperCAmelCase : Tuple = re.sub('''([.,!?()])''' , r''' \1''' , __UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = re.sub('''(\')''' , r''' \1 ''' , __UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = re.sub(r'''\s{2,}''' , ''' ''' , __UpperCAmelCase ) if "\n" in token: _UpperCAmelCase : str = token.replace('''\n''' , ''' __newln__''' ) _UpperCAmelCase : Optional[Any] = token.split(''' ''' ) _UpperCAmelCase : Optional[Any] = [] for token in tokens: if not len(__UpperCAmelCase ): continue _UpperCAmelCase : Dict = token.lower() _UpperCAmelCase : Any = tuple(__UpperCAmelCase ) _UpperCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCAmelCase : str = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: _UpperCAmelCase : Union[str, Any] = min(__UpperCAmelCase , key=lambda A : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase : List[str] = bigram _UpperCAmelCase : Any = [] _UpperCAmelCase : Optional[Any] = 0 while i < len(__UpperCAmelCase ): try: _UpperCAmelCase : Tuple = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) _UpperCAmelCase : int = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : int = tuple(__UpperCAmelCase ) _UpperCAmelCase : Dict = new_word if len(__UpperCAmelCase ) == 1: break else: _UpperCAmelCase : Any = get_pairs(__UpperCAmelCase ) _UpperCAmelCase : str = '''@@ '''.join(__UpperCAmelCase ) _UpperCAmelCase : Tuple = word[:-4] _UpperCAmelCase : Dict = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def __lowerCAmelCase ( self , A ) -> List[str]: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[Any] = re.findall(r'''\S+\n?''' , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(''' ''' ) ) ) return split_tokens def __lowerCAmelCase ( self , A ) -> int: _UpperCAmelCase : int = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , A ) -> str: return self.decoder.get(__UpperCAmelCase , self.unk_token ) def __lowerCAmelCase ( self , A ) -> str: _UpperCAmelCase : str = ''' '''.join(__UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowerCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : Optional[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase : Optional[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' ) _UpperCAmelCase : Any = 0 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCAmelCase : Optional[Any] = token_index writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
263
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( _UpperCAmelCase ): def __init__( self: Any , __lowerCamelCase: int , __lowerCamelCase: Dict ) -> str: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self: Tuple , __lowerCamelCase: int = 1 , __lowerCamelCase: Optional[int] = 1_00 , __lowerCamelCase: Optional[Any] = None , __lowerCamelCase: List[str] = None , __lowerCamelCase: Union[str, Any] = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __UpperCAmelCase : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase : Dict = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase : Dict = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __UpperCAmelCase : Union[str, Any] = int(__UpperCAmelCase ) if sample_size % down_scale_factor != 0: __UpperCAmelCase : List[Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' " process." ) __UpperCAmelCase : List[Any] = int(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase : Optional[int] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase : int = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase , device=audio.device ) __UpperCAmelCase : int = self.scheduler.timesteps.to(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase : int = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase : int = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample __UpperCAmelCase : Dict = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__UpperCAmelCase )
157
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str ) -> str: '''simple docstring''' A__ = len(UpperCamelCase_ ) A__ = len(UpperCamelCase_ ) A__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) A__ = [] for char_count in range(UpperCamelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCamelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
68
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ): a :Union[str, Any] = parent a :Tuple = batch_size a :int = image_size a :str = patch_size a :int = num_channels a :Optional[int] = embed_dim a :Optional[Any] = depths a :Any = num_heads a :Union[str, Any] = window_size a :Any = mlp_ratio a :Tuple = qkv_bias a :Tuple = hidden_dropout_prob a :Any = attention_probs_dropout_prob a :List[Any] = drop_path_rate a :str = hidden_act a :List[Any] = use_absolute_embeddings a :Tuple = patch_norm a :List[str] = layer_norm_eps a :str = initializer_range a :Dict = is_training a :List[str] = scope a :str = use_labels a :Union[str, Any] = type_sequence_label_size a :Any = encoder_stride a :Dict = out_features a :Any = out_indices def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a :str = None if self.use_labels: a :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Any = MaskFormerSwinModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a :List[Any] = model(__UpperCAmelCase ) a :Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a :int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = MaskFormerSwinBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a :List[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__UpperCAmelCase ): a :List[Any] = ['''stem'''] a :Any = MaskFormerSwinBackbone(config=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.prepare_config_and_inputs() a , a , a :List[str] = config_and_inputs a :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _snake_case ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = MaskFormerSwinModelTester(self ) a :int = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ): return def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): a , a :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a :Optional[Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a :int = model_class(__UpperCAmelCase ) a :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a :Tuple = [*signature.parameters.keys()] a :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a :Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a :List[Any] = outputs.hidden_states a :Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swin has a different seq_length a :Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a :str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a :int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a :Optional[int] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a :List[Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :str = self.model_tester.prepare_config_and_inputs_for_common() a :Optional[int] = 3 a :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a :List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a :Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a :List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a :Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a :Any = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): a , a :Dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): a :int = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): a :Tuple = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) a :Optional[Any] = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__UpperCAmelCase ) , set_nan_tensor_to_zero(__UpperCAmelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}.''' ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: a :Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a :str = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a :Union[str, Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a :int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a :List[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a :Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a :Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} ) a :Tuple = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} ) @require_torch class _snake_case ( unittest.TestCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = (MaskFormerSwinBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = MaskFormerSwinConfig def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = MaskFormerSwinModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a :Optional[Any] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: a :Optional[int] = backbone_class(__UpperCAmelCase ) backbone.to(__UpperCAmelCase ) backbone.eval() a :Optional[Any] = backbone(**__UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True a :Tuple = backbone(**__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) a , a , a :int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: a :Any = backbone(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
347
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowercase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowercase = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(UpperCamelCase_ ) - np.asarray(UpperCamelCase_ )) ** 2 ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(UpperCamelCase_ , UpperCamelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
43
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE_: Tuple =FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE_: str =0.01 with locka.acquire(): with pytest.raises(UpperCamelCase_ ): SCREAMING_SNAKE_CASE_: List[Any] =time.time() locka.acquire(UpperCamelCase_ ) assert time.time() - _start > timeout def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any ="""a""" * 1000 + """.lock""" SCREAMING_SNAKE_CASE_: str =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCamelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 SCREAMING_SNAKE_CASE_: List[Any] =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase_ ): locka.acquire(0 )
173
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = BlipImageProcessor() __UpperCAmelCase : Any = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __UpperCAmelCase : Any = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __UpperCAmelCase : List[Any] = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : str ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def lowerCamelCase__ ( self : str , **UpperCamelCase : Dict ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Any = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : Any = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : Optional[int] = self.get_qformer_tokenizer() __UpperCAmelCase : Dict = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Any = self.prepare_image_inputs() __UpperCAmelCase : List[str] = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : Optional[Any] = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_qformer_tokenizer() __UpperCAmelCase : Any = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = """lower newer""" __UpperCAmelCase : Optional[int] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Tuple = self.get_qformer_tokenizer() __UpperCAmelCase : Tuple = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) __UpperCAmelCase : str = """lower newer""" __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : int = self.get_qformer_tokenizer() __UpperCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : List[str] = processor.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = self.get_qformer_tokenizer() __UpperCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) __UpperCAmelCase : str = """lower newer""" __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : Optional[int] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
115
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __A : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __A : Optional[int] = logging.getLogger() def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCAmelCase_ : int = parser.parse_args() return args.f def UpperCamelCase_ ( A__ : int , A__ : int="eval" ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = os.path.join(UpperCamelCase_ , f'{split}_results.json' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , """r""" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(f'can\'t find {path}' ) __A : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __snake_case ( _UpperCAmelCase): """simple docstring""" def __lowercase ( self : Any ) -> Any: lowerCAmelCase_ : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : str = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_flax_glue.main() lowerCAmelCase_ : List[str] = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def __lowercase ( self : Any ) -> Optional[int]: lowerCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Tuple = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_clm_flax.main() lowerCAmelCase_ : List[Any] = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def __lowercase ( self : Union[str, Any] ) -> str: lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Tuple = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_summarization_flax.main() lowerCAmelCase_ : Any = get_results(__UpperCAmelCase , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : str = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_mlm_flax.main() lowerCAmelCase_ : List[Any] = get_results(__UpperCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_ta_mlm_flax.main() lowerCAmelCase_ : int = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def __lowercase ( self : Dict ) -> List[str]: lowerCAmelCase_ : List[str] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase_ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_flax_ner.main() lowerCAmelCase_ : Optional[Any] = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def __lowercase ( self : Any ) -> List[Any]: lowerCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[str] = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): run_qa.main() lowerCAmelCase_ : int = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
120
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) snake_case_ = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : List[Any] , a__ : Union[str, Any] , a__ : List[Any] , a__ : Optional[int] = None , a__ : Optional[int] = None ): """simple docstring""" __snake_case = None __snake_case = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __snake_case = os.path.abspath('''examples''' ) for item in os.listdir(__UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: __snake_case = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCAmelCase , feature_script=__UpperCAmelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): __snake_case = compare_against_test( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __snake_case = '''\n'''.join(__UpperCAmelCase ) if special_strings is not None: for string in special_strings: __snake_case = diff.replace(__UpperCAmelCase , '''''' ) self.assertEqual(__UpperCAmelCase , '''''' ) def a (self : Optional[int] ): """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , __UpperCAmelCase ) self.one_complete_example('''complete_nlp_example.py''' , __UpperCAmelCase ) def a (self : Any ): """simple docstring""" __snake_case = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __snake_case = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''\"accuracy\": eval_metric[\"accuracy\"],\n\n''', ''' ''' * 20 + '''\"f1\": eval_metric[\"f1\"],\n\n''', ''' ''' * 20 + '''\"train_loss\": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''\"epoch\": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.one_complete_example('''complete_cv_example.py''' , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = False @classmethod def a (cls : Optional[int] ): """simple docstring""" super().setUpClass() __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __snake_case = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def a (cls : Optional[int] ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a (self : Tuple ): """simple docstring""" __snake_case = f"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def a (self : Any ): """simple docstring""" __snake_case = f"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n """.split() __snake_case = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = f"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n """.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) self.assertNotIn('''epoch 0:''' , __UpperCAmelCase ) self.assertIn('''epoch 1:''' , __UpperCAmelCase ) def a (self : List[Any] ): """simple docstring""" __snake_case = f"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n """.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() else: __snake_case = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __UpperCAmelCase ) self.assertIn('''epoch 1:''' , __UpperCAmelCase ) else: self.assertIn('''epoch 0:''' , __UpperCAmelCase ) self.assertIn('''epoch 1:''' , __UpperCAmelCase ) @slow def a (self : Dict ): """simple docstring""" __snake_case = '''\n examples/by_feature/cross_validation.py\n --num_folds 2\n '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __snake_case = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) __snake_case = re.findall('''({.+})''' , __UpperCAmelCase ) __snake_case = [r for r in results if '''accuracy''' in r][-1] __snake_case = ast.literal_eval(__UpperCAmelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def a (self : str ): """simple docstring""" __snake_case = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def a (self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: __snake_case = f"""\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , '''tracking''' ) ) ) def a (self : List[Any] ): """simple docstring""" __snake_case = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def a (self : Any ): """simple docstring""" __snake_case = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
24
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _UpperCAmelCase : '''simple docstring''' a__ =LEDConfig a__ ={} a__ ='''gelu''' def __init__( self , A , A=1_3 , A=7 , A=True , A=False , A=9_9 , A=3_2 , A=2 , A=4 , A=3_7 , A=0.1 , A=0.1 , A=2_0 , A=2 , A=1 , A=0 , A=4 , ) -> str: _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Dict = eos_token_id _UpperCAmelCase : List[str] = pad_token_id _UpperCAmelCase : str = bos_token_id _UpperCAmelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCAmelCase : List[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCAmelCase : List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCAmelCase : Any = prepare_led_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : List[Any] = tf.concat( [tf.zeros_like(__UpperCAmelCase )[:, :-1], tf.ones_like(__UpperCAmelCase )[:, -1:]] , axis=-1 , ) _UpperCAmelCase : Any = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self , A , A ) -> int: _UpperCAmelCase : Optional[int] = TFLEDModel(config=__UpperCAmelCase ).get_decoder() _UpperCAmelCase : int = inputs_dict['''input_ids'''] _UpperCAmelCase : Dict = input_ids[:1, :] _UpperCAmelCase : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] _UpperCAmelCase : Union[str, Any] = 1 # first forward pass _UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple=None , ): if attention_mask is None: _UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _UpperCAmelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' a__ =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a__ =(TFLEDForConditionalGeneration,) if is_tf_available() else () a__ =( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a__ =True a__ =False a__ =False a__ =False def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFLEDModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=__UpperCAmelCase ) def __lowerCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = tf.zeros_like(inputs_dict['''attention_mask'''] ) _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[str] = self.model_tester.seq_length _UpperCAmelCase : List[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(A ): _UpperCAmelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(A ): _UpperCAmelCase : str = [t.numpy() for t in outputs.encoder_attentions] _UpperCAmelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = model_class(__UpperCAmelCase ) _UpperCAmelCase : int = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _UpperCAmelCase : Any = len(__UpperCAmelCase ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) if self.is_encoder_decoder: _UpperCAmelCase : Any = model_class(__UpperCAmelCase ) _UpperCAmelCase : Any = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_decoder_attentions_output(__UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Any = model_class(__UpperCAmelCase ) _UpperCAmelCase : str = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) # Check attention is always last and order is fine _UpperCAmelCase : int = True _UpperCAmelCase : Dict = True _UpperCAmelCase : str = model_class(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> List[Any]: pass def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return tf.constant(UpperCamelCase_ , dtype=tf.intaa ) _lowerCAmelCase :List[Any] = 1E-4 @slow @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _UpperCAmelCase : Any = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _UpperCAmelCase : Union[str, Any] = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _UpperCAmelCase : List[str] = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : Tuple = model(**__UpperCAmelCase )[0] _UpperCAmelCase : List[Any] = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here _UpperCAmelCase : List[str] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _UpperCAmelCase : List[Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _UpperCAmelCase : str = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) _UpperCAmelCase : List[Any] = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = model(**__UpperCAmelCase )[0] _UpperCAmelCase : Optional[Any] = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here _UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
263
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
def _UpperCamelCase ( snake_case__ = 100 ) -> int: __UpperCAmelCase : str = n * (n + 1) * (2 * n + 1) / 6 __UpperCAmelCase : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
157
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A__ = [1_4_4, 1_9_2, 2_4_0] A__ = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: A__ = [9_6, 1_2_0, 1_4_4] A__ = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: A__ = [6_4, 8_0, 9_6] A__ = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] A__ = 0.05 A__ = 2.0 if mobilevit_name.startswith("deeplabv3_" ): A__ = 5_1_2 A__ = 1_6 A__ = 2_1 A__ = "pascal-voc-id2label.json" else: A__ = 1_0_0_0 A__ = "imagenet-1k-id2label.json" A__ = "huggingface/label-files" A__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) A__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F'layer_{i}.' in name: A__ = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' ) if "conv_1." in name: A__ = name.replace("conv_1." , "conv_stem." ) if ".block." in name: A__ = name.replace(".block." , "." ) if "exp_1x1" in name: A__ = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: A__ = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: A__ = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: A__ = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: A__ = name.replace(".norm." , ".normalization." ) if ".conv." in name: A__ = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: A__ = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: A__ = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: A__ = name.replace(F'.{i}.{j}.' , F'.{i}.' ) if "expand_1x1" in name: A__ = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: A__ = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: A__ = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F'.global_rep.{i}.weight' in name: A__ = name.replace(F'.global_rep.{i}.weight' , ".layernorm.weight" ) if F'.global_rep.{i}.bias' in name: A__ = name.replace(F'.global_rep.{i}.bias' , ".layernorm.bias" ) if ".global_rep." in name: A__ = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: A__ = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: A__ = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: A__ = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: A__ = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: A__ = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: A__ = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: A__ = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: A__ = name.replace(".aspp_pool." , "." ) if "seg_head." in name: A__ = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: A__ = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: A__ = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): A__ = "mobilevit." + name return name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Dict=False ) -> Dict: '''simple docstring''' if base_model: A__ = "" else: A__ = "mobilevit." for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(UpperCamelCase_ ) if key[:8] == "encoder.": A__ = key[8:] if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[0][6:] ) - 1 A__ = int(key_split[3] ) A__ = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) A__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size A__ = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: str=False ) -> Tuple: '''simple docstring''' A__ = get_mobilevit_config(UpperCamelCase_ ) # load original state_dict A__ = torch.load(UpperCamelCase_ , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): A__ = MobileViTForSemanticSegmentation(UpperCamelCase_ ).eval() else: A__ = MobileViTForImageClassification(UpperCamelCase_ ).eval() A__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) A__ = image_processor(images=prepare_img() , return_tensors="pt" ) A__ = model(**UpperCamelCase_ ) A__ = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": A__ = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": A__ = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A__ = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": A__ = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": A__ = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": A__ = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: A__ = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) A__ = model_mapping[mobilevit_name] image_processor.push_to_hub(UpperCamelCase_ , organization="apple" ) model.push_to_hub(UpperCamelCase_ , organization="apple" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',""" """ \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
from collections.abc import Sequence from queue import Queue class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): a :Tuple = start a :int = end a :List[str] = val a :List[str] = (start + end) // 2 a :Any = left a :Tuple = right def __repr__( self ): return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase ): a :Tuple = collection a :Union[str, Any] = function if self.collection: a :Optional[int] = self._build_tree(0 , len(__UpperCAmelCase ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): self._update_tree(self.root , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return self._query_range(self.root , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): if start == end: return SegmentTreeNode(__UpperCAmelCase , __UpperCAmelCase , self.collection[start] ) a :Optional[Any] = (start + end) // 2 a :Optional[int] = self._build_tree(__UpperCAmelCase , __UpperCAmelCase ) a :List[str] = self._build_tree(mid + 1 , __UpperCAmelCase ) return SegmentTreeNode(__UpperCAmelCase , __UpperCAmelCase , self.fn(left.val , right.val ) , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if node.start == i and node.end == i: a :Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left , __UpperCAmelCase , __UpperCAmelCase ) else: self._update_tree(node.right , __UpperCAmelCase , __UpperCAmelCase ) a :Any = self.fn(node.left.val , node.right.val ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __UpperCAmelCase , __UpperCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __UpperCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , __UpperCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): if self.root is not None: a :Dict = Queue() queue.put(self.root ) while not queue.empty(): a :Union[str, Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) snake_case : Dict = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
94
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __A (_UpperCAmelCase): '''simple docstring''' __lowercase: List[Any] = """detr""" __lowercase: str = ["""past_key_values"""] __lowercase: List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[int] , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[str]=100 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : str=2_048 , UpperCAmelCase_ : Dict=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : int=2_048 , UpperCAmelCase_ : Tuple=8 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Union[str, Any]="sine" , UpperCAmelCase_ : Union[str, Any]="resnet50" , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[int]=0.1 , **UpperCAmelCase_ : Tuple , ) ->Tuple: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): snake_case_ = backbone_config.get("""model_type""" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None snake_case_ , snake_case_ , snake_case_ = None, None, None snake_case_ = use_timm_backbone snake_case_ = backbone_config snake_case_ = num_channels snake_case_ = num_queries snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = encoder_layers snake_case_ = auxiliary_loss snake_case_ = position_embedding_type snake_case_ = backbone snake_case_ = use_pretrained_backbone snake_case_ = dilation # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = mask_loss_coefficient snake_case_ = dice_loss_coefficient snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" return self.d_model @classmethod def lowerCAmelCase ( cls : List[Any] , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" return cls(backbone_config=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ) ->Dict[str, any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output class __A (_UpperCAmelCase): '''simple docstring''' __lowercase: Dict = version.parse("""1.11""") @property def lowerCAmelCase ( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCAmelCase ( self : Optional[Any] ) ->float: """simple docstring""" return 1E-5 @property def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" return 12
347
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = tempfile.mkdtemp() # fmt: off __UpperCamelCase :Any = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCamelCase :Any = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) __UpperCamelCase :List[str] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCamelCase :List[Any] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__UpperCAmelCase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__UpperCAmelCase)) __UpperCamelCase :Optional[int] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __UpperCamelCase :Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase) def UpperCamelCase__ ( self , **__lowercase) -> Union[str, Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__UpperCAmelCase) def UpperCamelCase__ ( self , **__lowercase) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__UpperCAmelCase) def UpperCamelCase__ ( self , **__lowercase) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCamelCase__ ( self) -> Any: shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCamelCase :List[Any] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Union[str, Any] = self.get_tokenizer() __UpperCamelCase :Tuple = self.get_rust_tokenizer() __UpperCamelCase :Any = self.get_image_processor() __UpperCamelCase :Any = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) processor_slow.save_pretrained(self.tmpdirname) __UpperCamelCase :int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) processor_fast.save_pretrained(self.tmpdirname) __UpperCamelCase :Dict = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[int] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCamelCase :Optional[int] = self.get_image_processor(do_normalize=__UpperCAmelCase) __UpperCamelCase :Dict = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __UpperCAmelCase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Any = self.get_image_processor() __UpperCamelCase :Tuple = self.get_tokenizer() __UpperCamelCase :Dict = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = self.prepare_image_inputs() __UpperCamelCase :List[str] = image_processor(__UpperCAmelCase , return_tensors='''np''') __UpperCamelCase :int = processor(images=__UpperCAmelCase , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :str = self.get_image_processor() __UpperCamelCase :List[Any] = self.get_tokenizer() __UpperCamelCase :Dict = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) __UpperCamelCase :List[Any] = '''lower newer''' __UpperCamelCase :List[str] = processor(text=__UpperCAmelCase , return_tensors='''np''') __UpperCamelCase :Tuple = tokenizer(__UpperCAmelCase , return_tensors='''np''') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Optional[int] = self.get_image_processor() __UpperCamelCase :str = self.get_tokenizer() __UpperCamelCase :List[str] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) __UpperCamelCase :List[str] = '''lower newer''' __UpperCamelCase :List[str] = self.prepare_image_inputs() __UpperCamelCase :Optional[int] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = '''google/owlvit-base-patch32''' __UpperCamelCase :Any = OwlViTProcessor.from_pretrained(__UpperCAmelCase) __UpperCamelCase :List[Any] = ['''cat''', '''nasa badge'''] __UpperCamelCase :List[Any] = processor(text=__UpperCAmelCase) __UpperCamelCase :Dict = 16 self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Any = '''google/owlvit-base-patch32''' __UpperCamelCase :str = OwlViTProcessor.from_pretrained(__UpperCAmelCase) __UpperCamelCase :Any = [['''cat''', '''nasa badge'''], ['''person''']] __UpperCamelCase :Tuple = processor(text=__UpperCAmelCase) __UpperCamelCase :Tuple = 16 __UpperCamelCase :int = len(__UpperCAmelCase) __UpperCamelCase :int = max([len(__UpperCAmelCase) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Union[str, Any] = '''google/owlvit-base-patch32''' __UpperCamelCase :Union[str, Any] = OwlViTProcessor.from_pretrained(__UpperCAmelCase) __UpperCamelCase :str = ['''cat''', '''nasa badge'''] __UpperCamelCase :str = processor(text=__UpperCAmelCase) __UpperCamelCase :str = 16 __UpperCamelCase :List[Any] = inputs['''input_ids'''] __UpperCamelCase :Any = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = self.get_image_processor() __UpperCamelCase :Any = self.get_tokenizer() __UpperCamelCase :List[str] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = self.prepare_image_inputs() __UpperCamelCase :List[Any] = self.prepare_image_inputs() __UpperCamelCase :Union[str, Any] = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase): processor() def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.get_image_processor() __UpperCamelCase :int = self.get_tokenizer() __UpperCamelCase :List[Any] = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase) __UpperCamelCase :Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase :Tuple = processor.batch_decode(__UpperCAmelCase) __UpperCamelCase :Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase)
43
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _UpperCAmelCase = """▁""" # Segments (not really needed) _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 class a ( _UpperCAmelCase ): UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[Any] = 'left' UpperCamelCase : int = XLNetTokenizer def __init__( self : Optional[int] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Dict=False , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=False , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Any="</s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : Optional[Any]="<sep>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : List[Any]="<cls>" , lowerCAmelCase : Dict="<mask>" , lowerCAmelCase : List[str]=["<eop>", "<eod>"] , **lowerCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: Tuple =3 SCREAMING_SNAKE_CASE_: List[Any] =do_lower_case SCREAMING_SNAKE_CASE_: Optional[Any] =remove_space SCREAMING_SNAKE_CASE_: Optional[int] =keep_accents SCREAMING_SNAKE_CASE_: List[str] =vocab_file SCREAMING_SNAKE_CASE_: int =False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =[self.sep_token_id] SCREAMING_SNAKE_CASE_: Tuple =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : int = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_: List[str] =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
173
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
0